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kalman–bucy filter

∙ Abstract from persistent movements in fundamentals:

dxt = Axtdt+ BdWt

dyt = Dxtdt+ GdWt

∙ Two models for learning about β (here xt):
∙ Model 0: A = B = 0.
∙ Model 1: A = 0, B > 0.

∙ Standard solution:

dx̄t = Ax̄tdt+ Kt (dyt − Dx̄tdt)
Kt =

[
BG′ +ΣtD′] (GG′)−1

dΣt

dt = AΣt +ΣtA′ + BB′ − KtGG′K′t
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two models

∙ Index (almost) everything by i

dxt (i) = B (i)dWt (i)
dyt = D (i) xt (i)dt+ GdWt (i)

∙ G has to stay the same for both models, otherwise immediately learnable

∙ Model 0: A = B = 0.
∙ Σt (0) → 0

∙ Model 1: A = 0, B > 0.
∙ Σt (1) → Σ.

∙ The Kalman-filter solution conditional on a model is

dx̄t (i) = Kt (Σt (i)) [dyt − D (i) x̄t (i)dt]
Kt (Σt (i)) =

[
B (i)G′ +Σt (i)D′ (i)

] [
GG′]−1

dΣt (i)
dt = (B (i)− Kt (Σt (i))G) (B (i)− Kt (Σt (i))G)′
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bayesian model averaging

∙ Model indicator: i ∈ {0, 1}
∙ Posterior probability of i = 1 given Ht

ı̄t = E [i | Ht]

∙ By Bayes rule (prior ı̄0, likelihood lt (i))

ı̄t =
exp (lt (1)) ı̄0

exp (lt (1)) ı̄0 + exp (lt (0)) (1− ı̄0)

∙ Derive the law of motion for ı̄t (innovations representation)

dı̄t = ı̄t (1− ı̄t)
[
(D (1) x̄t (1)− D (0) x̄t (0))′

(
GG′)−1

]
·

·{dyt − [̄ıtD (1) x̄t (1)dt+ (1− ı̄t)D (0) x̄t (0)dt]}︸ ︷︷ ︸
innovation
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properties of the posterior

dı̄t = ı̄t (1− ı̄t)
[
(D (1) x̄t (1)− D (0) x̄t (0))′

(
GG′)−1

]
·

· {dyt − [̄ıtD (1) x̄t (1)dt+ (1− ı̄t)D (0) x̄t (0)dt]}

∙ ı̄t ∈ (0, 1) with unattainable boundaries

∙ Bounded martingale under agent’s beliefs: convergence
∙ Agent believes she will ultimately learn the probability of each of the models
∙ But what about the data-generating measure?

∙ ‘Fast’ dynamics in the center of (0, 1), ‘slow’ close to the boundaries
∙ The process spends most of the time close to the boundaries
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data-generating measure and feedback

∙ Under the data-generating measure, the model generates complicated
dynamics.

∙ But we know how to analyze the dynamics conditional on each of the
models.

∙ Close to the boundaries, this is enough.
∙ Consider an approximation around ı̄t ≈ 0 (almost certainly believe in model 0)

dı̄t = ı̄t
[
(D (1) x̄t (1)− D (0) x̄t (0))′

(
GG′

)−1
]
· {dyt − D (0) x̄t (0) dt}

∙ How can we make this rigorous? Time scales
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time scales

∙ ı̄t, x̄t (0), x̄t (1) evolve at different ‘speeds’.
∙ ı̄t evolves more slowly than x̄t (i)

∙ Consider the boundary behavior of log ı̄t around ı̄t ≈ 0.

d log ı̄t = −
1
2
|D (1) x̄t (1)− D (0) x̄t (0)|2 dt+

+
[
(D (1) x̄t (1)− D (0) x̄t (0))′

(
GG′

)−1
]
· {dyt − D (0) x̄t (0) dt}

∙ If the equilibrium is self-confirming, then ı̄t is attracted to zero.
∙ Bounded drift and variance =⇒ it can take arbitrarily long to recover from
ı̄t ≈ 0.

∙ x̄t (i) can meanwhile trace out a sufficiently large set
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time scales

The process spends more time close to ı̄t ≈ 1 than ı̄t ≈ 0.

Intuition: Imagine t large.

∙ Consider ı̄t ≈ 0. An unusal realization of dyt contradicts model 0 since
x̄t (0) cannot move.
∙ Model 1 adjusts x̄t (1) and now looks more likely =⇒ ı̄t increases.

∙ Consider ı̄t ≈ 1. An unusal realization of dyt can be rationalized by moving
x̄t (1)
∙ Self-confirmation in effect.
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why “gresham’s” law?

∙ In full information equilibrium, ı̄t = 0 and x̄t (0) = x.

∙ But once we acknowledge incomplete information and the need for
learning, the full information equilibrium is just an elusive dream.

∙ Since the TVP model is self-confirming, there is nothing ‘Gresham-like’
about it.

∙ An omniscient entity may want the agents forget the TVP model but such
entities are hard to come by.
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