YIZHOU XIAO
INFORMED TRADING AND INTERTEMPORAL SUBSTITUTION: THE LIMITS OF THE NO-TRADE THEOREM

Discussion by Jaroslav Borovička (NYU)
May 2016
No-trade theorem(s) (Milgrom and Stokey (1982) and subsequent extensions) show that

- when preferences are separable
- and we start from a Pareto-optimal allocation
No-trade theorem(s) (*Milgrom and Stokey* (1982) and subsequent extensions) show that

- when preferences are separable
- and we start from a Pareto-optimal allocation

then subsequent release of (private or public) information cannot lead to retrading.
Separable preferences

\[U^i = E \left[\sum_{t=0}^{\infty} \beta^t u^i \left(c_t^i; \theta_t \right) \right] \]
Separable preferences

\[U^i = E \left[\sum_{t=0}^{\infty} \beta^t u^i \left(c^i_t, \theta_t \right) \right] \]

Planner's problem

\[
\max \sum_{i} \lambda^i U^i \\
\text{subject to } \sum_{i} c^i_t \leq Y_t \left(\theta^t \right)
\]

- optimal consumption allocation only depends on \(Y_t \left(\theta^t \right) \) (and \(u^i (\cdot; \theta_t) \))
- not on any other aspects of the history or future
Separable preferences

\[U^i = E \left[\sum_{t=0}^{\infty} \beta^t u^i (c_t^i; \theta_t) \right] \]

Planner’s problem

\[
\max \sum_i \lambda^i U^i \quad \text{subject to} \quad \sum_i c_t^i \leq Y_t \left(\theta^t \right)
\]

- optimal consumption allocation only depends on \(Y_t \left(\theta^t \right) \) (and \(u^i (\cdot; \theta_t) \))
- not on any other aspects of the history or future

First-order conditions

\[
\sum_i \lambda^i (u')' (c_t^i; \theta_t) = \mu_t \left(Y_t \left(\theta^t \right) \right)
\]

\(\mu \) is the L.M. on the constraint

- completely static, separable problem.
Why no retrading after release of information?

Imagine release of additional private or public information $x^{i,t}$.
Why no retrading after release of information?

Imagine release of additional private or public information $x^{i,t}$.

Potential retrading would have lead to an allocation that depends

- not only on θ_t and $Y_t(\theta^t)$
- but also on other information $c_t^i = c_t^i(\theta_t, Y_t, x^{i,t})$
Why no retrading after release of information?

Imagine release of additional private or public information $x^{i,t}$.

Potential retrading would have lead to an allocation that depends

- not only on θ_t and Y_t (θ^t)
- but also on other information $c^i_t = c^i_t (\theta_t, Y_t, x^{i,t})$

but then each risk-averse agent would prefer $E \left[c^i_t \mid \theta_t, Y_t \right]$ to c^i_t

- which is also feasible
Why no retrading after release of information?

Imagine release of additional private or public information $x^{i,t}$.

Potential retrading would have lead to an allocation that depends

- not only on θ_t and $Y_t (\theta^t)$
- but also on other information $c^i_t = c^i_t (\theta_t, Y_t, x^{i,t})$

but then each risk-averse agent would prefer $E [c^i_t | \theta_t, Y_t]$ to c^i_t

- which is also feasible

which could have been chosen by the planner

- but wasn’t \implies contradiction
Incomplete markets

· starting from a non-Pareto optimal allocation \implies re-trading possible
· (note: this is different from dynamically complete markets)
Incomplete markets

- starting from a non-Pareto optimal allocation \implies re-trading possible
- (note: this is different from dynamically complete markets)

Non-separable preferences

- this paper
- habit formation, Epstein–Zin, ...
An agent has risk-aversion-dominating preferences when, \(\forall t \) and \(\forall C \)

\[
C = (c_0, c_1, \ldots, c_t, \ldots) \preceq (c_0, c_1, \ldots, E[C_t \mid \theta_t], \ldots)
\]
An agent has risk-aversion-dominating preferences when, $\forall t$ and $\forall C$

\[C = (c_0, c_1, \ldots, c_t, \ldots) \preceq (c_0, c_1, \ldots, E[c_t | \theta_t], \ldots) \]

Notice that this is exactly what is needed in the no-trade theorem

- “... each risk-averse agent would prefer $E[c_t | \theta_t, Y_t]$ to c_t...”
An agent has risk-aversion-dominating preferences when, $\forall t$ and $\forall C$

$$C = (c_0, c_1, \ldots, c_t, \ldots) \preceq (c_0, c_1, \ldots, E[c_t \mid \theta_t], \ldots)$$

Notice that this is exactly what is needed in the no-trade theorem

- “... each risk-averse agent would prefer $E[c_t \mid \theta_t, Y_t]$ to c_t...”
- satisfied by risk-averse separable preferences
An agent has risk-aversion-dominating preferences when, $\forall t$ and $\forall C$

$$C = (c_0, c_1, \ldots, c_t, \ldots) \preceq (c_0, c_1, \ldots, E[C_t | \theta_t], \ldots)$$

Notice that this is exactly what is needed in the no-trade theorem

- “... each risk-averse agent would prefer $E \left[c_t^i | \theta_t, Y_t \right]$ to c_t^i...”
- satisfied by risk-averse separable preferences

It does not need to hold for non-separable preferences anymore

- c_t impacts marginal utility of consumption in other states and periods
- it may make sense to correlate c_t with consumption in other periods
An agent has risk-aversion-dominating preferences when, \(\forall t \) and \(\forall C \)

\[
C = (c_0, c_1, \ldots, c_t, \ldots) \preceq (c_0, c_1, \ldots, E[c_t | \theta_t], \ldots)
\]

Notice that this is exactly what is needed in the no-trade theorem

- “... each risk-averse agent would prefer \(E \left[c_t^i | \theta_t, Y_t \right] \) to \(c_t^i \)”
- satisfied by risk-averse separable preferences

It does not need to hold for non-separable preferences anymore

- \(c_t \) impacts marginal utility of consumption in other states and periods
- it may make sense to correlate \(c_t \) with consumption in other periods
- additional information (e.g., about future states) can lead to retrading
Non-separable, recursive (dynamically consistent) preference structure.

\[U_t = \left[c_t^{1-\rho} + \beta E \left[U_{t+1}^{1-\gamma} \mid \mathcal{F}_t \right]^{\frac{1-\rho}{1-\gamma}} \right] \]

- \(\gamma \) risk aversion, \(\rho \) IES, \(\beta \) time preference
- An example of the Kreps–Porteus recursive preferences
Non-separable, recursive (dynamically consistent) preference structure.

$$U_t = \left[c_t^{1-\rho} + \beta E \left[U_{t+1}^{1-\gamma} \mid \mathcal{F}_t \right]^{\frac{1-\rho}{1-\gamma}} \right]$$

- γ risk aversion, ρ IES, β time preference
- An example of the Kreps–Porteus recursive preferences

Kreps–Porteus: preference for timing of information

- The above is a special case of the aggregator (after a transformation)

$$V_t = f(c_t, E[V_{t+1} \mid \mathcal{F}_t])$$
Kreps–Porteus recursive preferences

\[V_t = f(c_t, E[V_{t+1} | \mathcal{F}_t]) \]

- when \(f \) is concave in its second argument then

\[f(c_t, E[V_{t+1} | \mathcal{F}_t]) \leq E[f(c_t, V_{t+1}) | \mathcal{F}_t] \]

\(\implies \) preference for early resolution of uncertainty
Kreps–Porteus recursive preferences

\[V_t = f(c_t, E[V_{t+1} \mid \mathcal{F}_t]) \]

- when \(f \) is concave in its second argument then
 \[f(c_t, E[V_{t+1} \mid \mathcal{F}_t]) \leq E[f(c_t, V_{t+1}) \mid \mathcal{F}_t] \]
 \(\implies \) preference for **early resolution of uncertainty**

- when \(f \) is convex in its second argument then
 \[f(c_t, E[V_{t+1} \mid \mathcal{F}_t]) \geq E[f(c_t, V_{t+1}) \mid \mathcal{F}_t] \]
 \(\implies \) preference for **late resolution of uncertainty**
Recall the concept of the no-trade theorem experiment

First open an ex-ante complete market where period t consumption claims can be traded conditional on the history θ^t.

- Filtration $\{\mathcal{F}_t\}$.
- Agents will trade to a Pareto-optimal allocation
Recall the concept of the no-trade theorem experiment

First open an ex-ante complete market where period t consumption claims can be traded conditional on the history θ^t.

- Filtration $\{\mathcal{F}_t\}$.
- Agents will trade to a Pareto-optimal allocation

Then provide additional (private or public) information about which state will be realized.

- Filtration $\{\mathcal{F}^*_{t}\}$.
- Under assumptions of the no-trade theorem, no re-trading.
- All trade-relevant information already summarized in $(\theta_t, \gamma_t(\theta^t)) \in \mathcal{F}_t$.
Recall the concept of the no-trade theorem experiment

First open an ex-ante complete market where period t consumption claims can be traded conditional on the history θ^t.

- Filtration $\{\mathcal{F}_t\}$.
- Agents will trade to a Pareto-optimal allocation

Then provide additional (private or public) information about which state will be realized.

- Filtration $\{\mathcal{F}_t^*\}$.
- Under assumptions of the no-trade theorem, no re-trading.
- All trade-relevant information already summarized in $(\theta_t, \gamma^t (\theta^t)) \in \mathcal{F}_t$.

In a dynamic environment, we need to specify how we got to the initial Pareto optimal allocation.
Two period example

1. Let the agents trade in a complete state-contingent market with information \(\{ F_t \} \).

\[
V_1 = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} \mid F_1 \right]^{\frac{1-\rho}{1-\gamma}} \right]
\]
Two period example

1. Let the agents trade in a complete state-contingent market with information \(\mathcal{F}_t \).

\[
V_1 = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} | \mathcal{F}_1 \right]^{1-\frac{\rho}{1-\gamma}} \right]
\]

2. After trading, \textbf{unexpectedly} announce new information \(\mathcal{F}_t^* \)

\[
\mathcal{F}_1^* = \mathcal{F}_2.
\]
Two period example

1. Let the agents trade in a complete state-contingent market with information \(\{F_t\} \).

\[
V_1 = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} \mid F_1 \right]^{\frac{1-\rho}{1-\gamma}} \right]
\]

2. After trading, unexpectedly announce new information \(\{F^*_t\} \)

\[
F_1^* = F_2
\]

3. New preferences

\[
V_1^* = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} \mid F_1^* \right]^{\frac{1-\rho}{1-\gamma}} \right]
\]
Two period example

1. Let the agents trade in a complete state-contingent market with information $\{\mathcal{F}_t\}$.

\[V_1 = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} \mid \mathcal{F}_1 \right]^{\frac{1-\rho}{1-\gamma}} \right] \]

2. After trading, unexpectedly announce new information $\{\mathcal{F}_t^*\}$

\[\mathcal{F}_1^* = \mathcal{F}_2. \]

3. New preferences

\[V_1^* = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} \mid \mathcal{F}_1^* \right]^{\frac{1-\rho}{1-\gamma}} \right] = \left[c_1^{1-\rho} + c_2^{1-\rho} \right]^{\frac{1}{1-\rho}} \]
Two period example

1. Let the agents trade in a complete state-contingent market with information \(\{F_t\}\).

\[
V_1 = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} \mid F_1 \right] \right]^{\frac{1-\rho}{1-\gamma}}
\]

2. After trading, unexpectedly announce new information \(\{F_t^*\}\)

\[F_1^* = F_2.\]

3. New preferences

\[
V_1^* = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} \mid F_1^* \right] \right]^{\frac{1-\rho}{1-\gamma}} = \left[c_1^{1-\rho} + c_2^{1-\rho} \right]^{\frac{1}{1-\rho}}
\]

4. Now re-trading can occur: Second round of trading is under different preferences.
Notice that it is crucial that new information arrives as a surprise.

- First round of trading under preference ranking V_1.
Notice that it is crucial that new information arrives as a surprise.

- First round of trading under preference ranking V_1.
- Second round of trading under preference ranking V_1^*, with $V_1 \neq E[V_1^* \mid \mathcal{F}_1]$.
Notice that it is crucial that new information arrives as a surprise.

- First round of trading under preference ranking V_1.
- Second round of trading under preference ranking V_1^*, with $V_1 \neq E[V_1^* | \mathcal{F}_1]$
- Dynamic inconsistency
Notice that it is crucial that new information arrives as a surprise.

- First round of trading under preference ranking V_1.
- Second round of trading under preference ranking V_1^*, with $V_1 \neq E[V_1^* | F_1]$
- Dynamic inconsistency

If agents in round 1 knew that additional information would arrive before second round:

- First round of trading under preference ranking $E[V_1^* | F_1]$
INTERPRETATION 1: CHANGING THE PREFERENCE STRUCTURE

Notice that it is crucial that new information arrives as a surprise.

- First round of trading under preference ranking V_1.
- Second round of trading under preference ranking V_1^*, with $V_1 \neq E[V_1^* \mid \mathcal{F}_1]$
- **Dynamic inconsistency**

If agents in round 1 knew that additional information would arrive before second round:

- First round of trading under preference ranking $E[V_1^* \mid \mathcal{F}_1]$
- Second round of trading under preference ranking V_1^*
Notice that it is crucial that new information arrives as a surprise.

- First round of trading under preference ranking V_1.
- Second round of trading under preference ranking V_1^*, with $V_1 \neq E[V_1^* | \mathcal{F}_1]$
- *Dynamic inconsistency*

If agents in round 1 knew that additional information would arrive before second round:

- First round of trading under preference ranking $E[V_1^* | \mathcal{F}_1]$
- Second round of trading under preference ranking V_1^*
- *Dynamically consistent* \implies no retrading.
· Agents can contract in markets that are complete wrt to $\theta^t \in \mathcal{F}_t$

· Cannot contract on signals $x_t \in \mathcal{F}_\tau$ about future states in periods $\tau > t$.
Agents can contract in markets that are complete wrt to \(\theta^t \in \mathcal{F}_t \).

Cannot contract on signals \(x_t \in \mathcal{F}_\tau \) about future states in periods \(\tau > t \).

Under **separable preferences**, \(x_t \) contracts are irrelevant ex ante.

- \(x_t \) is irrelevant for time-\(t \) consumption allocation
- Contracting upon \(\theta^\tau \) is sufficient for time-\(\tau \) consumption allocation
Agents can contract in markets that are complete wrt to $\theta^t \in \mathcal{F}_t$.

Cannot contract on signals $x_t \in \mathcal{F}_\tau$ about future states in periods $\tau > t$.

Under **separable preferences**, x_t contracts are irrelevant ex ante.

- x_t is irrelevant for time-t consumption allocation
- Contracting upon θ^τ is sufficient for time-τ consumption allocation

Under **non-separable preferences**, x_t contracts matter.

- Optimal time-t consumption allocation is a function of the whole history
COMPARING BOTH INTERPRETATIONS

Under \textit{separable preferences}

\begin{itemize}
 \item neither of the experiments leads to retrading
 \item ex post changes in information structure are irrelevant
 \item trading on payoff-nonrelevant signals does not occur
\end{itemize}
COMPARING BOTH INTERPRETATIONS

Under **separable preferences**

- neither of the experiments leads to retrading
- ex post changes in information structure are irrelevant
- trading on payoff-nonrelevant signals does not occur

Under **non-separable preferences**

- these two experiments are distinct
- the paper uses the incomplete market interpretation
THEORETICAL QUESTIONS

1. Paper defines risk-aversion dominating preferences, which, \(\forall C \),

\[
C = (c_0, c_1, \ldots, c_t, \ldots) \preceq (c_0, c_1, \ldots, E[c_t | \theta_t], \ldots)
\]
1. Paper defines risk-aversion dominating preferences, which, \(\forall C \),

\[C = (c_0, c_1, \ldots, c_t, \ldots) \preceq (c_0, c_1, \ldots, E[c_t | \theta_t], \ldots) \]

Which preference specifications satisfy this condition (\(\forall C \))?

- Apart from separable preferences?
- E.g., within the class of Epstein–Zin preferences?
1. Paper defines risk-aversion dominating preferences, which, \(\forall C \),

\[
C = (c_0, c_1, \ldots, c_t, \ldots) \preceq (c_0, c_1, \ldots, E[c_t | \theta_t], \ldots)
\]

Which preference specifications satisfy this condition (\(\forall C \))?

- Apart from separable preferences?
- E.g., within the class of Epstein–Zin preferences?

2. Why cannot we complete the markets to news signals \(x_t \)?

- Agents would want to trade such contracts. What prevents it?
This is a challenging task.

- Many degrees of freedom that are hard to discipline.
This is a challenging task.

- Many degrees of freedom that are hard to discipline.
- Quantification of ‘news shocks’ (Barsky and Sims (2011), Sims (2012)) that cannot be contracted upon ex ante.

Right now the quantitative model can generate large amount of retrading (volume).

- Proof of concept?
- Complete markets in payoff-relevant states.
- Perfect signal about next period state that is not contractible.

A more serious exercise should look at

- Precision of signals about the future (news shocks)
- Empirical evidence on (non)contractability of these shocks (derivative markets).