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Introduction

Motivation

I Paper considers asset-pricing implications of model uncertainty.

I Estimates underlying endowment process, and considers multiplier
preferences given these “true” models.

I Investigates effect of model uncertainty on Hansen-Jagannathan bounds in
the presence of stochastic volatility.

I Characterizes worst-case probability distribution and detection error
probabilities from the robust agent’s perspective.
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Introduction

Agenda

I First, estimate parameters of the consumption growth process using MCMC
sampler.

I Given these estimates, and a solution to the agent’s optimization problem,
we can do all the asset pricing, etc.

I However, may also be interested in features of the robust control problem:

1. What are the properties of the worst case probability distribution?
2. What is the link between the consumption growth process and

detection error probability?

I Calculating these objects will require further MCMC sampling, given
parameters of endowment process.
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Estimating Endowments

Consumption Process

I Homoskedastic version:

∆ log(Ct+1) = φ+ σεt+1

εt+1 ∼ N(0, 1)

I Stochastic volatility version:

∆ log(Ct+1) = φ+ σ exp(vt+1)ε1,t+1

vt+1 = λvt + τε2,t+1(
ε1,t+1

ε2,t+1

)
∼ N(0, I )

I Consumption is observable, so we can estimate the endowment process
without making any assumptions on preferences.
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Estimating Endowments

Estimating the Consumption Process

I Estimation using Bayesian methods.

I Priors:

Parameter Description Prior
φ Mean Consumption Growth Uniform [0, 1]
σ Non-Stoch. Consumption Growth Vol. Uniform [0, 1]
τ SV Innovation Volatility Uniform [0, 1]
λ SV Persistence Uniform [-1, 1]

I Estimation method:

I Homoskedastic: Random Walk Metropolis-Hastings Algorithm.
I Alternatives: could have used conjugate prior and sampled directly, or

done importance sampling here.

I SV: Particle Marginal Metropolis-Hastings Algorithm.
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Estimating Endowments

Review of Bayesian Econometrics

I For notation, let ξ = (φ, σ)′ be the vector of parameters, and let y denote
the data (∆ log(C1), . . . ,∆ log(CT )).

I Want to draw from the posterior distribution p(ξ|y).

I By Bayes’ rule, we have p(ξ|y) ∝ p(y |ξ)p(ξ).

I Prior p(ξ) is known by construction.

I Likelihood p(y |ξ) is known given data:

p(y |ξ) = (2π)−T/2σ−T exp

{
−1

2
σ−2

T∑
t=1

(log(Ct)− φ)2

}
.
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Estimating Endowments

Metropolis-Hastings Algorithm

1. Given current draw ξj , choose candidate ξ∗ from a proposal density
q(ξ∗; ξj).

I Random walk proposal: ξ∗ = ξj + η, for E[η] = 0.

2. Calculate acceptance probability

α = min

{
p(ξ∗|y)/q(ξ∗; ξj)

p(ξj |y)/q(ξj ; ξ∗)
, 1

}
= min

{
p(y |ξ∗)p(ξ∗)/q(ξ∗; ξj)

p(y |ξj)p(ξj)/q(ξj ; ξ∗)
, 1

}
.

I If proposal distribution is symmetric, then

α = min

{
p(y |ξ∗)p(ξ∗)

p(y |ξj)p(ξj)
, 1

}

3. Set ξj+1 = ξ∗ with probability α, set ξj+1 = ξj with probability 1− α.
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Estimating Endowments

Particle Marginal Metropolis-Hastings Algorithm

I In the previous case, we assumed that the likelihood p(y |ξ) is known.

I However, in the SV specification, this is no longer the case.

I Instead, we can calculate an approximation p̂(y |ξ) using a particle filter.

I We can then proceed as before using p̂(y |ξj) and p̂(y |ξ∗) in place of p(y |ξj)
and p(y |ξ∗).
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Estimating Endowments

SIR Particle Filter

I A good basic particle filtering algorithm is Sampling Importance Resampling
(SIR).

I For notation, let yt be observable data, and let xt be latent states. Assume
that p(yt |xT ) = g(yt |xt), that p(xt |xt−1, . . . , x1) = f (xt |xt−1), and that
p(x1) = µ(x1).

I At t = 1:

I Initialize x i1 ∼ q1(x1|y1) for i = 1, . . . ,N, from some proposal density
q1.

I Compute weights w i
1 =

µ(x i1)g(y1|x i1)

q1(x i1|y1)
, normalized weights W i

1 ∝ w i
1.

I Resample {W i
1 , x

i
1} to obtain N equally weighted particles x̄ i1.
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Estimating Endowments

SIR Particle Filter

I At t ≥ 2:
I Sample x it ∼ qt(xt |yt , x̄ it−1).

I Compute incremental weights αi
t =

g(yt |x it )f (x it |x̄ it−1)

q(x it |yt , x̄ it−1)
and normalized

weights W i
t ∝ αi

t .
I Resample {W i

t , x
i
t} to obtain N equally weighted particles x̄ it .

I Given output of algorithm, can approximate

p̂(yt |y t−1, ξ) =
N∑
i=1

W i
t−1α

i
t

p̂(y |ξ) = p̂(yt |y t−1, ξ) · · · p̂(y2|y1, ξ)p̂(y1|ξ).

I For the SV problem, xt = vt , yt = ∆ log(Ct), use true transition probabilities
for vt as the proposal q.

I See Doucet and Johansen (2008) for further improvements to particle filter,
Andrieu, Doucet and Holenstein (2010) for more information about
PMCMC.
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Robust Analysis

Multiplier Preferences

I Notation: current state is x , next period’s state is x ′(ε′; x).

I Bellman equation:

W (x) = log(C (x)) + min
m(ε;x)≥0

(
β

∫
[m(ε; x)W (x ′(ε′; x))

+ θm(ε; x) log(m(ε; x))]p(ε) dε

)
I Bellman equation at minimizing m:

W (x) = log(C (x))− βθ log

(∫
exp

(
−W (x ′(ε′; x))

θ

)
p(ε) dε

)
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Robust Analysis

Asset Pricing

I Stochastic discount factor:

Λt,t+1 = β

(
Ct+1

Ct

)−1 exp
(
−Wt+1

θ

)
Et

[
exp

(
−Wt+1

θ

)]
 .

I Decomposition:

Λt,t+1 = ΛR
t,t+1ΛU

t,t+1

ΛR
t,t+1 = β

(
Ct+1

Ct

)−1

ΛU
t,t+1 =

exp
(
−Wt+1

θ

)
Et

[
exp

(
−Wt+1

θ

)]
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Robust Analysis

Asset Pricing

I Authors use third-order perturbations to solve for the value function and the
stochastic discount factor Λt,t+1.

I Therefore, given the earlier estimates of the endowment process, we can
price any asset, check HJ bounds, etc.

I Rest of the paper will characterize the robust agent’s problem (worst case
distribution, detection error probabilities).
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Robust Analysis

Distorted Expectations

I Reformulation of asset pricing equation:

1 = Et [Λt,t+1Rt+1]

=

∫
R(ε) · β

(
C (x ′(ε′; x))

C (x)

)−1 exp
(
−W (x′(ε′;x))

θ

)
Et

[
exp

(
−W (x′(ε′;x))

θ

)]
 p(ε) dε

=

∫
R(ε) · β

(
C (x ′(ε′; x))

C (x)

)−1
p̃(ε; x) dε

= Ẽt

[
ΛR
t,t+1Rt+1

]
I Distorted probability measure:

p̃(ε; x) =

 exp
(
−W (x′(ε′;x))

θ

)
Et

[
exp

(
−W (x′(ε′;x))

θ

)]
 p(ε)
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Robust Analysis

Distorted Expectations

I Therefore, the agent prices assets as if he or she had log expected utility
preferences, but under the probability distribution p̃.

I Distribution p̃ is known as the worst-case distribution.

I This is itself an object of interest: what is the consumption process that the
agent has in mind when pricing assets?

I This density does not have a standard form, so we will once again use
Monte Carlo methods to sample from it.

I For notation, let s be the deterministic variables in the state x , so that
s ′ = f (ε, s). (Here st = vt).
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Robust Analysis

Sampling the Worst Case Distribution

I Method 1: Random Walk Metropolis-Hastings

I Given {εit−1, s it−1})Ni=1:

1. Set s it = f (εit−1, s
i
t−1).

2. For i = 1, . . . ,N:
3. Draw ε∗t ∼ q(ε∗, εit−1) for some proposal density q.

4. Set εit = ε∗t with probability min

{
1,

p̃(ε∗t )/q(ε∗t , ε
i
t−1)

p̃(εi−1t )/q(εi−1t , ε∗t )

}
, and set

εit = εi−1t otherwise (note: incorrect in paper!).
5. Increment t.

I Can use p distribution as proposal: q ∼ N(0, I ).

I Alternative to Metropolis-Hastings: could instead use p as a proposal to do
importance sampling.
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Robust Analysis

Sampling the Worst Case Distribution

I Method 2: SIR

I Given {ε̄it−1, s it−1})Ni=1:

1. Set s it = f (εit−1, s
i
t−1).

2. For i = 1, . . . ,N:
3. Draw εit ∼ p(εt).

4. Assign weight w i
t = exp

(
−W (xt)

θ

)
.

5. Resample from {εit}Ni=1 with probability ∝ w i
t to obtain {ε̄it}Ni=1.

6. Increment t.

I Even simpler here because no signal extraction problem.

I Note: could draw εit ∼ q(εt) for any proposal q, and use weights
w i
t = p̃(εit)/q(εit).
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Robust Analysis

Detection Error Probability

I The robustness parameter θ can be associated with a detection error
probability relative to the worst-case model, which can be used to discipline
the calibration of θ.

I Given two models, detection error probability is the probability that, given
data simulated from one model, the other model’s likelihood function is
larger (with equal weight on which model generated the data).

I To compute detection error given a true model M0 and an alternative
model M1:

1. Compute the fraction of simulations generated under the true model
for which p(y |M1) > p(y |M0). Call this r0.

2. Compute the fraction of simulations generated under the alternative
model for which p(y |M0) > p(y |M1). Call this r1.

3. Then the detection error probabilty is given by 1
2 (r0 + r1).

I Key ingredient in this procedure: p(y |M).

Presentation: Dan Greenwald Doubts and Variability March 25, 2014 18 / 20



Robust Analysis

Detection Error Probability

I For a given parameter ξ, we are interested in the detection error probability
between p and p̃ (how confident is the agent that the worst-case model is
wrong?).

I Need to calculate the true likelihood p(y |ξ) and the worst-case likelihood
p̃(y |ξ).

I For the true likelihood, we can use the SIR particle filter as before.

I For the worst-case likelihood, need to assume that p̃(yt |xt) = p(yt |xt).

I In this case, we can again use the SIR particle filter.

I The authors choose the proposal density q(xt |xt−1) = p(xt |xt−1), where p is
the probability under the true model.

I Authors also add measurement error, so that
∆ log(Ct+1) = φ+ exp(vt+1)ε1,t+1 + ε3,t+1, which they say is needed to
compute detection error probabilities (why?).
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Robust Analysis
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