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Abstract

We develop a macroeconomic framework with agents facing time-varying concerns for model

misspecification. These concerns lead agents to interpret the economy through the lens of a

pessimistically biased ‘worst-case’ model. We use survey data to identify exogenous fluctuations

in the worst-case model. In an estimated New-Keynesian business cycle model with frictional

labor markets, these ambiguity shocks explain a substantial portion of the variation in labor

market quantities.
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1 Introduction

Equilibrium outcomes in the macroeconomy depend on the belief formation mechanism of eco-

nomic agents. While the rational expectations assumption is in many cases a fruitful benchmark

that allows transparent estimation and testing of economic models using time-series data, there is

extensive empirical evidence against this assumption. However, if we are to dispense with rational

expectations, we need to replace them with a belief formation framework that preserves structural

integrity and testability, and allows us to understand how deviations of agents’ subjective beliefs

interact with economic dynamics.

In this paper, we provide a tightly specified framework that links agents’ decisions and beliefs

with observable economic outcomes and survey data. The theoretical foundation of the belief for-

mation mechanism is our extension of the robust preference model of Hansen and Sargent (2001a,b).

Agents endowed with robust preferences are concerned that the particular model they view as their

‘benchmark’ model of the economy may be misspecified. Instead of only using only the bench-

mark model, they consider a whole set of models that are statistically hard to distinguish from the

benchmark model. The concerns for model misspecification lead them to choose the model from

this set that delivers the lowest utility. This ‘worst-case’ model is then the basis for their decisions,

akin the utility-minimizing prior in the multiple prior framework of Gilboa and Schmeidler (1989)

and Epstein and Schneider (2003). The robust preference framework thus delivers a specific form

of ambiguity aversion.

We extend this robust preference framework to allow the agents to be exposed to shocks to

their ambiguity aversion. The time-variation in ambiguity aversion induces fluctuations in agents’

worst-case beliefs and endogeously affects equilibrium dynamics. While our extension delivers a

more flexible specification of the time-variation in the worst-case model, it still tightly restricts

the beliefs across alternative states in a given period. Agents fear outcomes with adverse utility

consequences and overweigh their probabilities in a specific way.

In order to identify the variation in the worst-case model empirically, we assume that agents’

forecasts in the survey data are based on their worst-case model. Our theoretical model yields

directly testable predictions about the comovement of these forecasts under the worst-case model.

We show that household forecasts for key macroeconomic variables in the University of Michigan

Surveys of Consumers are indeed significantly pessimistically biased, with a discernible business

cycle component. We start by estimating a vector-autoregression (VAR) that embeds household

survey data, explicitly restricting the belief distortion (or wedge) between the worst-case model

and the data-generating probability measure. A common component of these belief distortions in

different survey answers identifies a latent factor that captures the time-variation in the worst-case

model, and its impact on observable macroeconomic quantities.

We then combine the robust preference framework and the survey data in a dynamic stochastic

general equilibrium model with frictional labor markets, sticky prices and a monetary authority

that follows an interest rate rule. We estimate this model using Bayesian methods and study the

quantitative role of the ambiguity shocks in the dynamics of the labor market, idenfitication of the
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monetary policy rule and the comovement of macroeconomic variables.

The results from the reduced-form and structural models show a common pattern. The worst-

case belief is identified from the common variation of the biases in survey answers, and it explains

a substantial amount of variation in these biases, in particular in the households’ forecasts of un-

employment and GDP growth. Ambiguity-averse households interpret high unemployment and low

GDP growth states as particularly adverse to their utility, and overweight worst-case probabilities

of those states substantially.

An adverse ambiguity shock also has significant contractionary effects, propagated particularly

strongly through the labor market. In the labor market with search and matching, creation of new

matches and hiring depend on the assessment of the future surpluses generated in a new match.

An increase in ambiguity leads to a more pessimistic evaluation of future surpluses and therefore

to lower match creation, which increases unemployment and decreases output.

The paper contributes to the growing literature that quantitatively assesses the role of ambiguity

aversion in the macroeconomy, building on alternative decision-theoretical foundations by Gilboa

and Schmeidler (1989), Epstein and Schneider (2003), Klibanoff et al. (2005, 2009), Hansen and

Sargent (2001a,b), Strzalecki (2011) and others. Applications to macroeconomic models include

Cagetti et al. (2002) and Bidder and Smith (2012). For a survey of applications in finance, see

Epstein and Schneider (2010).

Perhaps the closest to our paper is the work by Ilut and Schneider (2014) and Bianchi et al.

(2014) who utilize the recursive multiple-prior preferences of Epstein and Schneider (2003). The first

crucial difference lies in the fact that the multiple-prior framework does not impose tight a priori

restrictions on the relative distortions of individual shocks under the worst-case model, and thus

introduces a heavier burden on identification through observable data. We rely much more strongly

on the restrictions on shock distortions implied by the robust preference framework. Second, we

use data on cross-sectional average distortions measured in household survey answers, for which

our theory has direct quantitative predictions, as a source of identification of the ambiguity shocks.

Ilut and Schneider (2014) instead use the forecast dispersion as a proxy for confidence and show

an empirically plausible relation of this measure to the notion of ambiguity aversion. Despite the

differences, both these approaches should be viewed as complementary.

2 Survey expectations

We analyze the data on households’ expectations from the University of Michigan Surveys of Con-

sumers (Michigan Survey). These surveys collect answers to questions about the households’ own

economic situation as well as their forecasts about the future state of the economy. Specifically, we

focus on the forecasts of future inflation, unemployment rate and the expected index of consumer

sentiment, which we use as a proxy for GDP growth.

We are interested in deviations in these survey answers from rational expectations forecasts.

This necessarily requires taking a stand on how to determine the probability measure that generates
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Figure 1: Difference in survey expectations between the Michigan Survey and Survey of Profes-
sional Forecasters. Top panel original data, bottom panel HP-filtered and standardized. GDP
growth for the Michigan Survey proxied by the expected consumer confidence index. Details on
the construction of the data series are in Appendix C. NBER recessions shaded.

the data. Here, we assume that the Survey of Professional Forecasters provides unbiased estimates

for the variables we study. In Sections 3 and 5, we also contrast these household survey answers

with predictions obtained from VAR and structural models.

Figure 1 shows the differences in survey expectations between the Michigan Survey and the

Survey of Professional Forecasters for inflation, unemployment and GDP growth. The survey

expectations are mean one-year ahead expectations in the survey samples. The Michigan Survey

does not contain a question about GDP growth, and we therefore proxy it by projecting GDP

growth on the survey answer on expected consumer sentiment. We detail the construction of the

time series in Appendix C.

The top panel of Figure 1 reveals that households’ expectations are systematically pessimisti-

cally biased — relative to professional forecasters, households overpredict future unemployment

and inflation, and underpredict GDP growth (with the exception of the boom period during the

late 1990s). Moreover, despite a substantial amount of noise, the three time series for the belief
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Figure 2: Dispersion in survey expectations in the Michigan Survey. The graphs show different
quantiles of the distribution of responses in the Michigan survey, net of the mean response in the
Survey of Professional Forecasters. The top panel shows the unemployment responses, bottom
panel the inflation responses. Details on the construction of the data series are in Appendix C.
NBER recessions shaded.

wedges have a common business cycle component and are statistically significantly correlated. The

correlation coefficient for the unemployment and negative GDP growth wedges is 0.52, while the

correlation between the inflation and negative GDP growth wedges is 0.31, both with a standard

error of 0.07. The comovement over the business cycle can be visually confirmed in the bottom

panel of Figure 1 that plots HP-filtered and standardized data.

Our theoretical framework formalizes the notion of pessimistic belief distortions through the

structure of the robust preference model. The common component of the three belief wedges

from Figure 1 identifies the fluctuations in the worst-case model of economic agents. We embed

the belief distortions in a representative agent framework, which provides a justification for using

average forecasts as a measure of subjective expectations in the model.

Mankiw et al. (2003), Bachmann et al. (2012) and others use measures of cross-sectional forecast

dispersion as a proxy for economic uncertainty. This proxy is typically based on the presumption

that a higher dispersion is indicative of more difficulty in estimating the forecast distribution,
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and therefore implies more ambiguity. Ilut and Schneider (2014) apply the same logic to use the

dispersion in the SPF forecasts as a proxy of household confidence in the forecasting model.

We plot the dispersion data from the Michigan survey for the unemployment rate and inflation

rate forecasts in Figure 2 for comparison. For the inflation data, we have information on the

quantiles of the cross-sectional distribution. For the unemployment rate forecast, we fit a sequence

of normal distributions to categorical answers using the same method as in Mankiw et al. (2003),

see Appendix C for details.

There is indeed a substantial cross-sectional dispersion in the survey answers across individual

households. However, the interquartile range appears to be stable (except for the inflation answers

from early 1980s), and in the case of the unemployment answer, also visibly comoves with the

business cycle.

While it may be appealing to use cross-sectional dispersion in forecasts as a proxy for the am-

biguity concerns of each individual household, our theory does not provide such a direct link. We

want to keep ambiguity concerns separate from the notion disagreement in forecasts across house-

holds. The model we develop in this paper is based on a representative agent framework that does

not feature heterogeneity in individual forecasts, and therefore yields no predictions about forecast

dispersion measures. However, it is possible to extend the framework by introducing heterogeneity

in agents’ concerns for uncertainty. Agents with differing degrees of ambiguity aversion deduce

alternative worst-case models from observable data, which then generates dispersion in forecasts in

the model. While conceptually interesting, this extension is beyond the scope of this paper.

3 A one-factor model of distorted beliefs

We want to formalize the empirical facts that we established in the previous section. We start with

a statistical model that describes the joint dynamics of macroeconomic variables and households’

expectations. In this model, households’ expectations are allowed to differ from the expectations

implied by the distribution of the data-generating process. The underlying idea is to extract a

common component in the variation of the belief wedges, and study its impact on the dynamics of

the macroeconomic variables.

While we specify a flexible, reduced-form specification for the dynamics of observable variables,

we impose tight restrictions on the households’ expectations. These restrictions reflect those implied

by our structural model of robust preferences that we introduce in Section 4.

We specify a (k − 1)× 1 vector of observable economic variables yt and an unobservable scalar

latent process ft. In particular, consider the model

yt+1 = ψyyt + ψyfft+1 + ψyww
y
t+1

ft+1 = ρfft + σfw
f
t+1

where w′

t+1 =
((
wy
t+1

)
′

, wf
t+1

)
∼ N (0, Ik) is a k × 1 vector of normally distributed iid shocks. We
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can rewrite these equations, expressing the joint process (y′t, ft)
′ as follows:

(
yt+1

ft+1

)
=

(
ψy ψyfρf

0 ρf

)(
yt

ft

)
+

(
ψyw ψyfσf

0 σf

)(
wy
t+1

wf
t+1

)
. (1)

This process generates a filtered probability space (Ω, {Ft}∞t=0 , P ) where P is the objective, data-

generating probability measure. The factor ft is exogenous to the dynamics of macroeconomic

variables and will serve as a source of common variation in the dynamics of the macroeconomy and

households’ belief wedges.

Households’ expectations are represented by a subjective probability measure P̃ that can differ

from P . In Section 4, we derive a formal structural model for P̃ . Here, we focus on imposing

restrictions on P̃ that are consistent with the structural model and that allow us to identify P̃

using household survey data.

Let zt be a subset of observable variables yt for which survey data are available. We define the

τ -period belief wedge ∆
(τ)
t as the difference between the τ -period forecasts under the beliefs of the

households and under objective expectations:

∆
(τ)
t

.
= Ẽtzt+τ − Etzt+τ

where Ẽtzt+τ is the time-t expectation of zt+τ under the subjective probability measure of the

households. In addition we define the τ -period average belief wedge ∆
(τ)
t as the the average differ-

ence in forecasts under the beliefs of the households and under objective expectations:

∆
(τ)
t

.
=

1

τ

τ∑

s=1

∆
(s)
t

We impose that the dynamics of belief wedges ∆
(τ)
t and ∆

(τ)
t can be summarized using the

scalar factor

θt = (Fy, Ff )

(
yt

ft

)
. (2)

Individual one-period forecasts of the innovation means under the households’ expectations are

then represented by a vector of factor loadings H:

Ẽt [wt+1] = Hθt. (3)

Applying the law of iterated expectations, belief wedges for the τ -period forecasts can be written

as

∆
(τ)
t = G(τ)

x xt +G
(τ)
0

where the coefficients G
(τ)
x and G

(τ)
0 are derived in Appendix A. The model (2)–(3) thus implies

a one-factor structure of belief wedges where θt captures the common comovement in the belief
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wedges. In this reduced form model, we interpret θt as the time-varying measure of pessimism

among the households reflected in the survey data that impacts the dynamics of macroeconomic

variables. In Section 5, this one-factor structure is derived from the decision problem of the house-

hold endowed with robust preferences, where θt reflects the time-variation in households’ ambiguity

concerns.

3.1 Data and estimation

Data on macroeconomic variables are obtained from the Federal Reserve Bank of St. Louis database

(FRED), at quarterly frequency. The vector yt includes real log GDP growth, log inflation, the

unemployment rate, and the Federal Funds rate. We include three belief wedges from Figure 1 in

the vector ∆
(4)
t , constructed as 4-quarter ahead average belief wedges between the Michigan Survey

and SPF forecasts for log GDP growth, the unemployment rate and log inflation. Appendix C

provides details on the construction of the data, presented in Section 2. The data for yt covers the

period 1951Q2–2013Q3. The belief wedges for the unemployment rate, GDP growth and inflation

cover the periods 1977Q4–2013Q3, 1968Q4–2013Q3 and 1981Q2–2013Q3 respectively.

In order to keep the estimation and interpretation of the model transparent, we restrict the

dynamics of beliefs and set Fy = 0, thereby setting θt = ft. This implies that fluctuations in

the belief wedges are driven purely by the belief factor ft, and not directly by the dynamics of

endogenous macroeconomic variables yt. In addition, we normalize Ff = 1 and set the element of

H corresponding to the GDP growth shock to be −1 in order to identify the sign and scale of θt.

The shock exposure matrix ψyw is only identified as the covariance matrix ψywψ
′

yw. For the

purpose of estimation, we shall impose a recursive identification scheme for ψyw. However, ψyw only

appears as ψywψ
′

yw in the formulas for the belief wedges. Therefore, given an estimate of ψywψ
′

yw,

the identification of ψyw does not play a role in the estimation of the factor shocks wf
t .

More specifically, we estimate the model (1) together with a vector of observation equations for

the wedges

∆
(4)
t+1 = ψ∆fft+1 + σ∆ε

∆
t+1

where σ∆ is diagonal and ε∆t+1 ∼ N (0, I) is a vector of normally distributed iid measurement errors.

yt and ∆
(4)
t are demeaned. We seek estimates for the parameters

{ψy, ψyf , ψyw, ρf , σf ,H, σ∆}

and the belief factor θt = ft. Appendix A solves for ψ∆f from the above parameters.

We estimate the model using Bayesian methods. Further details, including the imposed priors

and estimated posteriors are summarized in Appendix D.

3.2 Results

A variance decomposition at the modal parameter estimate, summarized in Table 4 in Appendix D,

reveals that the factor shock explains 55.5%, 43.9%, and 7.5% of the variation in the output wedge,
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Figure 3: Bayesian impulse response functions in the one-factor model to the belief shock wf . The
solid lines indicate median estimates, while the dashed line correspond to 10th and 90th percentile
error bands. Output growth, inflation, and interest rate are annualized and in percentage deviations.
The unemployment rate is in percentage points. The output wedge and inflation wedge are scaled
to correspond to the belief wedges of annualized output growth and annualized inflation. The
horizontal axis is in quarters.

unemployment wedge, and inflation wedge respectively. These results confirm the strong correlation

between the belief wedges that concern real quantities. The fact that a sizeable fraction of variation

in the wedges is explained by θt supports the single factor model. Moreover, the posterior estimates

shown in Table 4 in Appendix D reveal a very tightly identified persistence ψf of this factor with

posterior mean of 0.9 at the quarterly frequency.

Figure 3 plots the impulse response functions of yt and ∆
(4)
t to a positive one standard deviation

shock wf
t to θt = ft, with factor response plotted in the bottom right panel. We find a negative

impulse response for the output belief wedge and a positive impulse response for the unemployment

and inflation wedges in response to a positive shock to θt. An increase in θt leads household forecasts

for GDP growth to be biased further downward relative to the SPF forecasts, while the biases in

the household forecasts for unemployment and inflation increase relative to the SPF forecasts. The

impulse responses of the belief wedges are consistent with the correlations and average signs of the

wedges described in Section 2.

These results are consistent with the interpretation of θt as a time-varying measure of the level

of pessimism among households. From the perspective of the robust preference model that we

develop in the next section, households are concerned about a future path that exhibits low GDP

growth, a high unemployment rate and high inflation. An increase in θt makes these concerns

stronger, biasing households’ beliefs more strongly in this direction.

The belief shock also has real effects. In response to a positive shock to θt, GDP growth falls
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and unemployment rises. The impulse response for inflation is positive for the first year and close

to zero subsequently. Interest rates exhibit a negative median response with large error bands

that contain zero. At the modal parameter estimate, θt explains 7.4%, 25.4%, 3.2% and 3.1%

of the movements in GDP growth, unemployment, inflation and interest rates, respectively. Our

estimates therefore suggest that a rise in pessimism has contractionary effects, and we emphasize

the especially large adverse response of unemployment.

In Section 5, we develop and estimate a structural macroeconomic model with a frictional labor

market and ambiguity averse agents and revisit these empirical findings. In line with the results

from the factor model, the ambiguity shock in the structural model generates nontrivial recessionary

responses, with a particularly pronounced response in the labor market.

4 Robust preferences

Motivated by the empirical results from Sections 2 and 3, we now introduce a preference model that

generates endogenous deviations of agents’ beliefs from the data-generating probability measure.

This model extends the robust preference framework of Hansen and Sargent (2001a,b) to allow for

more flexible form of belief distortions, similar to Hansen and Sargent (2015). The flexibility allows

for time-variation in the degree of agents’ pessimism over time, which we identify from survey data,

while tightly restricting the structure of pessimistic distortions across individual states, linking

them to agents’ preferences.

We consider a class of Markov models for the equilibrium dynamics

xt+1 = ψ (xt, wt+1) (4)

where xt is an n×1 vector of stationary economic variables and wt+1 ∼ N (0k, Ik×k) an iid vector of

normally distributed shocks under the data-generating probability measure P . Agents are endowed

with a version of robust preferences that satisfy the continuation value recursion

Vt = min
mt+1>0

Et[mt+1]=1

u (xt) + βEt [mt+1Vt+1] +
β

θt
Et [mt+1 logmt+1] (5)

with period utility u (xt). These preferences have been formulated by Hansen and Sargent (2001a,b)

as a way of introducing concerns for model misspecification on the side of the agents. The agent

treats model (4) as an approximating or benchmark model and considers potential stochastic devi-

ations from this model, represented by the strictly positive, mean-one random variable mt+1. The

minimization problem in (5) captures the search for a ‘worst-case’ model that serves as a basis

for the agent’s decisions. The models that are considered by the agent are difficult to distinguish

statistically from the benchmark model, and the degree of statistical similarity is controlled by the

entropy penalty Et [mt+1 logmt+1], scaled by the penalty parameter θt. More pronounced statis-

tical deviations that are easier to detect are represented by random variables mt+1 with a large
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dispersion that yields a large entropy.

The preferences considered by Hansen and Sargent (2001a,b) impose a constant parameter

θ > 0. As θ ց 0, the penalty for deviating from the benchmark model becomes more severe, and

the resulting preferences are closer to a utility-maximizing household with rational expectations.

We are interested in a specification that permits more flexibility in the set of models that the

households views as plausible. In particular, we envision the time-varying model

θt = θxt. (6)

where θ is a 1 × n vector of parameters. It is well-known that the worst-case model distortion

relative to the benchmark model given by the solution of (5) satisfies

mt+1 =
exp (−θtVt+1)

Et [exp (−θtVt+1)]
. (7)

The variation in θt thus implies a time-varying model for the worst-case distortion. The chained

sequence of random variables mt+1 specifies a strictly positive martingale M recursively as Mt+1 =

mt+1Mt with M0 = 1 that defines a probability measure P̃ with conditional expectations

Ẽt [xt+1]
.
= Et [mt+1xt+1] .

Consequently, the wedge between the one-period forecasts of xt+1 under the worst-case and bench-

mark models is given by

∆t
.
= Ẽt [xt+1]− Et [xt+1] . (8)

Notice that the distortion (7) implies a large value of mt+1 for low realizations of the continuation

value Vt+1. The worst-case model, represented by the probability measure P̃ , thus overweighs

adverse states as ranked by the preferences of the agent. In this way, the preference model implies

tightly restricted endogenous pessimism on the side of the agents, generated by concerns for model

misspecification. The degree of pessimism is controlled by the evolution of θt.

4.1 A linear approximation

We are interested in deriving a tractable approximation of the equilibrium dynamics (4) and the

worst-case biases ∆t in (8). Assuming that the function ψ (x,w) is sufficiently smooth, we combine

the series expansion method of Holmes (1995) and Lombardo (2010) with an extension of the worst-

case model approximation used in Borovička and Hansen (2013, 2014). The method, outlined in

detail in Appendix B, approximates the dynamics in the neighborhood of the deterministic steady

state x̄ that is given by the solution to x̄ = ψ (x̄, 0). The dynamics of the state vector xt can be

approximated as

xt ≈ x̄+ qx1t
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where q is a perturbation parameter. The law of motion for the ‘first-derivative’ process x1t that

represents the local dynamics in the neighborhood of the steady state can be derived from the

linear approximation of (4):

x1t+1 = ψq + ψxx1t + ψwwt+1 (9)

where ψq, ψx and ψw are conforming coefficient matrices. Similarly, we can construct a linear

approximation of the continuation value (5) where the deviation of the continuation value from its

steady state satisfies

V1t = Vxx1t + Vq.

We show in Appendix B that under the household’s worst-case model P̃ , the innovations wt+1 are

distributed as

wt+1 ∼ N
(
−θ (x̄+ x1t) (Vxψw)

′ , Ik×k

)
.

Instead of facing a vector of zero-mean shocks wt+1, the agent perceives these shocks as having a

time-varying drift. The time-variation is determined by a linear approximation to θt from equation

(6), given by θ (x̄+ x1t). The relative magnitudes of the distortions of individual shocks are given

by the sensitivity of the continuation value to the dynamics of the state vector, Vx, and the loadings

of the state vector on individual shocks, ψw. The agent perceives larger distortions during periods

when θt is large, and distorts relative more the shocks which impact the continuation value more

strongly.

Consequently, the dynamics of the model (9) under the agents’ worst-case beliefs satisfy

x1t+1 =
[
ψq − ψwψ

′

wV
′

xθx̄
]
+
[
ψx − ψwψ

′

wV
′

xθ
]
x1t + ψww̃t+1 (10)

= ψ̃q + ψ̃xx1t + ψww̃t+1.

The worst-case model alters both the conditional mean and the persistence of economic shocks.

Moreover, variables that tend to move ambiguity and the continuation value in opposite directions

tend to exhibit a higher persistence under the worst-case model.1

4.2 Worst-case model and survey responses

In Section 3, we estimated a one-factor model of biases embedded in survey responses on household

expectations of future economic variables. The extracted belief biases indicated that households

substantially overweigh states which can be viewed as adverse, and that these biases exhibit a non-

negligible variation over the business cycle. We also extracted a one-factor structure underlying

these belief biases.

The preference framework introduced in this section implies that agents’ actions are based on

forecasts under the worst-case probability distribution P̃ . We connect the empirical observations

on survey responses and the theoretical predictions on decisions under robust preferences and

1This statement is precisely correct in the scalar case, when ψ2
xVxθ < 0.
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hypothesize that surveyed households provide answers regarding economic forecasts having in mind

the same probability distribution P̃ .

Using the survey data and the rational forecasts from the linearized model (9), we identify the

belief wedges (8) as

∆
(1)
t = ψwẼt [wt+1] = −θ (x̄+ x1t)

(
ψwψ

′

w

)
V ′

x. (11)

The one-factor structure in survey answers is driven by the time-variation in θ (x̄+ x1t), with the

constant vector of loadings − (ψwψ
′

w)V
′

x.

Observe that this specification of belief wedges is a restricted case of the reduced-form model

(1)–(3). In the notation from Appendix A, we have

F = θ, H = −
(
ψwψ

′

w

)
V ′

x, H = −θx̄
(
ψwψ

′

w

)
V ′

x.

The terms θ, ψw, Vx are functions of structural parameters in the model. Belief wedges for longer-

horizon forecasts can then be computed using formulas from Appendix A.

4.3 Dealing with non-stationarities

For the purpose of applying the expansion method, we assumed that the state vector xt is stationary.

Our framework can, however, deal with deterministic or stochastic trends featured in macroeco-

nomic models. Specifically, let us assume that there exists a vector-valued stochastic process zt

such that the dynamics of xt can be written as

xt = x̂t + zt (12)

zt+1 − zt = φ (x̂t, wt+1)

where x̂t is a stationary vector Markov process that replaces dynamics (4):

x̂t+1 = ψ (x̂t, wt+1)

The process zt thus has stationary increments and xt and zt are cointegrated, element by element.

A typical example of an element in zt is a productivity process with a permanent component. Once

we solve for the stationary dynamics of x̂t, we can obtain the dynamics of xt in a straightforward

way using (12).

In order to compute the stationary version of the continuation value recursion and the appro-

priate worst-case distortions, consider as an example

u (xt) = logCt = log
[
Ĉt exp (zt)

]
= log Ĉt + zt (13)

where Ct is agent’s consumption process and Ĉt = Ĉ (x̂t) is its stationary rescaling. We show in
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Appendix B.6 that in this case, the continuation value can be written as

Vt = V̂ (x̂t) +
1

1− β
zt (14)

and the worst-case model distortion is given by

mt+1 =
exp

(
−θt

(
V̂ (x̂t+1) + (1− β)−1 φ (x̂t, wt+1)

))

Et

[
exp

(
−θt

(
V̂ (x̂t+1) + (1− β)−1 φ (x̂t, wt+1)

))] .

This type of belief distortion has stationary increments mt+1 and can be dealth with by applying

the first-order series expansion to the functions V̂ (x̂t+1) and φ (x̂t, wt+1) as above. Consequently,

the worst-case distribution of the shock vector is given by

wt+1 ∼ N

(
−θ (x̄+ x̂1t)

(
Vxψw + (1− β)−1 φw

)
′

, Ik×k

)
.

The distortions thus inherit the contribution of the increment (1− β)−1 φw of the non-stationary

process zt to the dynamics of the continuation value. The worst-case dynamics (10) and the belief

wedges (11) are modified accordingly. Specifically, we can compute the multiperiod belief wedges

∆
(τ)
t using the recursive calculations outlined in Appendix A, imposing

F = θ

H = −ψw

(
Vxψw + (1− β)−1 φw

)
′

H = −
(
θx̄
)
ψw

(
Vxψw + (1− β)−1 φw

)
′

.

5 A structural business cycle model

In this section we introduce the robust preference framework from Section 4 into a dynamic stochas-

tic general equilibrium model of the macroeconomy. We use a version of the New-Keynesian frame-

work with a frictional labor market introduced in Ravenna and Walsh (2008) and Christiano et al.

(2015). The frictional labor market with search and matching features and nominal rigidities

provides a well-defined notion of unemployment and inflation which directly map to the survey

questions.

In Section 3, we used a reduced form VAR specification with a one-factor structure in beliefs

to extract a latent component that accounts for the co-movement between the belief wedges in the

data and impacts macroeconomic dynamics. In this section, our strategy is to use an estimated

version of the structural model to quantify the role and channels through which ambiguity shocks

affect the dynamics of realized outcomes and associated belief wedges.

Our choice of the model with a frictional labor market is directly influenced by the empirical

findings from Section 3, where the belief shock in the reduced-form model had a particularly
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significant impact on the unemployment rate. In the search and matching environment, incentives

of workers and firms to search for jobs and post job vacancies depend on their forecasts about the

present value of a potential match. Ambiguity shocks impact this present value by overweighting

the probability of states with low continuation values for the households, which are correlated with

low values of the worker-firm matches.

5.1 Model

5.1.1 Representative household

The representative household is endowed with robust preferences given by the recursion (5) with

time preference coefficient β and period utility over aggregate consumption Ct,

u (xt) = log (Ct − bCt−1)

where b determines the degree of habit formation. In line with our factor model specification from

Section 3, we assume that the stochastic process for the robust concerns is given by θt = θxt
.
= ft

where ft follows an AR(1) process

ft+1 = (1− ρf ) f + ρfft + σfw
f
t+1. (15)

The worst-case belief of the household is

mt+1 =
exp (−θtVt+1)

Et [exp (−θtVt+1)]
.

The magnitude of the belief distortion is determined by fluctuations in θt specified exogenously

in (15). However, the equilibrium dynamics in the model endogenously determines which states

yields low continuation values Vt+1 and are therefore evaluated as adverse by the household. These

states are then perceived as more likely under the worst-case model. Naturally, the dynamics of

the worst-case belief will then endogenously depend on other sources of shocks introduced into the

model, which we describe in Section 5.1.4.

The household faces the budget constraint

PtCt + PI,tIt +Bt+1 ≤
(
RK,tu

K
t − au

(
uKt
)
PI,t

)
Kt + (1− lt)PtDt +Wtlt +Rt−1Bt − Tt.

Pt is the price of consumption goods and PI,t is the price of investment goods. Bt+1 denotes the

one-period risk-free bonds purchased in period t with return Rt. It is the quantity of investment

goods. RK,t is the rental rate of capital services, Kt is the household’s stock of capital at the start

of period t, and au
(
uKt
)
is the cost of the capital utilization rate uKt . Finally, Tt denotes lump sum

taxes net of profits.
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The household’s capital stock evolves according to

Kt+1 = (1− δK)Kt +

(
1− aI

(
It
It−1

))

where aI (·) is an adjustment cost that is increasing and convex.

5.1.2 Labor market

The household consists of a unit mass of workers who perfectly share consumption risk. Fraction lt

is employed and earns a wage ξt. Fraction 1− lt is unemployed and collect unemployment benefits

Dt financed through lump sum taxes. At the end of period t, employed workers separate with

probability 1 − ρ and join the pool of unemployed who search for jobs at the beginning of period

t+ 1. The total number of searchers at the beginning of period t+ 1 therefore is 1− ρlt and these

searchers face a job finding probability jt+1. The law of motion for employed workers thus is

lt+1 = ρlt + (1− ρlt) jt+1 = (ρ+ ηt+1) lt

where

ηt+1 =
jt+1 (1− ρlt)

lt−1

is the hiring rate. The value of an employed worker is

Wt = ξt + Ẽt

[
St+1

St
((ρ+ (1− ρ) jt+1)Wt+1 + (1− ρ) (1− jt+1)Ut+1)

]

where St+1/St is the period t stochastic discount factor, ξt is the period t wage, and Ut+1 is the

value of being unemployed next period, given by the recursion

Ut = Dt + Ẽt

[
St+1

St
(jt+1Wt+1 + (1− jt+1)Ut+1)

]
.

Denote by ϑt the real marginal revenue in period t from hiring an additional worker. The value of

the worker to a firm is given by the revenue generated in the match net of the wages paid,

Jt = ϑt − ξt + ρẼt

[
St+1

St
Jt+1

]
.

We assume free entry of firms, so that in equilibrium,

Qt (Jt − κt) = st

where Qt is the probability of filling a vacancy, κt is the fixed cost of hiring a worker, and st is

the cost of posting a vacancy. The expectations operators in the recursions indicate that both the

workers and the firms evaluate the distribution of future quantities under the worst-case measure
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P̃ .

The expectations operators in the recursions indicate that both the workers and the firms

evaluate the distribution of future values of Wt, Ut and Jt under the worst-case measure P̃ . As

long as the values of the match to the worker and to the firm, and the value of unemployment

correlate with the continuation value of the household Vt, they will be impacted by the fluctuations

in ambiguity concerns of the representative household. This is a striking difference relative to the

Walrasian spot market where workers are hired only using one-period employment contracts. In

such an environment, ambiguity concerns are absent from the labor market decisions, since there

is no uncertainty about economic conditions prevailing in the given period.

What remains to be determined is the split of the surplus from a match between the firm’s

surplus, Jt , and the worker’s surplus,Wt−Ut. As in Hall and Milgrom (2008) and Christiano et al.

(2015), we adopt the alternating offer bargaining protocol of Rubinstein (1982) and Binmore et al.

(1986). The details of the bargaining protocol are outlined in Appendix E where we show that the

outcome of this bargaining mechanism is

Jt = β1 (Wt − Ut)− β2γt + β3 (ϑt −Dt)

with parameters βi, i = 1, 2, 3 that depend on the parameters of the bargaining problem. Notice

that when β2 = β3 = 0, we obtain the Nash bargaining solution with workers’ share (1 + β1)
−1.

Relative to the Nash bargaining solution, the alternative offer bargaining makes the firms’ surplus

more procyclical, leading to smoother wages and more procyclical hiring patterns over the business

cycle.

5.1.3 Production and market clearing

The frictional labor market is embedded in a New-Keynesian framework with Calvo (1983) price

setting. A homogeneous final good Yt with price Pt is produced in a competitive market using the

production technology

Yt =

[∫ 1

0
(Yi,t)

1

λ di

]λ
, λ > 1.

where Yi,t are specialized inputs with prices Pi,t. Final good producers solve the static competitive

problem

max
Yi,t

PtYt −
∫ 1

0
Pi,tYi,tdi,

leading to the first-order conditions

Yi,t =

(
Pt

Pi,t

) λ
λ−1

Yt, i ∈ [0, 1] .
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Specialized inputs are produced by monopolist retailers indexed by i, using the production tech-

nology

Yi,t = kαi,t (Athi,t)
1−α − φt

where ki,t is the quantity of capital purchased, hi,t is the quantity of intermediate goods, At is the

neutral technology level, and φt is a fixed cost of production. The retailer purchases intermediate

goods at price P h
t from a wholesaler in a competitive market. We assume that the retailer must

borrow P h
t hi,t at the nominal interest rate Rt. The loan is repaid at the end of period t after

the retailer receives its sales revenues. Finally, the retailer is subject to the sticky price friction,

implying that every period he is allowed to reset the price with probability 1− χ.

Intermediate goods are produced by wholesalers using a technology that turns one unit of labor

into one unit of capital. Therefore the market clearing condition for intermediate goods is

∫ 1

0
hi,tdi = ht = lt.

Market clearing for services of capital requires

∫ 1

0
ki,tdi = uKt Kt.

Lastly, we have the aggregate resource constraint

Ct +
(
It + au

(
uKt
)
kt
)
/Ψt + (st/Qt + κt) ηtlt−1 +Gt = Yt

whereGt denotes government consumption and Ψt = Pt/PI,t denotes the relative price of investment

and reflects investment-specific technological progress.

5.1.4 Shock structure and monetary policy

We complete the model by specifying the sources of exogenous variation to the model. We assume

that the monetary authority follows the interest rate policy rule

log
(
Rt/R

)
= ρR ln

(
Rt−1/R

)
+ (1− ρR) [rπ log (πt/π) + ry log (Yt/Y∗

t )] + σRw
R
t

where wR
t is a monetary policy shock and

Yt = Ct + It/Ψt +Gt

denotes real GDP. Y∗

t is the value of Yt along the non-stochastic steady state growth path, scaled

by the current level of productivity.

Finally, we prescribe the dynamics of technology shocks. The macroeconomic literature al-

ternatively specifies the technology shocks as either persistent but trend-stationary, or unit-root

processes. The disagreement is driven by the difficulty to statistically distinguish these two types
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of processes in available data samples. It turns out that the magnitude of the fluctuations in the

belief wedges strongly support the unit-root specification of the technology process, and issue that

we discuss in detail in Section 6.

This leads us to assume that the neutral technology process At exhibits iid growth

log (At/At−1)
.
= log (µA,t) = σAw

A
t

while the investment-specific technological process Ψt has a mean-reverting growth rate

log (Ψt/Ψt−1)
.
= log (µΨ,t) = ρΨ log (µΨ,t−1) + σΨw

Ψ
t .

The final source of exogenous variation is the ambiguity shock process (15). We assume that all

innovations are independent under the data-generating measure P :

(
wR
t , w

A
t , w

Ψ
t , w

f
t

)
′ iid∼ N (0, I) .

As we have seen in Section 4, this property does not carry over to the worst-case model where the

distribution of future realizations of the shocks depends on the current level of ambiguity concern

θt.

5.2 Estimation

We are interested in studying the quantitative role of ambiguity shocks in the joint dynamics

of output, unemployment, inflation and interest rates through the lens of the structural model

introduced above. The impact of these shocks on the economy is restricted through the structure

of the model, and we use survey data as a new source of information to aid identification.

As in the reduced form analysis in Section 3, we use data on the unemployment rate, federal

funds rate, inflation rate, inflation wedge, unemployment wedge and output wedge with iid mea-

surement errors on the three wedges.2 We estimate the model using Bayesian methods. In order

to make the estimation tractable and transparent, we calibrate a subset of parameters to values

listed in the bottom part of Table 1, and focus our estimation on the parameter vector

{ρR, rπ, ry, σR, σA, ρΨ, σΨ, ρf , σf , σ∆,π, σ∆,u, σ∆,y} ,

which consists of parameters associated with the monetary policy rule and the underlying shock

processes. The last three parameters are the standard deviations on the measurement errors. Our

priors for the Taylor rule coefficients and stochastic processes for technology and monetary policy

shocks are similar to Christiano et al. (2015).

The first part of Table 1 summarizes the results of our estimation. The posterior distributions

are plotted in Appendix E.

2The details of the data construction are in Appendix C.
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Prior Posterior
Parameter D,Mean,Std Mean, 90% HPD

Monetary Policy

ρR Taylor Rule: Smoothing B(0.8, 0.1) 0.78, (0.76, 0.80)
rπ Taylor Rule: Inflation G(1.7, 0.1) 1.61, (1.5, 1.72)
ry Taylor Rule: Output G(0.04, 0.05) 0.02, (0.016, 0.03)

Shock Processes

100σR Std. Monetary Policy G(0.1, 1) 0.24, (0.22, 0.26)
100σµz Std. Neutral Tech. Shock G(0.1, 1) 0.93, (0.87, 1)
100σµΨ

Std. Invest. Tech Shock G(0.1, 1) 2.91, (2.61, 3.21)
σθ Std. Ambiguity Shock G(0.1, 0.1) 0.018, (00.015, 0.02)
ρµΨ

AR(1) Invest. Tech Shock B(0.5, 0.1) 0.32, (0.28, 0.37)
ρθ AR(1) Ambiguity Shock B(0.5, 0.1) 0.86, (0.84, 0.88)

Measurement errors

100σ∆,dy output wedge G(0.1, 1) 0.36, (0.33, 0.39)
100σ∆,π inflation wedge G(0.1, 1) 0.16, (0.14, 0.17)
100σ∆,u unemployment wedge G(0.1, 1) 0.41, (0.37, 0.46)

Calibrated parameters

β Discount factor 0.9968 -
δk Physical capital depreciation rate 2.5 -
χ Calvo price stickiness 0.66 -
λ Price Markup 1.2 -
ρ Job survival probability 0.9 -
τ Max. bargaining rounds per quarter 60 -
σ Matching function elasticity 0.55 -
δ Probability of bargaining breakup 0.19% -
400µ̄ Output growth per capita 1.7 -
D Replacement ratio 0.37 -
100ηh Hiring costs 0.4 -
100ηs Vacancy costs 0.03 -
400µ̄Ψ Investment per capital gowth rate 1.2 -
400π̄ Inflation rate 2.5 -
g Government consumption to output 0.2 -
b Consumption habit 0.8 -
σa Capacity utilization 0.11 -
a′′I Investment adjustment cost 15.7 -
α Capital share 0.26 -
θ Technology diffusion 0.05 -

Table 1: Estimated and calibrated parameters. The priors G(µ, σ),B(µ, σ) denote Gamma and
Beta distributions with mean µ and standard deviation σ.
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Variable wµA wµΨ wR wf meas. error

yt − yt−1 Output growth 36.4 30.9 0.7 32.0 -
ct − log Φt Consumption 52.4 5.0 0.2 42.4 -
it − log Ψt Investment 72.6 21.7 0.3 5.4 -
vt − log Φt Continuation values 53.8 6.0 0.1 40.0 -
πt Inflation rate 41.8 56.6 0.1 1.5 -
ηt Hiring rate 38.7 31.6 0.9 28.9 -
1− lt Unemployment rate 37.6 45.1 0.3 17.0 -
Rt Nominal interest rate 37.8 54.7 6.3 1.2 -

∆
(4)
t (dy) Output growth wedge - - - 18.5 81.5

∆
(4)
t (u) Unemployment wedge - - - 16.3 83.7

∆
(4)
t (π) Inflation rate wedge - - - 29.7 70.3

Table 2: Variance decomposition at the posterior modes. All values are in percent.

6 Understanding the role of ambiguity shocks

Table 2 provides the variance decomposition for key macroeconomic variables and the belief wedges.

Despite substantial noise in the survey answers, the estimated model picks up a meaningful amount

of common variation from the survey answers (around 20% on average), and has a substantial impact

on key macroeconomic variables. In this section, we analyze in detail the mechanism through which

ambiguity shocks propagate into the economy.

6.1 Belief wedges and the worst-case model

Figure 4 depicts the impulse responses for the ambiguity shock wf
t . A one-standard deviation

increase in ambiguity leads to a fall of about 2% in output growth on impact, and to almost a 1

percentage point increase in unemployment that peaks after about four quarters. Inflation increases

in the moment of the impact of the shock as well. These responses are larger than those estimated

using the reduced-form model from Section 3 and depicted in Figure 3 but they tell the same

qualitative story. The bottom row of Figure 4 shows households become pessimistic about GDP

growth, expecting even lower growth than the one predicted using the impulse response from the

top left panel. Households also overpredict inflation and unemployment. All shifts in beliefs are

again consistent with the reduced-form findings from Section 3.

The structural model allows to explain the economic mechanism underlying the role of the am-

biguity shock. This shock affects households’ concerns about model misspecification and therefore

alters their worst-case model P̃ . In order to understand the impact of the ambiguity shock, it is

therefore useful to distinguish between the impulse responses under the data-generating process

P and under the worst-case model P̃ . The former impulse responses are those observed by the

rational econometrician, while the latter are perceived by the household in the model.

Figure 5 compares both responses to the ambiguity shock wf
t . After an increase in ambiguity,
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Figure 4: Bayesian impulse response functions to the belief shock wf . Output growth, inflation rate
and interest rate in annualized percent, and unemployment rate in percentage points. The solid
lines indicated median estimates, while the dashed line correspond to the 10th and 90th percentile
error bands. Horizontal axis in quarters.
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Figure 5: Impulse response functions to the belief shock wf under the data-generating measure
P (black dashed line) and the worst-case model P̃ (red solid line). Impulse response functions
evaluated at the mode of the posterior distribution. Horizontal axis in quarters.

the households’ worst-case model becomes more pessimistically biased. In line with expression (10),

the worst-case impulse responses are more persistent — the households expects the adverse effects
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Figure 6: Impulse response functions to the belief shock wf under the data-generating measure
P (black dashed line) and the worst-case model P̃ (red solid line). Impulse response functions
evaluated at the mode of the posterior distribution. Horizontal axis in quarters.

of an ambiguity increase on the economy to persist longer.

The bottom row of Figure 5 depicts the impulse responses for the individual exogenous shocks

in the model. The dashed line in the bottom right figure depicts the response of the belief process

θt = ft to the innovation wf
t . The household indeed expects under the worst case model (red

solid line) the ambiguity increase to be more persistent. On the other hand, because the individual

exogenous shocks are uncorrelated, there is no response of the technology processes or the monetary

policy shock to the innovation wf
t — the dashed lines in the corresponding panels are flat.

The story under the worst-case model is very different and critical to the understanding of the

endogenous response of the macroeconomy to the ambiguity shock. Under the worst-case model,

the household believes that the shocks are correlated in an adverse way. An increase in ambiguity

worsens the expectation of the household about the future path of the neutral and investment-

specific technology, and the household also expects a monetary tightening.

This particular correlation structure arises because these three innovations to the exogenous

processes all leads to a decrease in the continuation value Vt. In other words, times with low

neutral and investment-specific productivity growth, and times in which the economy is hit by

an exogenous monetary tightening through the shock wR
t are bad times, with a low continuation

value Vt. Moreover, the continuation value recursion (5) indicates that these bad times must be

generated by low levels of current and future consumption under the households’ worst-case model.

The first panel Figure 6 indeed confirms this intuition — the household that faces an increase in

ambiguity forecasts a large and very persistent drop in consumption. The second panel shows that

the increase in ambiguity is also accompanied by a large increase in investment activity, generated
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Figure 7: A comparison of the extracted ambiguity factor with the Michigan Survey measure
of contemporaneous Consumer Sentiment. The solid blue line is the smoothed factor from the
structural model, the purple dash-dotted line the smoothed factor from the reduced-form VAR
model. All data series are standardized.

by the precautionary effect of the increase in pessimism about future growth.

6.2 Labor market dynamics

These pessimistic expectations interact in crucial ways through the frictional labor market. With

search and matching rigidities, hiring and bargaining decisions are based on the value of the dis-

counted future surplus generated by a match. Both firms and workers inherit the representative

household’s beliefs to make future forecasts when they compute their respective continuation val-

ues. Lower expected productivity and higher expected interest rates lower the value of the match

from the perspective of the worst-case beliefs shared by the worker-firm pair. This lowers equilib-

rium hiring rates, and lower employment also implies lower output. Equilibrium wages also fall,

reflecting the decline in the surplus that is particularly large and persistent under the worst-case

model. All these effects are capture by the remaining responses in Figure 6.

This channel induced by fluctuations in household’s ambiguity concerns is a novel and potent

source of fluctuations in the labor market. The variance decomposition in Table 2 reveals that the

ambiguity shocks drive a substantial portion of the overall variation in the labor market variables,

for instance almost one third of the variation in the hiring rate.

The effect on the inflation rate comes from a balance of two forces. Lower contemporaneous

aggregate demand pushes the intermediate goods producers that change prices to set them to lower

levels. At the same time, expectations of lower productivity imply higher marginal costs and this

pushes current and future prices upwards. At our current estimates, the net effect of an increase in

ambiguity is a higher equilibrium inflation rate in the year after the impact of the ambiguity shock.

At the same time, the response of the inflation wedge is positive, indicating that the worst-case

model is biased toward an even higher inflation rate in the future.

Finally, in Figure 7 we plot the extracted series for the ambiguity factor obtained from the
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reduced-form and structural models, along with the Consumer Sentiment index reported by the

Michigan Survey. All three series are highly correlated and attest to a consistent narrative of how

ambiguity affects business cycle dynamics.

7 Conclusion

We develop a framework in which time-variation in ambiguity perceived by households generates

fluctuations in aggregate dynamics of the macroeconomy. The framework is based on an extension

of the robust preference model that introduces shocks to agents’ concerns about model misspec-

ification. We identify these ambiguity shocks using survey data from the University of Michigan

Surveys of Consumers and the Survey of Professional Forecasters. We show that in the data and in

an estimated business cycle model, the ambiguity shocks are a potent source of variation in labor

market variables.

The structural interpretation of ambiguity shocks identified in our framework opens new di-

rections for policy analysis under ambiguity. In parallel work, we study the implications of this

framework for optimal monetary policy. A monetary authority facing households endowed with

robust preferences infers that policy changes lead to endogenous changes in the worst-case model.

The choice of optimal policy therefore involves explicit management of households’ expectations by

the monetary authority.
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Appendix

A Distorted beliefs in the one-factor model

Let (Ω, {Ft}∞t=0 , P ) be the probability space generated by the innovations of model (1). The subjective

probability measure P̃ is formally defined by specifying a strictly positive martingale M with one-period

increment

mt+1 =
Mt+1

Mt

= exp

(
−1

2
|kt|2 + k′twt+1

)
.

We then have Ẽt [wt+1] = kt. Using the notation xt = (y′t, ft)
′, the factor structure (2)–(3) of households’

expectations is obtained by imposing the restriction

kt = H +HFxt

where F = (Fy, Ff ) in an 1× n vector and H , H are k × 1 vectors.

Let ζt = Zxt be the vector of variables for which we have observable data on households’ expectations

where Z is a selection matrix. Here, we derive results for more general dynamics that is in line with the

non-stationary model from Section 4. Specifically, we assume that

ζt = Zxt = Zx̂t + zt

x̂t+1 = ψq + ψxx̂t + ψwwt+1

zt+1 − zt = φq + φxx̂t + φqwt+1.

The process zt introduces an additional component of the dynamics that has stationary growth rates. The

factor model framework from Section 3 is obtained by setting the matrices H, ψq, ψx, ψw and φq to zero, in

which case

xt+1 = ψxxt + ψwwt+1

is a concise form for (1).

We are interested in τ -period belief wedges

∆
(τ)
t = Ẽt [ζt+1]− Et [ζt+1] .

Assume that

Et [ζt+τ − ζt] = Gx
τ x̂t +G0

τ

Ẽt [ζt+τ − ζt] = G̃x
τ x̂t + G̃0

τ

where Gx
τ , G

0
τ , G̃

x
τ and G̃0

τ are conformable matrix coefficients with initial conditions

G0
τ = G̃0

τ = 0n×1 Gx
τ = G̃x

τ = 0n×n.
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We can then establish a recursive formula for the expectations under the data-generating measure

Gx
τ x̂t +G0

τ = Et [ζt+τ − ζt] = (16)

= Et

[
Z (xt+1 − xt) +Gx

τ−1x̂t+1 +G0
τ−1

]

= G0
τ−1 + φq +

(
Z +Gx

τ−1

)
ψq +

[(
Z +Gx

τ−1

)
ψx + (φx − Z)

]
x̂t

+
((
Z +Gx

τ−1

)
ψw + φw

)
Et [wt+1] .

Since Et [wt+1] = 0, we obtain

Gx
τ =

(
Z +Gx

τ−1

)
ψx + (φx − Z)

G0
τ = G0

τ−1 + φq +
(
Z +Gx

τ−1

)
ψq.

Under the subjective measure, the derivation is unchanged, except the last line in (16) that now involves the

subjective expectation Ẽt [wt+1] = H +HFx̂t. Then

G̃x
τ =

(
Z + G̃x

τ−1

)
ψx + (φx − Z) +

((
Z + G̃x

τ−1

)
ψw + φw

)
HF

G̃0
τ = G̃0

τ−1 + φq +
(
Z + G̃x

τ−1

)
ψq +

((
Z + G̃x

τ−1

)
ψw + φw

)
H

Consequently

∆
(τ)
t =

(
G̃x

τ −Gx
τ

)
x̂t + G̃0

τ −G0
τ .

In the case considered in Section 3 when H , ψq, ψx, ψw and φq are all zero, we get explicit expressions

Gx
τ = Z (ψx)

τ

G0
τ = Z

τ−1∑

i=0

(ψx)
i
ψq = Z (I − ψx)

−1
(I − (ψx)

τ
)ψq

G̃x
τ = Z (ψx + ψwHF )

τ

G̃0
τ = Z

τ−1∑

i=0

(ψx + ψwHF )
i
ψq = Z (I − (ψx + ψwHF ))

−1
(I − (ψx + ψwHF )

τ
)ψq.

B Series expansion of the worst-case model

The linear approximation in this paper is an extension of the series expansion method used in Holmes

(1995) or Lombardo (2010). Borovička and Hansen (2013, 2014) adapt the series expansion method to an

approximation of models with robust preferences. Here, we further extend this methodology to derive a

linear solution that allows for endogenously determined time-varying belief distortions. The critical step in

the expansion lies in the joint perturbation of the shock vector wt and the penalty process θt.

B.1 Law of motion

We start with the approximation of the model for the law of motion (4) with a sufficiently smooth policy rule

ψ. We consider a class of models indexed by the scalar perturbation parameter q that scales the volatility

of the shock vector wt

xt (q) = ψ (xt−1 (q) , qwt, q) (17)
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and assume that there exists a series expansion of xt around q = 0:

xt (q) ≈ x̄+ qx1t +
q
2

2
x2t + . . . .

The processes xjt, j = 0, 1, . . . can be viewed as derivatives of xt with respect to the perturbation parameter,

and their laws of motion can be inferred by differentiating (17) j times and evaluating the derivatives at

q = 0, assuming that ψ is sufficiently smooth. Here, we focus only on the approximation up to the first

order:

x̄ = ψ (x̄, 0, 0) (18)

x1t = ψxx1t−1 + ψwwt + ψq.

Here, we assume that the equilibrium dynamics of xt is stationary. Extensions to non-stationary environ-

ments are considered in Appendix B.6.

B.2 Continuation values

We now focus on the expansion of the continuation value recursion. Substituting the worst-case belief

distortion (7) into the recursion (5) yields

Vt = u (xt)−
β

θt
logEt [exp (−θtVt+1)] . (19)

We are looking for an expansion of the continuation value

Vt (q) ≈ V̄ + qV1t. (20)

In order to derive the solution of the continuation value, we are interested in expanding the following

perturbation of the recursion:

Vt (q) = u (xt (q) , q)− β
q

θ (x̄+ x1t)
logEt

[
exp

(
−θ (x̄+ x1t)

q
Vt+1 (q)

)]
. (21)

Here, we utilized the fact that θt = θxt ≈ θ (x̄+ x1t). More importantly, the perturbation scales jointly

the volatility of the stochastic processes for Vt and u (xt) with the magnitude of the penalty parameter θt.

In particular, the penalty parameter in the perturbation of equation (5) becomes q/θt and decreases jointly

with the volatility of the shock process. This assumption will imply that the benchmark and worst-case

models do not converge as q → 0, and the linear approximation around a deterministic steady state yields

a nontrivial contribution of the worst-case dynamics.

Using the expansion of the period utility function

u (xt (q) , q) ≈ ū+ qu1t = ū+ q (uxx1t + uq)

we get the deterministic steady state (zero-th order) term by setting q = 0:

V̄ = (1− β)
−1
ū.

The first-order term in the expansion is derived by differentiating (21) with respect to q and is given by the
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recursion

V1t = u1t − β
1

θ (x̄+ x1t)
logEt

[
exp

(
−θ (x̄+ x1t)V1t+1

)]
(22)

Since x̄ is constant and x1t has linear dynamics (18), we hope to find linear dynamics for V1t as well. Since

ut = u (xt), we can make the guess that V i
t (q) = V i (xt (q) , q) which leads to the following expressions for

the derivative of Vt:

V1t = Vxx1t + Vq.

Using this guess and comparing coefficients, equation (22) leads to a pair of algebraic equations for the

unknown coefficients Vx and Vq:

Vx = ux −
β

2
Vxψwψ

′

wV
′

xθ + βVxψx

Vq = uq −
β

2
θx̄Vxψwψ

′

wV
′

x + βVxψq + βVq

The first from this pair of equations is a Riccati equation for Vx, which can be solved for given coefficients

ψx and ψw.

B.3 Distortions

With the approximation of the continuation value at hand, we can derive the expansion of the one-period

belief distortion mt+1 that defines the worst-case model relative to the benchmark model. As in (21), we

scale the penalty parameter θt jointly with the volatility of the underlying shocks:

mt+1 (q) =
exp

(
− 1

q
θtVt+1 (q)

)

Et

[
exp

(
− 1

q
θtVt+1 (q)

)] ≈ m0,t+1 + qm1,t+1.

It turns out that in order to derive the correct first-order expansion, we are required to consider a second-order

expansion of the continuation value

Vt (q) ≈ V̄ + qV1t +
q

2
V2t,

although the term V2t will be inconsequentil for subsequent analysis. Substituting in expression (20) and

noting that V̄ is a deterministic term, we can approximate mt+1 with

mt+1 (q) ≈
exp

(
−θ (x̄+ x1t)

(
V1t+1 +

q

2V2t+1

))

Et

[
exp

(
−θ (x̄+ x1t)

(
V1t+1 +

q

2V2t+1

))]

Differentiating with respect to q and evaluating at q = 0, we obtain the expansion

m0t+1 =
exp

(
−θ (x̄+ x1t)V1t+1

)

Et

[
exp

(
−θ (x̄+ x1t)V1t+1

)] (23)

m1t+1 = − 1

2θ (x̄+ x1t)
M0t+1 [V2t+1 − Et [M0t+1V2t+1]]

This expansion is distinctly different from the standard polynomial expansion familiar from the perturbation

literature. First, observe that m0t+1 is not constant, as one would expect for a zeroth-order term, but

nonlinear in V1t+1. However, since Et [m0t+1] = 1 we can thus treat M0t+1 as a change of measure that will
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adjust the distribution of shocks that are correlated with m0t+1. We will show that with Gaussian shocks,

we can still preserve tractability. Further notice that Et [m1t+1] = 0.

The linear structure of V1t also has an important implication for the worst-case distortion constructed

from m0t+1. Substituting into (23) yields

m0t+1 =
exp

(
−θ (x̄+ x1t)Vxψwwt+1

)

Et

[
exp

(
−θ (x̄+ x1t)Vxψwwt+1

)] .

This implies that for a function f (wt+1) with a shock vector wt+1 ∼ N (0, I),

Et [m0t+1f (wt+1)] ≈ Et [mt+1f (wt+1)] = Ẽt [f (wt+1)]

where, under the P̃ (worst-case) measure, the vector wt+1 has the following distribution:

wt+1 ∼ N
(
−θ (x̄+ x1t) (Vxψw)

′ , Ik
)
. (24)

the mean of the shock is therefore time-varying and depends on the linear process x1t.

B.4 Equilibrium conditions

We assume that equilibrium conditions in our framework can be written as

0 = Et [g̃ (xt+1, xt, xt−1, wt+1, wt)] (25)

where g̃ is an n × 1 vector function and the dynamics for xt is implied by (4). This vector of equations

includes expectational equations like Euler equations of the robust household, which can be represented

using worst-case belief distortions mt+1. We therefore assume that we can write the j-th component of g̃ as

g̃j (xt+1, xt, xt−1, wt+1, wt) = m
σj

t+1g
j (xt+1, xt, xt−1, wt+1, wt) .

where σj ∈ {0, 1} captures whether the expectation in the j-th equation is under the household’s worst-case

model.3 In particular, all nonexpectational equations and all equations not involving agents’ preferences

have σj = 0. System (25) can then be written as

0 = Et [Mt+1g (xt+1, xt, xt−1, wt+1, wt)]

where Mt+1 = diag
{
mσ1

t+1, . . . ,m
σn

t+1

}
is a diagonal matrix of the belief distortions, and g is independent of

the robustness parameter θt. As in Borovička and Hansen (2013), the zero-th and first-order expansions are

0 = Et [M0t+1g0t+1] = g0t+1

0 = Et [M0t+1g1t+1] + Et [M1t+1g0t+1] = Et [M0t+1g1t+1]

where the last equality follows from Et [m1t+1] = 0.

3The generalization to multiple agents with potentially heterogeneous concerns for robustness is straightforward,
see the construction in Borovička and Hansen (2013).
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For the first-order derivative of the equilibrium conditions, we have

0 = Et [M0t+1g1t+1] (26)

The first-order term in the expansion of gt+1 is given by

g1t+1 = gx+x1t+1 + gxx1t + gx−x1t−1 + gw+wt+1 + gwwt + gq = (27)

= [(gx+ψx + gx)ψx + gx−]x1t−1 + [(gx+ψx + gx)ψw + gw]wt +

+(gx+ψx + gx+ + gx)ψq + gq + (gx+ψw + gw+)wt+1

where symbols x+, x, x−, w+, w, q represent partial derivatives with respect to xt+1, xt, xt−1, wt+1, wt and q,

respectively. Given the worst-case distribution of the shock vector (24), we can write

Ẽt [wt+1] = − (Vxψw)
′ θ [(x̄+ ψq) + ψxx1t−1 + ψwwt]

Let [A]
i
denote the i-th row of matrix A. Notice that

[gx+ψw + gw+]
i
(Vxψw)

′

θ

is a 1× n vector. Construct the n× n matrix E by stacking these row vectors for all equations i = 1, . . . , n:

E = stack
{
σi [gx+ψw + gw+]

i
(Vxψw)

′

θ
}

which contains non-zero rows for expectational equations under the worst-case model. Using matrix E, we

construct the conditional expectation of the last term in g1t+1 in (27). In particular

0 = Et [M0t+1g1t+1] =

= [(gx+ψx + gx)ψx + gx−]x1t−1 + [(gx+ψx + gx)ψw + gw]wt +

+(gx+ψx + gx+ + gx)ψq + gq − E [(x̄+ ψq) + ψxx1t−1 + ψwwt]

Equation (26) is thus a system of linear second-order stochastic difference equations. There are well-

known results that discuss the conditions under which there exists a unique stable equilibrium path to this

system (Blanchard and Kahn (1980), Sims (2002)). We assume that such conditions are satisfied. Comparing

coefficients on x1t−1, wt and the constant term implies that

0 = (gx+ψx + gx − E)ψx + gx− (28)

0 = (gx+ψx + gx − E)ψw + gw (29)

0 = (gx+ψx + gx+ + gx)ψq + gq − E (x̄+ ψq) (30)

These equations need to be solved for ψx, ψw, ψq and Vx where

Vx = ux − β

2
Vxψwψ

′

wV
′

xθ + βVxψx

and

E = stack
{
σi [gx+ψw + gw+]

i
(Vxψw)

′

θ
}
. (31)
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B.5 Special case: θt is an exogenous AR(1) process

In the application, we consider a special case that restricts θt to be an exogenous AR(1) process. With a

slight abuse in notation, this restriction can be implemented by replacing the vector of variables xt with

(x′t, ft)
′ where ft is a scalar AR(1) process representing the time-variation in the concerns for robustness as

an exogenously specified ‘belief’ shock:

ft+1 = (1− ρf ) f̄ + ρfft + σfw
f
t+1. (32)

The dynamics of the model then satisfies

xt = ψ (xt−1, wt, ft) (33)

with steady state
(
x̄′, f̄

)
′

. The vector θ in (6) is then partitioned as θ
′

=
(
θ
′

x, θf

)
= (01×n−1, 1) and thus

θt = ft. Constructing the first-order series expansion of (33), we obtain

(
x1t+1

f1t+1

)
=

(
ψq

0

)
+

(
ψx ρfψxf

0 ρf

)(
x1t

f1t

)
+

(
ψw σfψxf

0 σf

)(
wt+1

wf
t+1

)

where wt+1 and wf
t+1 are uncorrelated innovations. The matrices ψx and ψw thus do not involve any direct

impact of the dynamics of the belief shock f1t and the matrix ψxf captures how the dynamics of f1t influences

the dynamics of endogenous state variables.

Let us further assume that the system (25) represents the equilibrium restrictions of the model except

equation (32). In this case, the function g does not directly depend on f . Repeating the expansion of the

equilibrium conditions from Section B.4 and comparing coefficients on xt−1, ft−1, wt and the constant term

yields the set of conditions for matrices ψx, ψw, ψxf and ψq:

0 = (gx+ψx + gx)ψx + gx− (34)

0 = (gx+ρfψxf − E) + (gx+ψx + gx)ψxf (35)

0 = (gx+ψx + gx)ψw + gw (36)

0 = (gx+ψx + gx+ + gx)ψq + gq − Ef̄ (37)

with

Vx = ux + βVxψx (38)

Vf = uf − βθ

2

(
V 2
f σ

2
f + 2Vxψxfσ

2
fVf + Vx

(
σ2
fψxfψ

′

xf + ψwψ
′

w

)
V ′

x

)
(39)

+β (Vfρf + Vxψxfρf )

E = stack
{
σi
[
gx+ψxfσ

2
f (Vf + Vxψxf ) + (gx+ψw + gw+)ψ

′

wV
′

x

]i}
θ. (40)

This set of equations is the counterpart of equations (28)–(31) and can be solved sequentially. First, notice

that equations (34) and (36) can be solved for ψx and ψw, and these coefficients are not impacted by the

dynamics of ft. But the equilibrium dynamics of xt is affected by movements in ft through the coefficient

ψxf . The coefficient ρfψxf introduces an additional component in the time-varying drift of xt, while σfψxf

is an additional source of volatility arising from the shocks to household’s concerns for robustness.

We solve this set of equations by backward induction. First, we use (28), (31) and (38) to find the

31



no-ambiguity solution for ψx, ψw, Vx. Then we postulate that (33) is in fact a time-dependent law of motion

xt = ψt (xt−1, wt, ft)

with terminal condition at a distant date T

xT = ψT (xT−1, wT , 0) .

This corresponds to assuming that starting from date T , ambiguity is absent in the model. Plugging this

guess to the set of equilibrium conditions, we obtain the set of algebraic equations

0 =
(
gx+ψ

t+1
xf ρf − E

t+1
)
+ (gx+ψx + gx)ψ

t
xf (41)

V t
f = uf − βθ

2

((
V t+1
f σf

)2
+ 2Vxψ

t+1
xf σ2

fV
t+1
f + Vx

(
σ2
fψ

t+1
xf

(
ψt+1
xf

)
′

+ ψwψ
′

w

)
V ′

x

)
(42)

+βρf

(
V t+1
f + Vxψ

t+1
xf

)

E
t+1 =

[
gx+ψ

t+1
xf

(
V t+1
f + Vxψ

t+1
xf

)
σ2
f + (gx+ψw + gw+)ψ

′

wV
′

x

]
θ. (43)

Equation (41) can then be solved for

ψt
xf = (gx+ψx + gx)

−1
(
E
t+1 − gx+ψ

t+1
xf ρf

)
(44)

Iterating backwards on equations (42)–(44) backward until convergence yields the stationary solution of the

economy with ambiguity as a long-horizon limit of an economy where ambiguity vanishes at a distant T .

The system converges as long as its dynamics are stationary under the worst-case model. Once we find the

limit limt→−∞ E
t = E, we can also determine

ψq = (gx+ψx + gx+ + gx)
−1 (

Ef̄ − gq
)
.

B.6 Nonstationary models

Consider the nonstationary dynamics introduced in Section 4.3. When the period utility function is given by

(13), i.e., u (xt) = û (x̂t) + zt, then using the guess for the continuation value (14), we can rewrite equation

(19) as

V̂ (x̂t) = û (x̂t)−
β

θt
logEt

[
exp

(
−θt

(
V̂ (x̂t+1) + (1− β)

−1
φ (x̂t, wt+1)

))]

with û (x̂t) = log Ĉ (xt). The first-order expansion of φ yields

z̄t+1 − z̄t = φ (x̄, 0)

z1t+1 − z1t = φq + φxx̂1t + φwwt+1

where x̄ is the steady state of x̂t. We can now proceed as in the stationary case except using the expansion

of functions û and V̂ . We have

V̄ = (1− β)
−1
[
ū+ β (1− β)

−1
φ (x̄, 0)

]
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and

V̂1t = Vxx̂1t + Vq

with

Vx = ux + β
[
Vxψx + (1− β)

−1
φx

]
− β

2

∣∣∣Vxψw + (1− β)
−1
φw

∣∣∣
2

θ

Vq = uq + β
[
Vq + Vxψq + (1− β)

−1
φq

]
− β

2
θx̄
∣∣∣Vxψw + (1− β)

−1
φw

∣∣∣
2

.

The zero-th order distortion is consequently given by

m0t+1 =
exp

(
−θ (x̄+ x1t)

(
Vxψw + (1− β)

−1
φw

)
wt+1

)

Et

[
exp

(
−θ (x̄+ x1t)

(
Vxψw + (1− β)

−1
φw

)
wt+1

)]

so that under the worst-case model,

wt+1 ∼ N

(
−θ (x̄+ x1t)

(
Vxψw + (1− β)

−1
φw

)
′

, Ik

)
.

We are still solving the set of equations (28)–(30) but now with Vx and E given by

Vx = ux + β
[
Vxψx + (1− β)

−1
φx

]
− β

2

∣∣∣Vxψw + (1− β)
−1
φw

∣∣∣
2

θ

E = stack

{
σi [gx+ψw + gw+]

i
(
Vxψw + (1− β)−1 φw

)
′

θ

}
.

In the special case described in Section B.5, the belief shock ft is modeled as an exogenous AR(1) process.

The first-order dynamics of the stochastic growth rate can be expressed as

z1t+1 − z1t = φq + φxx̂1t + φxff1t + φwwt+1 + φwfw
f
t+1.

The only modications appearing in the model solution are those related to the continuation value recursion

and the shock distortion in E. Specifically,

Vx = ux + β
[
Vxψx + (1− β)

−1
φx

]

Vf = uf + β
(
ρfVf + ρfVxψxf + (1− β)−1 φxf

)

−βθ
2

∣∣∣Vxψw + (1− β)
−1
φw

∣∣∣
2

− βθ

2

∣∣∣Vxψxfσf + Vfσf + (1− β)
−1
φwf

∣∣∣
2

E = stack

{
σi

[
(gx+ψw + gw+)

(
Vxψw + (1− β)−1 φw

)
′

]i}
θ

+stack

{
σi
[
gx+ψxfσf

(
Vfσf + Vxψxfσf + (1− β)

−1
φwf

)]i}
θ
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In the recursive form, Vf and E can be solved by iterating on the pair of equations

V t
f = uf + β

(
ρfV

t+1
f + ρfVxψ

t+1
xf + (1− β)

−1
φxf

)

−βθ
2

∣∣∣Vxψw + (1− β)−1 φw

∣∣∣
2

− βθ

2

∣∣∣Vxψt+1
xf σf + V t+1

f σf + (1− β)−1 φwf

∣∣∣
2

E
t+1 = stack

{
σi

[
(gx+ψw + gw+)

(
Vxψw + (1− β)

−1
φw

)
′

]i}
θ

+stack

{
σi
[
gx+ψ

t+1
xf σf

(
V t+1
f σf + Vxψ

t+1
xf σf + (1− β)−1 φwf

)]i}
θ.

together with equation (44) which remained unchanged.

C Data

To be written.

D Estimation of the one-factor model

Recall that we estimate the model

(
yt+1

ft+1

)
=

(
ψy ψyfρf

0 ρf

)(
yt

ft

)
+

(
ψyw ψyfσf

0 σf

)(
wy

t+1

wf
t+1

)

∆
(4)
t+1 = ψ∆fft+1 + σ∆ε

∆
t+1

We estimate the model using a Metropolis–Hastings algorithm. We take five chains with different initial

draws and make 20,000 draws in each chain. The first 10,000 draws of each chain are dropped.

The priors and posterior parameter estimates are reported in Table 3. The inverse-gamma priors on the

standard deviations shrink the estimates away from zero in order to prevent overfitting. The means of the

priors for the measurement error standard deviations are scaled by the standard deviations of the wedges.

The variance decomposition at the estimated mode of the parameters is reported in Table 4.

E Details on the New-Keynesian model

E.1 Alternating offer bargaining

As in Hall and Milgrom (2008) and Christiano et al. (2015), we assume that wages are determined by the

alternating offer bargaining protocol of Rubinstein (1982) and Binmore et al. (1986).

At the start of period t, lt matches are determined. Each worker then engages in bilateral bargaining

with a wholesaler firm over the current wage rate ξt. The bargaining is conditional on all other period t

matches as well as beliefs about future wage bargains.

We suppose bargaining takes place across τ subperiods within the period, where τ is even. Conditional

on all previous offers having been rejected, the firm makes a wage offer every odd subperiod, while the worker

makes a wage offer every even subperiod. The recipient can accept or reject an offer. If the recipient rejects

an offer, she can end negotiations or plan to make a counteroffer in the next subperiod. In the latter case,

the bargaining breaks down with probability δ. Following the estimates of Christiano et al. (2015), we set

δ = 0.19. We assume that when indifferent between accepting and rejecting an offer, an agent accepts it.
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Prior Posterior
Parameter D,Mean,Std Mean, 90% HPD

VAR coefficients

ψy,ii B(0.7, 0.2)
ψy,ij, i 6= j N(0, 2)
100ψw,ii IG(1, 0.5)
100ψw,ij , i 6= j N (0, 2)
ψyf,dy N (0, 1) -0.29 (-0.47,-0.14)
ψyf,u N (0, 1) 0.07 (0.03,0.13)
ψyf,π N (0, 1) 0.08 (0.03,0.13)
ψyf,R N (0, 1) -0.03 (-0.06, 0.01)

Factor coefficients

ρf B (0, 5, 0.1) 0.90 (0.86,0.93)
100σf IG (0.5, 0.2) 0.56 (0.31,0.80)
Hπ N (0, 1) 1.27 (0.62,1.89)
Hu N (0, 1) 2.26 (1.55,3.03)
HR N (0, 1) -0.45 (-1.95,1.07)
Hf N (0, 1) -1.25 (-1.77,-0.69)

Measurement errors

100σ∆,dy GDP growth wedge IG(0.7, 0.3) 0.20 (0.18,0.22)
100σ∆,π inflation wedge IG(3.3, 1) 1.16 (1.04,1.26)
100σ∆,u unemployment wedge IG(0.4, 2) 0.19 (0.17,0.20)

Table 3: Prior and posterior estimates for reduced form model. The priors IG (µ, σ) and B (µ, σ)
denote inverse Gamma and Beta distributions with mean µ and standard deviation σ.

Variable wdy wu wπ wR wf meas. error

dyt GDP growth 53.0 30.1 6.6 7.4 7.4 -
ut Unemployment rate 6.4 30.3 13.7 24.2 25.4 -
πt Inflation rate 3.0 14.4 68.5 10.9 3.2 -
Rt Nominal interest rate 3.0 13.6 37.7 42.5 3.1 -

∆t
(4)

(dy) GDP growth wedge - - - 55.5 44.5

∆t
(4)

(u) Unemployment wedge - - - 43.9 56.1

∆t
(4)

(π) Inflation rate wedge - - - 7.5 92.5

Table 4: Variance decomposition at the posterior modes for reduced form model. All values are in
percent.
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In odd subperiod ι < τ of period t, the firm chooses the minimum wage offer ξι,t that will not be rejected

by the worker. In particular, ξι,t satisfies

Wι,t = max {Uι,t, δUι,t + (1− δ) (Dt/τ +Wι+1,t)} (45)

where

Wι,t = ξι,t + Ẽt

[
St+1

St

((ρ+ (1− ρ) jt+1)Wt+1 + (1− ρ) (1− jt+1)Ut+1)

]

denotes the value to a worker of accepting the offer ξι,t. The worker’s outside option Uι,t satisfies

Uι,t =
τ − ι+ 1

τ
Dt + Ẽt

[
St+1

St

(jt+1Wt+1 + (1− jt+1)Ut+1)

]
.

Similarly, in even subperiod ι < τ of period t, the worker chooses the maximum wage offer ξι,t that will

not be rejected by the firm. In particular, ξι,t satisfies

Jι,t = max {0, (1− δ) (−γt + Jι+1,t)} (46)

where

Jι,t =
τ − ι+ 1

τ
ϑt − ξι,t + ρẼt

[
St+1

St

Jt+1

]

denotes the value to a firm of accepting the wage offer ξι,t.

In the final subperiod τ , the worker makes a final offer. The worker offers the highest possible wage that

the firm does not reject, which implies the condition

Jτ,t = 0. (47)

Starting from the terminal condition (47), we can solve the model backwards using the indifference

conditions (45) and (46). This yields the condition

Jt = β1 (Wt − Ut)− β2γt + β3 (ϑt −Dt)

where βi = αi+1/αi, with αi defined as follows:

α1 = 1− δ + (1− δ)τ

α2 = 1− (1− δ)
τ

α3 = α2
1− δ

δ
− α1

α4 =
1− δ

2− δ

α2

τ
+ 1− α2.

E.2 Growth rate and functional forms

The model has two sources of growth - neutral and investment-specific technological progress. For a balanced

growth path in the nonstochastic steady state, we require that the elements {φt, st, κt, γt, Gt, Dt} grow at

the same rate

Φt = Ψ
α

1−α

t At
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in steady state. We thus set

(φt, st, κt, γt, Gt, Dt)
′

= (φ, s, κ, γ,G,D)
′

Ωt

where Ωt is defined as

Ωt = Φ0.05
t−1Ω

0.95
t−1

which is consistent with the estimates found in Christiano et al. (2015)

We assume the cost for capacity utilization are given by

au
(
uKt
)
=

0.11

2
ϕ
(
uKt
)2

+ 0.89ϕuKt + ϕ

(
0.11

2
− 1

)

where ϕ is chosen so that the steady state value of uKt is one. In addition, we assume that investment

adjustment costs are given by

aI

(
It
It−1

)
=

1

2

[
exp

(√
15.7

(
It
It−1

− µ× µΨ

))
+ exp

(
−
√
15.7

(
It
It−1

− µ× µΨ

))]
− 1

where µ and µΨ denote the unconditional growth rates of Φt and Ψt respectively. Both cost functions are

taken from Christiano et al. (2015).
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