Asset Pricing in the Frequency Domain: Theory and Empirics

Ian Dew-Becker and Stefano Giglio

Discussed by Jaroslav Borovička

June 7, 2013
Framework

- sources of (macro)economic risk

\[x_t = BX_t \]
Framework

- sources of (macro)economic risk

\[x_t = BX_t = \sum_{k=0}^{\infty} g_k \varepsilon_{t-k} \]
Framework

- sources of (macro)economic risk

\[x_t = B X_t = \sum_{k=0}^{\infty} g_k \varepsilon_{t-k} \]

- preferences as an aggregator of the risk sources (innovations representation)

\[\Delta E_{t+1} [m_{t+1}] = -\Delta E_{t+1} \left(\sum_{k=0}^{\infty} z_k x_{t+1+k} \right) \]

- ‘myopic’ and ‘hedging’ demand
Framework

- sources of (macro)economic risk

\[x_t = BX_t = \sum_{k=0}^{\infty} g_k \varepsilon_{t-k} \]

- preferences as an aggregator of the risk sources (innovations representation)

\[\Delta E_{t+1} [m_{t+1}] = -\Delta E_{t+1} \left(\sum_{k=0}^{\infty} z_k x_{t+1+k} \right) \]

- 'myopic' and 'hedging' demand

- innovation to the SDF

\[\Delta E_{t+1} [m_{t+1}] = - \left(\sum_{k=0}^{\infty} z_k g_k \right) \varepsilon_{t+1} \]

- correlation between \(\{z_k\} \) and \(\{g_k\} \)
Discrete-time Fourier transform

- representation in the frequency domain

\[G(\omega) = \sum_{k=0}^{\infty} g_k e^{-i\omega k} \quad Z(\omega) = \sum_{k=0}^{\infty} z_k e^{-i\omega k} \]
Discrete-time Fourier transform

- representation in the frequency domain

\[G(\omega) = \sum_{k=0}^{\infty} g_k e^{-i\omega k} \quad Z(\omega) = \sum_{k=0}^{\infty} z_k e^{-i\omega k} \]

- Parseval’s theorem (frequency domain representation of a correlation)

\[\sum_{k=0}^{\infty} z_k g_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} Z(\omega) G(\omega) \, d\omega \]

- \(Z(\omega) \) operates as a filter over macroeconomic risk \(G(\omega) \) at different frequencies
Discrete-time Fourier transform

- representation in the frequency domain

\[
G(\omega) = \sum_{k=0}^{\infty} g_k e^{-i\omega k} \quad Z(\omega) = \sum_{k=0}^{\infty} z_k e^{-i\omega k}
\]

- Parseval’s theorem (frequency domain representation of a correlation)

\[
\sum_{k=0}^{\infty} z_k g_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} Z(\omega) G(\omega) \, d\omega
\]

- \(Z(\omega)\) operates as a filter over macroeconomic risk \(G(\omega)\) at different frequencies

This paper: What can we learn from the spectral decomposition of preferences \(Z(\omega)\)

- Estimate \(\{g_k\} (G(\omega))\) from data (VAR)
- Estimate different specifications for \(Z(\omega)\)
 - Some are linearizations of conventional preferences
 - Others have more statistical basis: aversion to risk at different frequencies
Goals

Why do we do all this?

1. Intuition
 - How do preferences load on different frequencies?

2. Estimation
 - Spectral decomposition cannot bring in any new information.
 - What if models are misspecified?
 - Estimating reduced form preference specification in the frequency domain.
Intuition

- Aversion to / preference for persistence
Estimation

Figure 4. Estimated spectral weighting functions for equities

All frequencies

- Bandpass basis
- Utility basis

Cycles longer than 5 years

- Bandpass basis
- Utility basis
Bandpass filter seems like an interesting reduced-form idea.
 - Group frequencies which the agent dislikes in a similar manner.
Estimation

- Bandpass filter seems like an interesting reduced-form idea.
 - Group frequencies which the agent dislikes in a similar manner.
- What would a decision-theorist say?
Estimation

- Bandpass filter seems like an interesting reduced-form idea.
 - Group frequencies which the agent dislikes in a similar manner.
- What would a decision-theorist say?
- Modeling $Z(\omega)$ as a step function can lead to undesirable effects.
Estimation

- Bandpass filter seems like an interesting reduced-form idea.
 - Group frequencies which the agent dislikes in a similar manner.
- What would a decision-theorist say?
- Modeling $Z(\omega)$ as a step function can lead to undesirable effects.
 - Compare with tranching of mortgage-backed securities.
Bandpass filter seems like an interesting reduced-form idea.
- Group frequencies which the agent dislikes in a similar manner.

What would a decision-theorist say?

Modeling $Z(\omega)$ as a step function can lead to undesirable effects.
- Compare with tranching of mortgage-backed securities.
- What if we take the model seriously and start fishing for cash flows which are underpriced/overpriced?
Bandpass filter seems like an interesting reduced-form idea.
 - Group frequencies which the agent dislikes in a similar manner.

What would a **decision-theorist** say?

Modeling $Z(\omega)$ as a step function can lead to **undesirable effects**.
 - Compare with tranching of mortgage-backed securities.
 - What if we take the model seriously and start fishing for cash flows which are underpriced/overpriced?
 - Very similar cash flows with frequencies concentrated around the steps should be priced quite differently.
 - **Security design**: spuriously attractive investment opportunities with very high Sharpe ratios.
Extensions

- Multiple periods
 - this paper: impact of low-frequency components on the one-period SDF
Extensions

- Multiple periods
 - *this paper*: impact of low-frequency components on the one-period SDF
 - *Alvarez–Jermann, Bakshi–Chabi-Yo*: bounds based on decomposition into permanent and transitory components
Extensions

- Multiple periods
 - **this paper**: impact of low-frequency components on the one-period SDF
 - **Alvarez–Jermann, Bakshi–Chabi-Yo**: bounds based on decomposition into permanent and transitory components
 - **Hansen–Scheinkman, Borovička–Hansen**: term-structure of risk prices
Extensions

- Multiple periods
 - **this paper**: impact of low-frequency components on the one-period SDF
 - **Alvarez–Jermann, Bakshi–Chabi-Yo**: bounds based on decomposition into permanent and transitory components
 - **Hansen–Scheinkman, Borovička–Hansen**: term-structure of risk prices
- These are of course closely related

\[
M_t = \exp(\eta t) \hat{M}_t \frac{e(X_t)}{e(X_{t+1})}
\]
Extensions

- Multiple periods
 - **this paper**: impact of low-frequency components on the one-period SDF
 - **Alvarez–Jermann, Bakshi–Chabi-Yo**: bounds based on decomposition into permanent and transitory components
 - **Hansen–Scheinkman, Borovička–Hansen**: term-structure of risk prices

- These are of course closely related

\[
M_t = \exp (\eta t) \hat{M}_t \frac{e(X_t)}{e(X_{t+1})}
\]

- use above results to constrain the flexible estimation of the spectral weighting function
Extensions

- Multiple periods
 - this paper: impact of low-frequency components on the one-period SDF
 - Alvarez–Jermann, Bakshi–Chabi-Yo: bounds based on decomposition into permanent and transitory components
- These are of course closely related
 \[M_t = \exp(\eta t) \hat{M}_t \frac{e(X_t)}{e(X_{t+1})} \]
 - use above results to constrain the flexible estimation of the spectral weighting function
 - transitory component prices the long-term bond.
 - relative volatilities of the permanent and transitory component, etc.
Extensions

- Multiple periods
 - this paper: impact of low-frequency components on the one-period SDF
 - Alvarez–Jermann, Bakshi–Chabi-Yo: bounds based on decomposition into permanent and transitory components

- These are of course closely related

\[M_t = \exp(\eta t) \hat{M}_t \frac{e(X_t)}{e(X_{t+1})} \]

- use above results to constrain the flexible estimation of the spectral weighting function
 - transitory component prices the long-term bond.
 - relative volatilities of the permanent and transitory component, etc.

- would additional information discipline the utility basis estimation?
Extensions

- Multiple periods
 - this paper: impact of low-frequency components on the one-period SDF
 - Alvarez–Jermann, Bakshi–Chabi-Yo: bounds based on decomposition into permanent and transitory components

- These are of course closely related

\[M_t = \exp(\eta t) \hat{M}_t \frac{e(X_t)}{e(X_{t+1})} \]

- use above results to constrain the flexible estimation of the spectral weighting function
 - transitory component prices the long-term bond.
 - relative volatilities of the permanent and transitory component, etc.

- would additional information discipline the utility basis estimation?

- Approximation errors
 - logarithms vs levels
 - loglinear approximation \(\Rightarrow \) bandpass filter \(\Rightarrow \) what happens to the SDF in levels?