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- Abstract from persistent movements in fundamentals:

dX[ = AXtdt + BC’Wt

dy[ DX[dt + Gth

- Two models for learning about 3 (here xy):

- Model 0: A=B=0.
- Model1: A=0,B> 0.

- Standard solution:

dx; = AXdt+ Kt (dyt — D)_(tdt)
K. = [BG +x.0](66)"
oz,

at AY: + A" + BB’ — K:GG'K;
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TWO MODELS

- Index (almost) everything by i
dye = D(i)x (i) dt + GdW; (i)
- G has to stay the same for both models, otherwise immediately learnable

- Model 0: A=B =0.

- Model1: A=0,B > 0.

- The Kalman-filter solution conditional on a model is

dxe () = K (Zt () [dye — D (i) (i) dt]
K(Ze() = [B>)G + (i) D (i)] [66']"
dx (i)

7 = B0 =K (Z())6)(B() — K (Tt (1)) 6)
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- Model indicator: i € {0,1}
- Posterior probability of i = 1 given H;

= E[i| Hi

- By Bayes rule (prior 7, likelihood [ (i))

7 — exp (l: (1)) %
" exp (L (1)7% + exp (1 (0) (1 — )

- Derive the law of motion for % (innovations representation)

dn = w(1-7) [E(M% 1) - D)%) (66) ]
{dy: — [&D ()% (1) dt + (1 — &) D (0) % (0) dt]}




PROPERTIES OF THE POSTERIOR

di = 1(1-) [(PMX (1) =D (0) (66) |-
Adye — [D (1) X (1) dt + (1 — %) D (0) X (0) dt]}

- 7 € (0,1) with unattainable boundaries



PROPERTIES OF THE POSTERIOR

di = 1(1-) [(PMX (1) =D (0) (66) |-
Adye — [D (1) X (1) dt + (1 — %) D (0) X (0) dt]}

- 7 € (0,1) with unattainable boundaries
- Bounded martingale under agent's beliefs: convergence

- Agent believes she will ultimately learn the probability of each of the models



PROPERTIES OF THE POSTERIOR

di = 1(1-) [(PMX (1) =D (0) (66) |-
Adye — [D (1) X (1) dt + (1 — %) D (0) X (0) dt]}

- 7 € (0,1) with unattainable boundaries
- Bounded martingale under agent's beliefs: convergence

- Agent believes she will ultimately learn the probability of each of the models
- But what about the data-generating measure?



PROPERTIES OF THE POSTERIOR

di = 1(1-) [(PMX (1) =D (0) (66) |-
Adye — [D (1) X (1) dt + (1 — %) D (0) X (0) dt]}

- 7 € (0,1) with unattainable boundaries

- Bounded martingale under agent's beliefs: convergence
- Agent believes she will ultimately learn the probability of each of the models
- But what about the data-generating measure?

- ‘Fast’ dynamics in the center of (0, 1), ‘slow’ close to the boundaries

- The process spends most of the time close to the boundaries
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DATA-GENERATING MEASURE AND FEEDBACK

- Under the data-generating measure, the model generates complicated
dynamics.

- But we know how to analyze the dynamics conditional on each of the
models.

- Close to the boundaries, this is enough.

- Consider an approximation around 7; = 0 (almost certainly believe in model 0)

a5 =% [(D ()% (1) — D (0) % (0))’ (GG')*W] -{dy: — D (0)X; (0) dt}

- How can we make this rigorous? Time scales
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7, Xt (0), X (1) evolve at different ‘speeds’.
- 7t evolves more slowly than X; (/)
- Consider the boundary behavior of logz: around 7; = 0.
1
dlogie = —[D(NX(1) - D (0) X (0)[% dt +

+ M%) -0 (@)% (0)) (66) "] - {dy: — D (0)X: (0) dt}

- If the equilibrium is self-confirming, then 7; is attracted to zero.

- Bounded drift and variance = it can take arbitrarily long to recover from
ﬂ =~ 0.

- Xt (i) can meanwhile trace out a sufficiently large set
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TIME SCALES

The process spends more time close to 7 &~ 1than 7; ~ 0.
Intuition: Imagine t large.

- Consider 7; &~ 0. An unusal realization of dy; contradicts model 0 since
X¢ (0) cannot move.

- Model 1 adjusts X; (1) and now looks more likely = 7 increases.

- Consider 7; &~ 1. An unusal realization of dy; can be rationalized by moving
X: (1)
- Self-confirmation in effect.
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WHY “GRESHAM’S” LAW?

- In full information equilibrium, 7 = 0 and X; (0) = x.

- But once we acknowledge incomplete information and the need for
learning, the full information equilibrium is just an elusive dream.

- Since the TVP model is self-confirming, there is nothing ‘Gresham-like’
about it.

- An omniscient entity may want the agents forget the TVP model but such
entities are hard to come by.



