# Bakshi, Gao, Panayotov: A theory of dissimilarity between stochastic discount factors

Discussion by Jaroslav Borovička (NYU) January 2018 Construct a discrepancy measure – the Hellinger distance  $H(m, m^*)$  – that

- has some appealing properties
- can be inferred from asset price data

Provide empirical evidence on  $H(m, m^*)$ 

- $\cdot\,$  from the cross section of currency option prices
- $\cdot$  from the time series of currency returns
- from estimated SDFs using 'model-free' restrictions
- from structural models in international finance

Metrics allowing comparisons across classes of models are important.

- 1. Are the appealing properties utilized effectively?
- 2. Does the Hellinger distance provide insights different from other discrepancy measures?
- 3. Are quantitative implications clearly spelled out?
- 4. Have we learned something new?
- 5. Are there alternative interpretations of the discrepancy measure?

No-arbitrage condition in complete international markets

$$m_{t+1}\frac{S_{t+1}}{S_t} = m_{t+1}^*$$

- $\cdot m_{t+1}, m^*_{t+1}$  domestic and foreign one-period SDFs
  - assume throughout that these are normalized to have conditional mean 1
- $S_{t+1}/S_t$  exchange rate depreciation

Hellinger distance as a measure of dissimilarity of  $m_{t+1}$  and  $m_{t+1}^*$ 

$$H(m_{t+1}, m_{t+1}^*) = 1 - E_t \left[ \sqrt{m_{t+1}m_{t+1}^*} \right]$$

• see Schneider and Trojani (2015), Schneider (2017) for more extensive applications of Hellinger divergence in the study of market returns

A simple manipulation yields

$$H(m_{t+1}, m_{t+1}^*) = 1 - E_t \left[ m_{t+1} \sqrt{\frac{m_{t+1}^*}{m_{t+1}}} \right] = 1 - E_t^Q \left[ \sqrt{\frac{S_{t+1}}{S_t}} \right]$$

• RHS can be inferred from a cross-section of currency option prices

Under log-normality of  $m_{t+1}$  and  $m_{t+1}^*$ 

$$H(m_{t+1}, m_{t+1}^*) = 1 - \exp\left(-\frac{1}{8} \operatorname{Var}_t\left[\log\frac{S_{t+1}}{S_t}\right]\right)$$

· when increments are independent,  $Var_t[\cdot]$  can be proxied with daily variation

Use the two approaches to infer nonnormalities in SDFs.

### **RESULT: EVIDENCE OF NON-NORMALITIES**

|                                                                                         | $\sqrt{H} \times 100$ |      |       |      | Percentiles |     |      |      |      |      |
|-----------------------------------------------------------------------------------------|-----------------------|------|-------|------|-------------|-----|------|------|------|------|
|                                                                                         | Mean                  | Std. | Min.  | Max. | 5           | th  | 25th | 50th | 75th | 95th |
|                                                                                         |                       |      |       |      |             |     |      |      |      |      |
| A. Hellinger measures based on currency option prices                                   |                       |      |       |      |             |     |      |      |      |      |
| $\overline{H}_{t}^{[45]}$                                                               | 1.14                  | 0.33 | 0.64  | 3.39 | 0.          | 80  | 0.92 | 1.09 | 1.26 | 1.65 |
| $\overline{H}_t^{\mathrm{US},[9]}$                                                      | 1.12                  | 0.34 | 0.59  | 3.34 | 0.          | 73  | 0.94 | 1.08 | 1.24 | 1.64 |
| B. Hellinger measures based on variance of currency returns                             |                       |      |       |      |             |     |      |      |      |      |
| $\overline{\mathcal{H}}_{t}^{[45]}$                                                     | 1.05                  | 0.36 | 0.55  | 3.90 | 0.          | 69  | 0.84 | 0.99 | 1.13 | 1.66 |
| $\overline{\mathcal{H}}_{t}^{\mathrm{US},[9]}$                                          | 1.03                  | 0.37 | 0.48  | 3.53 | 0.          | 61  | 0.83 | 0.97 | 1.15 | 1.77 |
| C. Deviations                                                                           |                       |      |       |      |             |     |      |      |      |      |
| $\log(\overline{H}_t^{[45]}/\overline{\mathcal{H}}_t^{[45]}), \%$                       | 10.3                  | 12.8 | -19.4 | 47.0 | -1          | 0.5 | 1.2  | 10.0 | 18.2 | 31.9 |
| $\log(\overline{H}_t^{\mathrm{US},[9]}/\overline{\mathcal{H}}_t^{\mathrm{US},[9]}), \%$ | 11.1                  | 14.4 | -19.7 | 53.0 | -1          | 0.0 | 1.1  | 10.5 | 19.9 | 38.4 |

- "We interpret the time-varying nature of the deviations as the contribution of stochastically-varying risk-neutral moments of currency returns"
- "Evidence of dissimilarity in higher moments of SDFs"

## **RESULT: EVIDENCE OF NON-NORMALITIES**



- Evidence of non-normality or noise?
- Why is the Hellinger distance a superior measure of non-normality in currency returns?
- Why not study the distribution of  $S_{t+1}/S_t = m_{t+1}^*/m_{t+1}$  directly?

| $\overline{H}_t^{i,[9]} - \overline{H}_t^{[45]}$ | Mean  | [95% CI]      | Minimum | Maximum |  |
|--------------------------------------------------|-------|---------------|---------|---------|--|
|                                                  |       |               |         |         |  |
| Euro-zone (EU)                                   | -0.17 | [-0.21 -0.13] | -0.26   | -0.12   |  |
| United Kingdom (UK)                              | -0.09 | [-0.10 -0.07] | -0.11   | -0.05   |  |
| Switzerland (SW)                                 | -0.07 | [-0.11 -0.03] | -0.14   | 0.02    |  |
| Norway (NO)                                      | -0.05 | [-0.08 -0.03] | -0.11   | 0.00    |  |
| Sweden (SD)                                      | -0.03 | [-0.06 -0.01] | -0.08   | 0.01    |  |
| United States (US)                               | -0.01 | [-0.08 0.05]  | -0.15   | 0.09    |  |
| Canada (CA)                                      | 0.00  | [-0.04 0.04]  | -0.07   | 0.08    |  |
| Australia (AU)                                   | 0.04  | [0.01 0.07]   | -0.01   | 0.11    |  |
| New Zealand (NZ)                                 | 0.12  | [0.08 0.17]   | 0.05    | 0.22    |  |
| Japan (JP)                                       | 0.23  | [ 0.16 0.32]  | 0.09    | 0.43    |  |

- Are these differences quantitatively large?
- Interpretation of the magnitude of the Hellinger distance?

Infer  $m_{t+1}$  (and  $m_{t+1}^*$ ) from a minimum discrepancy problem

 $\min_{m_{t+1}} E_t \left[ m_{t+1} \log m_{t+1} \right]$ 

subject to

$$1 = E_t \left[ m_{t+1} R_{t+1} \right] \qquad 1 = E_t \left[ m_{t+1} \frac{S_{t+1}}{S_t} R_{t+1}^* \right]$$

• Well-studied problem in the class of Cressie and Read (1984) discrepancies

Compare inferred  $m_{t+1}^*/m_{t+1}$  across countries with previous results

• use the Hellinger distance and other divergence measures

#### APPROACH 3: SDF FROM A MINIMUM DISPERSION PROBLEM

|    |     | Hellinger | Chi-squared | Volatility      |                   |  |
|----|-----|-----------|-------------|-----------------|-------------------|--|
|    | Т   | measure   | measure     | $\widetilde{n}$ | $\widetilde{n}^*$ |  |
|    |     |           |             |                 |                   |  |
| EU | 191 | 0.81      | 0.096       | 105             | 104               |  |
| UK | 336 | 0.74      | 0.081       | 77              | 76                |  |
| SW | 336 | 0.89      | 0.107       | 84              | 84                |  |
| CA | 319 | 0.62      | 0.056       | 85              | 84                |  |
| AU | 336 | 0.97      | 0.127       | 74              | 70                |  |
| NZ | 309 | 0.98      | 0.138       | 76              | 70                |  |
| JP | 336 | 0.91      | 0.113       | 92              | 95                |  |

- Are the results 'close' to  $H(m, m^*)$  obtained earlier?
- Hellinger and chi-squared measure are highly correlated.
- Why prefer the Hellinger measure?
  - Some computational simplicity but other than that?

A) Verdelhan (2010); B) Lustig, Roussanov, Verdelhan (2014); C) Colacito, Croce (2011); D) time-varying disasters

|            | Models |      |      |       |      |      | Data                      |                                      |          |         |  |
|------------|--------|------|------|-------|------|------|---------------------------|--------------------------------------|----------|---------|--|
|            | А      | В    |      |       | С    | D    |                           |                                      |          |         |  |
|            |        | (i)  | (ii) | (iii) |      |      |                           |                                      |          |         |  |
| δ          |        | 0.22 | 0.22 | 0.35  |      |      | $\overline{H}_{t}^{[45]}$ | $\overline{H}_{t}^{\mathrm{US},[9]}$ | Smallest | Largest |  |
| $\delta^*$ |        | 0.49 | 0.36 | 0.36  |      |      | -                         | -                                    | EU SW    | NZ JP   |  |
| Mean       | 2.93   | 1.60 | 1.26 | 1.07  | 1.21 | 1.31 | 1.14                      | 1.12                                 | 0.54     | 1.56    |  |
|            |        |      |      |       |      |      | Bootstrap                 |                                      |          |         |  |
| 2.5 perc.  | 1.96   | 1.53 | 1.18 | 0.98  | -    | 1.30 | 0.96                      | 0.95                                 | 0.39     | 1.27    |  |
| 97.5 perc. | 4.37   | 1.69 | 1.36 | 1.18  | -    | 1.34 | 1.30                      | 1.30                                 | 0.69     | 1.84    |  |

- Models differ in  $H(m, m^*)$ 
  - Caveats: Calibrations to different periods, ...
- How much is economically significant?
- · Should we calibrate models specifically to Hellinger distance?
  - What value added relative to other moments?

What if there is a friction in international financial markets?

$$m_{t+1} \frac{S_{t+1}}{S_t} \frac{F_{t+1}}{F_t} = m_{t+1}^*$$

•  $F_{t+1}/F_t$  represents evolution of shadow prices on financial constraints

Hellinger distance computed from currency options

$$\frac{S_{t+1}}{S_t} = \frac{m_{t+1}^*}{m_{t+1}} \frac{F_t}{F_{t+1}}$$

does not measure only the discrepancy in SDFs.

• but different ways of inferring  $m_{t+1}^*/m_{t+1}$  could inform us about  $F_{t+1}/F_t$ 

#### Creative, interesting paper

 model-free bounds have been informative about key restrictions on SDFs (Hansen and Jagannathan (1991))

Improve interpretation of the results

- which distribution characteristics does the Hellinger distance accentuate?
- quantitative interpretation of the distance

Can we utilize alternative approaches to think about frictions in international markets?