GEORGY CHABAKAURI, BRANDON YUEYANG HAN
CAPITAL REQUIREMENTS AND ASSET PRICES

Discussion by Jaroslav Borovička (NYU)
May 2016
A HETEROGENEOUS AGENT ECONOMY

- two classes of competitive agents, A and B
A HETEROGENEOUS AGENT ECONOMY

- two classes of competitive agents, A and B
- heterogeneous risk aversions and beliefs
 - agent B less risk averse and more optimistic
· two classes of competitive agents, A and B
· heterogeneous risk aversions and beliefs
 · agent B less risk averse and more optimistic
· Brownian shock \rightarrow decentralization with a stock and a bond
A HETEROGENEOUS AGENT ECONOMY

- two classes of competitive agents, A and B
- heterogeneous risk aversions and beliefs
 - agent B less risk averse and more optimistic
- Brownian shock \rightarrow decentralization with a stock and a bond
- a jump shock with Poisson arrival rate \rightarrow ‘insurance’ asset
A HETEROGENEOUS AGENT ECONOMY

- two classes of competitive agents, A and B
- heterogeneous risk aversions and beliefs
 - agent B less risk averse and more optimistic
- Brownian shock \rightarrow decentralization with a stock and a bond
- a jump shock with Poisson arrival rate \rightarrow ‘insurance’ asset
- a capital constraint \rightarrow agents cannot pledge (a part of) their future income
Closed form solution

- Impressive.
RESULTS

Closed form solution

- Impressive.

Boundary behavior

- Reflecting boundary assures existence of a stationary wealth distribution.
Closed form solution

- Impressive.

Boundary behavior

- Reflecting boundary assures existence of a stationary wealth distribution.
- How do individual decisions at the boundaries look like?
- Discrete- vs continuous-time economies.
Closed form solution

- Impressive.

Boundary behavior

- Reflecting boundary assures existence of a stationary wealth distribution.
- How do individual decisions at the boundaries look like?
- Discrete- vs continuous-time economies.

Role of financial constraints

- Which constraints? How important are they? How do we distinguish them?
Derive

- **law of motion for the state variable**: log ratio of marginal utilities
 - captures the current distribution of wealth in the economy
 - akin consumption share, wealth share, relative continuation values, Pareto share
Derive

- **law of motion for the state variable**: log ratio of marginal utilities
 - captures the current distribution of wealth in the economy
 - akin consumption share, wealth share, relative continuation values, Pareto share

- **differential equation** for the endogenous object of interest
 - here: a function of the price-dividend ratio
Derive

- **law of motion for the state variable**: log ratio of marginal utilities
 - captures the current distribution of wealth in the economy
 - akin consumption share, wealth share, relative continuation values, Pareto share

- **differential equation** for the endogenous object of interest
 - here: a function of the price-dividend ratio

- **boundary conditions** establish behavior at the boundaries
 - here: reflecting boundary
 - when the boundary is hit, difference in stochastic portfolio returns makes the wealth immediately reflect off the boundary
Derive

- **law of motion for the state variable**: log ratio of marginal utilities
 - captures the current distribution of wealth in the economy
 - akin consumption share, wealth share, relative continuation values, Pareto share

- **differential equation** for the endogenous object of interest
 - here: a function of the price-dividend ratio

- **boundary conditions** establish behavior at the boundaries
 - here: reflecting boundary
 - when the boundary is hit, difference in stochastic portfolio returns makes the wealth immediately reflect off the boundary

- **extra cherry on the cake**: disaster insurance inducing jumps
 - delay term in the differential equation
Despite the complications the authors obtain a closed form solution for the ODE (up to trivial implicitly defined equations)
Despite the complications the authors obtain a closed form solution for the ODE (up to trivial implicitly defined equations)

- **Dumas (1989):** solution when one agent has logarithmic preferences
 - her wealth-consumption ratio is constant
Despite the complications the authors obtain a closed form solution for the ODE (up to trivial implicitly defined equations)

- **Dumas (1989)**: solution when one agent has logarithmic preferences
 - her wealth-consumption ratio is constant

- **Wang (1996)**: solution when risk aversions are integers smaller than 5
 - relies on explicitly solved polynomial roots
Despite the complications the authors obtain a closed form solution for the ODE (up to trivial implicitly defined equations)

- Dumas (1989): solution when one agent has logarithmic preferences
 - her wealth-consumption ratio is constant

- Wang (1996): solution when risk aversions are integers smaller than 5
 - relies on explicitly solved polynomial roots

- Bhamra and Uppal (2014): general unconstrained case
 - series representations for the solution
Despite the complications the authors obtain a closed form solution for the ODE (up to trivial implicitly defined equations)

- **Dumas (1989):** solution when one agent has logarithmic preferences
 - her wealth-consumption ratio is constant

- **Wang (1996):** solution when risk aversions are integers smaller than 5
 - relies on explicitly solved polynomial roots

- **Bhamra and Uppal (2014):** general unconstrained case
 - series representations for the solution

- **Chabakauri and Han (2016):** constraints and jumps
 - analogous representation, but economically much more interesting
State variable: adjusted ratio of martingal utilities

\[v_t = \ln \frac{(C_{At}/D_t)^{-\gamma_A}}{(C_{Bt}/D_t)^{-\gamma_B}} = \frac{S_t^{-\gamma_A}}{(1 - S_t)^{-\gamma_B}} \]
State variable: adjusted ratio of martingal utilities

\[v_t = \ln \left(\frac{(C_{At}/D_t)^{-\gamma_A}}{(C_{Bt}/D_t)^{-\gamma_B}} \right) = \frac{S_t^{-\gamma_A}}{(1 - S_t)^{-\gamma_B}} \]

- agent B optimistic and less risk averse
- after a good shock, \(v_t \) increases
State variable: adjusted ratio of martingal utilities

\[v_t = \ln \frac{(C_{At}/D_t)^{-\gamma_A}}{(C_{Bt}/D_t)^{-\gamma_B}} = \frac{S_t^{-\gamma_A}}{(1 - S_t)^{-\gamma_B}} \]

- agent B optimistic and less risk averse
- after a good shock, \(v_t \) increases

Price-dividend ratio

\[\psi (v) = \hat{\psi} (v; -\gamma_A) s (v)^{\gamma_A} \]
$\hat{\Psi} \left(\nu; \theta \right)$ satisfies the ODE on $(\nu, \bar{\nu})$

$$\frac{\hat{\sigma}_V^2}{2} \hat{\Psi}'' \left(\nu; \theta \right) + \left(\hat{\mu}_V + \left(1 - \gamma_A \right) \sigma_D \hat{\sigma}_V \right) \hat{\Psi}' \left(\nu; \theta \right) -$$

$$- \left(\lambda + \rho - \left(1 - \gamma_A \right) \mu_D + \frac{\left(1 - \gamma_A \right) \gamma_A}{2} \sigma_D^2 \right) \hat{\Psi} \left(\nu; \theta \right) +$$

$$+ \lambda \left(1 + J_D \right)^{1-\gamma_A} \hat{\Psi}' \left(\max \left\{ \nu; \nu + \hat{J}_V \right\}; \theta \right) + s \left(\nu \right)^\theta = 0$$

with

$$\hat{\mu}_V = \left(\gamma_A - \gamma_B \right) \left(\mu_D - \frac{1}{2} \sigma_D^2 \right) + \lambda - \lambda_B - \frac{\delta^2}{2}$$

$$\hat{\sigma}_V = \left(\gamma_A - \gamma_B \right) \sigma_D + \delta$$

$$\hat{J}_V = \left(\gamma_A - \gamma_B \right) \ln \left(1 + J_D \right) + \ln \frac{\lambda_B}{\lambda}$$
The ODE is particularly simple because financial constraints bind only at boundaries \(\{v, \bar{v}\} \).

- Boundaries correspond to situations when wealth level \(W^i = 0 \).
The ODE is particularly simple because financial constraints bind only at boundaries \(\{v, \bar{v}\} \).

- Boundaries correspond to situations when wealth level \(W^i = 0 \).

What happens at the boundary?

- Agent still receives the flow of labor income.
- Can save this labor income and accumulate financial assets.
The ODE is particularly simple because financial constraints bind only at boundaries \(\{v, \bar{v}\} \).

- Boundaries correspond to situations when wealth level \(W^i = 0 \).

What happens at the boundary?

- Agent still receives the flow of labor income.
- Can save this labor income and accumulate financial assets.
- But is this optimal?
Timing

- Period length Δt. Agent starts with $W_t = 0$.
Timing

- Period length Δt. Agent starts with $W_t = 0$.
- Receives labor income $\rho D_t \Delta t$
Timing

- Period length Δt. Agent starts with $W_t = 0$.
- Receives labor income $\rho D_t \Delta t$.
- Portfolio choice. Portfolio cannot be excessively risky because we need $W_{t+\Delta t} \geq 0$.

Given expected return on optimal portfolio, choose a saving rate $s \in [0; 1]$.

Saving decision

Clearly $s < 1$.

But do we know that $s > 0$? That must depend on parameterization.

E.g., low IES agent in a growing economy.
Timing

- Period length Δt. Agent starts with $W_t = 0$.
- Receives labor income $\rho D_t \Delta t$
- **Portfolio choice.** Portfolio cannot be excessively risky because we need $W_{t+\Delta t} \geq 0$.
- Given expected return on optimal portfolio, choose a saving rate $s \in [0, 1]$.

Saving decision

- Clearly $s < 1$.
Timing

- Period length Δt. Agent starts with $W_t = 0$.
- Receives labor income $\rho D_t \Delta t$.
- Portfolio choice. Portfolio cannot be excessively risky because we need $W_{t+\Delta t} \geq 0$.
- Given expected return on optimal portfolio, choose a saving rate $s \in [0, 1]$.

Saving decision

- Clearly $s < 1$.
- But do we know that $s > 0$?
Timing

- Period length Δt. Agent starts with $W_t = 0$.
- Receives labor income $\rho D_t \Delta t$
- **Portfolio choice.** Portfolio cannot be excessively risky because we need $W_{t+\Delta t} \geq 0$.
- Given expected return on optimal portfolio, choose a saving rate $s \in [0, 1]$.

Saving decision

- Clearly $s < 1$.
- But do we know that $s > 0$? That must depend on parameterization.
Timing

- Period length Δt. Agent starts with $W_t = 0$.
- Receives labor income $\rho D_t \Delta t$.
- **Portfolio choice.** Portfolio cannot be excessively risky because we need $W_{t+\Delta t} \geq 0$.
- Given expected return on optimal portfolio, choose a saving rate $s \in [0, 1]$.

Saving decision

- Clearly $s < 1$.
- But do we know that $s > 0$? That must depend on parameterization.
- E.g., low IES agent in a growing economy.
Actually, they can.
Actually, they can.

- **Conjecture**: The critical component is the amount of risky asset in the portfolio is of order $\sqrt{\Delta t}$.
Actually, they can.

- **Conjecture**: The critical component is the amount of risky asset in the portfolio is of order $\sqrt{\Delta t}$.
- As $\Delta t \to 0$, the agent at the boundary chooses infinite leverage.
Actually, they can.

- **Conjecture**: The critical component is the amount of risky asset in the portfolio is of order \(\sqrt{\Delta t}\).
- As \(\Delta t \to 0\), the agent at the boundary chooses infinite leverage.
- Given the high (infinite) expected return, the household always chooses \(s > 0\).
Actually, they can.

- **Conjecture**: The critical component is the amount of risky asset in the portfolio is of order $\sqrt{\Delta t}$.
- As $\Delta t \to 0$, the agent at the boundary chooses infinite leverage.
- Given the high (infinite) expected return, the household always chooses $s > 0$.

In fact, diverging leverage at the boundary seems to be necessary for the reflecting boundary.

- Otherwise volatility of v_t at the boundary would vanish.
Actually, they can.

- **Conjecture**: The critical component is the amount of risky asset in the portfolio is of order $\sqrt{\Delta t}$.
- As $\Delta t \to 0$, the agent at the boundary chooses infinite leverage.
- Given the high (infinite) expected return, the household always chooses $s > 0$.

In fact, diverging leverage at the boundary seems to be necessary for the reflecting boundary.

- Otherwise volatility of v_t at the boundary would vanish.
- This would likely be inconsistent with a finite scale function (necessary for a reflecting boundary).
We usually think that of discrete- vs. continuous-time framework as a convenient choice.

- Whatever is more tractable.
We usually think that of discrete- vs. continuous-time framework as a convenient choice.

- Whatever is more tractable.

But sometimes these choices have economic consequences.
We usually think that of discrete- vs. continuous-time framework as a convenient choice.

- Whatever is more tractable.

But sometimes these choices have economic consequences.

The paper is very formal about treatment of boundary conditions.

- It would be useful to add a discussion of portfolio choices in the vicinity of the boundary.
- Compare with a discrete-time economy calculation.
Chabakauri (2013, RFS): Two stocks, heterogeneous RA, margin and leverage constraints

- positive relationship between leverage and stock return correlations and volatilities
- hump-shaped pattern of volatilities

Chabakauri (2015, JME): Heterogeneous beliefs and RA, various portfolio constraints

- borrowing and short-sale constraints decrease stock return volatility
- limited participation constraints increase volatilities

Chabakauri (2014): Heterogeneous EZ preferences, rare events

- excess stock return volatility, procyclical P/D ratios, countercyclical MPR when \(IES > 1 \)
Chabakauri (2013, RFS): Two stocks, heterogeneous RA, margin and leverage constraints

- positive relationship between leverage and stock return correlations and volatilities
- hump-shaped pattern of volatilities

Chabakauri (2015, JME): Heterogeneous beliefs and RA, various portfolio constraints

- borrowing and short-sale constraints decrease stock return volatility
- limited participation constraints increase volatilities
Chabakauri (2013, RFS): Two stocks, heterogeneous RA, margin and leverage constraints
 · positive relationship between leverage and stock return correlations and volatilities
 · hump-shaped pattern of volatilities

Chabakauri (2015, JME): Heterogeneous beliefs and RA, various portfolio constraints
 · borrowing and short-sale constraints decrease stock return volatility
 · limited participation constraints increase volatilities

Chabakauri (2014): Heterogeneous EZ preferences, rare events
 · excess stock return volatility, procyclical P/D ratios, countercyclical MPR when $IES > 1$
GENERAL TAKEAWAYS

Given authors’ extensive work on this type of models, I would appreciate a more comprehensive discussion of the role of alternative constraints.
Given authors’ extensive work on this type of models, I would appreciate a more comprehensive discussion of the role of alternative constraints.

1. Are there common patterns arising?
 - Robust across different specification of primitives, or types of constraints?
Given authors’ extensive work on this type of models, I would appreciate a more comprehensive discussion of the role of alternative constraints.

1. Are there common patterns arising?
 · Robust across different specification of primitives, or types of constraints?

2. Are there differences that would help us identify constraints faced by investors from asset price data?
 · Many constraints can be present at the same time. Interaction?
Given authors’ extensive work on this type of models, I would appreciate a more comprehensive discussion of the role of alternative constraints.

1. Are there common patterns arising?
 - Robust across different specification of primitives, or types of constraints?

2. Are there differences that would help us identify constraints faced by investors from asset price data?
 - Many constraints can be present at the same time. Interaction?

3. How to think about policy experiments?
 - Which of these constraints represent structural restrictions?
 - Closed-form solutions are great for conducting such analysis.
Given authors’ extensive work on this type of models, I would appreciate a more comprehensive discussion of the role of alternative constraints.

1. Are there common patterns arising?
 · Robust across different specification of primitives, or types of constraints?

2. Are there differences that would help us identify constraints faced by investors from asset price data?
 · Many constraints can be present at the same time. Interaction?

3. How to think about policy experiments?
 · Which of these constraints represent structural restrictions?
 · Closed-form solutions are great for conducting such analysis.

The paper contains relatively little comparison with authors’ (and other) previous work.
Model yields a stationary distribution of the consumption share.

- Contrary to results under separable preferences and complete markets → degenerate long-run equilibria.
 - Nonseparable preferences (e.g., Epstein–Zin) can resolve this.
WEALTH DISTRIBUTION AND SURVIVAL

Model yields a stationary distribution of the consumption share.

- Contrary to results under separable preferences and complete markets \implies degenerate long-run equilibria.
 - Nonseparable preferences (e.g., Epstein–Zin) can resolve this.

How does it happen? **Unpledgeable future labor income**
Model yields a stationary distribution of the consumption share.

- Contrary to results under separable preferences and complete markets → degenerate long-run equilibria.
 - Nonseparable preferences (e.g., Epstein–Zin) can resolve this.

How does it happen? **Unpledgeable future labor income**

- E.g., *Cao (2014)*
- When agent depletes all financial wealth, she can still use flow of labor income to invest.
- Is this always true?
Distribution of wealth the only state variable.

- Fluctuations in expected returns, price-dividend ratios, etc. driven purely by wealth redistribution.
Distribution of wealth the only state variable.

- Fluctuations in expected returns, price-dividend ratios, etc. driven purely by wealth redistribution.

Is this quantitatively plausible?

- Are empirical fluctuations in wealth distribution large enough to justify such movements?
Distribution of wealth the only state variable.

- Fluctuations in expected returns, price-dividend ratios, etc. driven purely by wealth redistribution.

Is this quantitatively plausible?

- Are empirical fluctuations in wealth distribution large enough to justify such movements?

On aggregate probably not.
Distribution of wealth the only state variable.

- Fluctuations in expected returns, price-dividend ratios, etc. driven purely by wealth redistribution.

Is this quantitatively plausible?

- Are empirical fluctuations in wealth distribution large enough to justify such movements?

On aggregate probably not.

- But maybe it is enough to look at the very rich.
- Better and better data available (Matthieu Gomez (2015))
1. A remarkable method to derive an analytical solution.
 - Incorporates several appealing and carefully chosen components.
1. A remarkable method to derive an analytical solution.
 - Incorporates several appealing and carefully chosen components.

2. Analytical solution allows for convenient sensitivity analysis.
 - Do more of it!
1. A remarkable method to derive an analytical solution.
 · Incorporates several appealing and carefully chosen components.

2. Analytical solution allows for convenient sensitivity analysis.
 · Do more of it!

3. Longer-term agenda should lead to comprehensive understanding of differences, similarities and relative importance of alternative constraints.
1. A remarkable method to derive an analytical solution.
 · Incorporates several appealing and carefully chosen components.

2. Analytical solution allows for convenient sensitivity analysis.
 · Do more of it!

3. Longer-term agenda should lead to comprehensive understanding of differences, similarities and relative importance of alternative constraints.

4. Empirical relevance of the wealth distribution dynamics