Estimating Macroeconomic Models: A Likelihood Approach

J. Fernandez Villaverde and JF. Rubio Ramirez

Presented by Diego Anzoategui

April 21, 2014

Introduction

- Most DSGE models do not imply a likelihood function (or posterior) that can be easily evaluated analytically or numerically.
- One way of dealing with this problem is to linearize the model and get an approximation to the likelihood.
- However, there are contexts in which a linearization can generate considerable approximation errors.
- This errors accumulate period by period: the longer the sample, the larger the error.

Introduction

- This paper presents one way of evaluating the likelihood (or posterior kernel) of non-linear and/or non-normal macroeconomic models:
 Particle Filter (PF).
- General idea:
 - For a given set of parameters, solve the equilibrium of the model using any non-linear solution method;
 - With the solution in hand, construct a state space representation (define the state and measurement equations);
 - Use particle filter to evaluate the likelihood function (posterior kernel) of the model.
 - Find estimates of parameters through ML or simulating the posterior using a MCMC routine.

Model

• Assume that we have a model with the following state-space representation.

$$S_t = f\left(S_{t-1}, W_t; \gamma\right)$$

$$Y_t = g(S_t, V_t; \gamma)$$

where S_t are the states, Y_t are observables, and W_t and V_t are shocks that are independent from each other.

• Note that most macroeconomic models do not admit closed-form solutions for functions f and g. The PF only requires a numerical procedure to approximate them.

Likelihood function

• We want $p(\mathcal{Y}^T; \gamma)$. where \mathcal{Y}_t denotes a realization of Y_t and $\mathcal{Y}^T = \{\mathcal{Y}_t\}_{t=1}^T$. Using the prediction error decomposition,

$$p\left(\mathcal{Y}^{T};\gamma\right) = \prod_{t=1}^{T} p\left(\mathcal{Y}_{t} | \mathcal{Y}^{t-1};\gamma\right)$$

Note the following,

$$p(\mathcal{Y}_t|\mathcal{Y}^{t-1};\gamma) = \int p(\mathcal{Y}_t, S_t|\mathcal{Y}^{t-1};\gamma) dS_t$$
$$= \int p(\mathcal{Y}_t|S_t;\gamma) p(S_t|\mathcal{Y}^{t-1};\gamma) dS_t$$

Assumption 1

There exists a partition of $\{W_t\}$ into two sequences $\{W_{1,t}\}$ and $\{W_{2,t}\}$, such that $W_t = (W_{1,t}, W_{2,t})$ and $\dim(W_{2,t}) + \dim(V_t) \ge \dim(Y_t)$ for all t.

Assumption 1

There exists a partition of $\{W_t\}$ into two sequences $\{W_{1,t}\}$ and $\{W_{2,t}\}$, such that $W_t = (W_{1,t}, W_{2,t})$ and $\dim(W_{2,t}) + \dim(V_t) \ge \dim(Y_t)$ for all t.

Assumption 1 (for these slides)

 $dim(V_t) \ge dim(Y_t)$ for all t, which implies $W_{1,t} = W_t$

Assumption 2

For all γ , S^t realization $s^t = \{s_0, s_1, ..., s_t\}$ and t, the system,

$$\mathcal{Y}_m = g(s_m, V_m; \gamma)$$
 for $m = 1, 2, .., t$

has a unique solution $\nu^t(s^t, \mathcal{Y}^t; \gamma)$, where $\nu_t = g^{-1}(s_t, \mathcal{Y}_t; \gamma)$.

Assumption 2

For all γ , S^t realization $s^t = \{s_0, s_1, .., s_t\}$ and t, the system,

$$\mathcal{Y}_m = g(s_m, V_m; \gamma)$$
 for $m = 1, 2, ..., t$

has a unique solution $\nu^t(s^t, \mathcal{Y}^t; \gamma)$, where $\nu_t = g^{-1}(s_t, \mathcal{Y}_t; \gamma)$.

Note that this implies that we can evaluate p (𝔅_t|𝔅_t; γ) by a change of variables.

$$p(\mathcal{Y}_t|S_t;\gamma) = p(\nu_t;\gamma)|J_g|^{-1}$$

Assumption 3

For all $\gamma \in \Gamma$, s^t , and t, the model gives some positive probability to the data \mathcal{Y}^T , that is,

 $p(\mathcal{Y}_t|s_t;\gamma) > 0$

for all $\gamma \in \Gamma$, s^t , and t.

• Assumption 1 and 3 are jointly a sufficient condition for the model not to be stochastically singular.

$$p\left(\mathcal{Y}_{t}|\mathcal{Y}^{t-1};\gamma\right) = \int p\left(\mathcal{Y}_{t}|S_{t};\gamma\right) p\left(S_{t}|\mathcal{Y}^{t-1};\gamma\right) dS_{t}$$

- By Assumption 2, $p(\mathcal{Y}_t|S_t;\gamma)$ is easy to evaluate.
- Hence, conditional on having N evenly weighted draws $\{\hat{s}_{t|t-1}^{i}\}_{i=1}^{N}$ from $p(S_t|\mathcal{Y}^{t-1};\gamma)$,

$$p(\mathcal{Y}_t|\mathcal{Y}^{t-1}) \simeq \frac{1}{N} \sum_{i=1}^{N} p(\mathcal{Y}_t|\hat{s}_{t|t-1}^i;\gamma)$$

• A particle filter specifies a way of getting these draws (or particles) $\hat{s}^i_{t|t-1}$.

$$p\left(\mathcal{Y}_{t}|\mathcal{Y}^{t-1};\gamma\right) = \int p\left(\mathcal{Y}_{t}|S_{t};\gamma\right) p\left(S_{t}|\mathcal{Y}^{t-1};\gamma\right) dS_{t}$$

- By Assumption 2, $p(\mathcal{Y}_t|S_t;\gamma)$ is easy to evaluate.
- Hence, conditional on having N evenly weighted draws $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ from $p(S_t|\mathcal{Y}^{t-1};\gamma)$,

$$p(\mathcal{Y}_t|\mathcal{Y}^{t-1}) \simeq \frac{1}{N} \sum_{i=1}^{N} p(\mathcal{Y}_t|\hat{s}_{t|t-1}^i;\gamma)$$

• A particle filter specifies a way of getting these draws (or particles) $\hat{s}^i_{t|t-1}$.

$$p\left(\mathcal{Y}_{t}|\mathcal{Y}^{t-1};\gamma\right) = \int p\left(\mathcal{Y}_{t}|S_{t};\gamma\right) p\left(S_{t}|\mathcal{Y}^{t-1};\gamma\right) dS_{t}$$

- By Assumption 2, $p(\mathcal{Y}_t|S_t;\gamma)$ is easy to evaluate.
- Hence, conditional on having N evenly weighted draws $\{\hat{s}_{t|t-1}^{i}\}_{i=1}^{N}$ from $p(S_t|\mathcal{Y}^{t-1};\gamma)$,

$$p(\mathcal{Y}_t|\mathcal{Y}^{t-1}) \simeq \frac{1}{N} \sum_{i=1}^{N} p(\mathcal{Y}_t|\hat{s}_{t|t-1}^i;\gamma)$$

• A particle filter specifies a way of getting these draws (or particles) $\hat{s}^i_{t|t-1}$.

- We want draws from $p(S_t|\mathcal{Y}^{t-1};\gamma)$ for every t.
- Notation. Let $\{\hat{s}_{t-1}^i\}_{i=1}^N$ be a sequence of N iid draws from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma)$. Let $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ be a sequence of draws from $p(S_t|\mathcal{Y}^{t-1};\gamma)$.
- The filter in this paper is a sampling/importance resampling (SIR) algorithm.

- It consists of the following steps,
- Step 0 Initialization. Set t = 1, sample $\{\hat{s}_0^i\}_{i=1}^N$ from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma) = p(S_0;\gamma)$.
- Step 1 **Prediction**. Sample $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ using the state equation and the sample $\{\hat{s}_{t-1}^i\}_{i=1}^N$.
- Step 2 **Filtering**. Assign to each draw $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ a weight q_i^t (to be defined).
- Step 3 **Sampling**. Sample N times from $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ with replacement and probabilities $\{q_t^i\}_{i=1}^N$. Call the new sample $\{\hat{s}_t^i\}_{i=1}^N$: they are draws from $p(S_t|\mathcal{Y}^t;\gamma)$. Go to step 1 if t < T and set t=t+1.

- It consists of the following steps,
- Step 0 Initialization. Set t = 1, sample $\{\hat{s}_0^i\}_{i=1}^N$ from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma) = p(S_0;\gamma)$.
- Step 1 **Prediction**. Sample $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ using the state equation and the sample $\{\hat{s}_{t-1}^i\}_{i=1}^N$.
- Step 2 **Filtering**. Assign to each draw $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ a weight q_i^t (to be defined).
- Step 3 **Sampling**. Sample N times from $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ with replacement and probabilities $\{q_t^i\}_{i=1}^N$. Call the new sample $\{\hat{s}_t^i\}_{i=1}^N$: they are draws from $p(S_t|\mathcal{Y}^t;\gamma)$. Go to step 1 if t < T and set t=t+1.

- It consists of the following steps,
- Step 0 Initialization. Set t = 1, sample $\{\hat{s}_0^i\}_{i=1}^N$ from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma) = p(S_0;\gamma)$.
- Step 1 **Prediction**. Sample $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ using the state equation and the sample $\{\hat{s}_{t-1}^i\}_{i=1}^N$.

Step 2 **Filtering**. Assign to each draw $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ a weight q_i^t (to be defined).

Step 3 **Sampling**. Sample N times from $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ with replacement and probabilities $\{q_i^t\}_{i=1}^N$. Call the new sample $\{\hat{s}_t^i\}_{i=1}^N$: they are draws from $p(S_t|\mathcal{Y}^t;\gamma)$. Go to step 1 if t < T and set t=t+1.

- It consists of the following steps,
- Step 0 Initialization. Set t = 1, sample $\{\hat{s}_0^i\}_{i=1}^N$ from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma) = p(S_0;\gamma)$.
- Step 1 **Prediction**. Sample $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ using the state equation and the sample $\{\hat{s}_{t-1}^i\}_{i=1}^N$.
- Step 2 **Filtering**. Assign to each draw $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ a weight q_i^t (to be defined).
- Step 3 **Sampling**. Sample N times from $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ with replacement and probabilities $\{q_i^t\}_{i=1}^N$. Call the new sample $\{\hat{s}_t^i\}_{i=1}^N$: they are draws from $p(S_t|\mathcal{Y}^t;\gamma)$. Go to step 1 if t < T and set t=t+1.

- It consists of the following steps,
- Step 0 Initialization. Set t = 1, sample $\{\hat{s}_0^i\}_{i=1}^N$ from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma) = p(S_0;\gamma)$.
- Step 1 **Prediction**. Sample $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ using the state equation and the sample $\{\hat{s}_{t-1}^i\}_{i=1}^N$.
- Step 2 **Filtering**. Assign to each draw $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ a weight q_i^t (to be defined).
- Step 3 **Sampling**. Sample N times from $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ with replacement and probabilities $\{q_i^t\}_{i=1}^N$. Call the new sample $\{\hat{s}_t^i\}_{i=1}^N$: they are draws from $p(S_t|\mathcal{Y}^t;\gamma)$. Go to step 1 if t < T and set t=t+1.

Step 1: Prediction

- We start this step with a sample $\{\hat{s}_{t-1}^i\}_{i=1}^N$ from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma)$
- It is easy to get a sample $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$.
- Let ω_t^i be a draw from W_t 's distribution. Then, a draw $\hat{\mathbf{s}}_{t|t-1}^i$ is defined by,

$$\hat{s}_{t|t-1}^i = f(\hat{s}_{t-1}^i, \omega_t^i)$$

• $\{\hat{s}_{t|t-1}^{i}\}_{i=1}^{N}$ is a sample from $p(S_t|\mathcal{Y}^{t-1};\gamma)$. Remember, $p(S_t|\mathcal{Y}^{t-1};\gamma) = \int p(S_t|S_{t-1};\gamma)p(S_{t-1}|\mathcal{Y}^{t-1};\gamma)dS_{t-1}$

Step 2: Filtering

- We have a sample $\{\hat{s}_{t|t-1}^{i}\}_{i=1}^{N}$ from $p(S_t|\mathcal{Y}^{t-1};\gamma)$ from the previous step.
- The aim of step 2 and 3 is to draw a sample $\{\hat{s}_t^i\}_{i=1}^N$ from $p(S_t|\mathcal{Y}^t;\gamma)$.
- By Bayes Law,

$$p(S_t|\mathcal{Y}^t;\gamma) \propto p(S_t|\mathcal{Y}^{t-1};\gamma)p(\mathcal{Y}_t|S_t,\mathcal{Y}^{t-1};\gamma)$$

• Hence, drawing a sample from $p(S_t | \mathcal{Y}^t; \gamma)$ is similar to drawing from $p(S_t | \mathcal{Y}^{t-1}; \gamma)$ but using importance weights proportional to $p(\mathcal{Y}_t | S_t, \mathcal{Y}^{t-1}; \gamma)$.

Step 2: Filtering

• Note the following,

$$p(S_t|\mathcal{Y}^t;\gamma) = \frac{p(S_t|\mathcal{Y}^t;\gamma)}{p(S_t|\mathcal{Y}^{t-1};\gamma)} p(S_t|\mathcal{Y}^{t-1};\gamma)$$

And we also know that,

$$\frac{p(S_t|\mathcal{Y}^t;\gamma)}{p(S_t|\mathcal{Y}^{t-1};\gamma)} \propto p(\mathcal{Y}_t|S_t,\mathcal{Y}^{t-1};\gamma)$$

Step 2: Filtering

- But we already have a sample from $p(S_t | \mathcal{Y}^{t-1}; \gamma)$ which came from step 1: $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$.
- We can easily compute the weights proportional to $p(\mathcal{Y}_t|S_t, \mathcal{Y}^{t-1}; \gamma)$.

$$q_t^i = \frac{p(\mathcal{Y}_t | \hat{s}_{t|t-1}^i, \mathcal{Y}^{t-1}; \gamma)}{\sum_{i=1}^{N} p(\mathcal{Y}_t | \hat{s}_{t|t-1}^i, \mathcal{Y}^{t-1}; \gamma)}$$

• Next step applies the computed weights to get a sample from $p(S_t | \mathcal{Y}^t; \gamma)$.

Step 3: Sampling

• Rubin (1988) proposed the method applied in this step to draw from $p(S_t | \mathcal{Y}^t; \gamma)$ using weights q_t^i .

Corollary 1

Given a draw $\{\hat{s}_{t|t-1}^{i}\}_{i=1}^{N}$, let the sequence $\{\tilde{s}^{i}\}_{i=1}^{N}$ be a draw with replacement from $\{\hat{s}_{t|t-1}^{i}\}_{i=1}^{N}$ where q_{t}^{i} is the probability of $\hat{s}_{t|t-1}^{i}$ being drawn for all *i*. Then $\{\tilde{s}^{i}\}_{i=1}^{N}$ is a draw from $p(S_{t}|\mathcal{Y}^{t};\gamma)$.

- Can use multinomial resampler to get $\{\tilde{s}^i\}_{i=1}^N = \{\hat{s}^i_t\}_{i=1}^N$.
- With $\{\hat{s}_t^i\}_{i=1}^N$ move to Step 1 again, get $\{\hat{s}_{t+1|t}^i\}_{i=1}^N$, and repeat until t = T.

• It consists of the following steps,

Step 0 Initialization. Set t = 1, sample $\{\hat{s}_0^i\}_{i=1}^N$ from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma) = p(S_0;\gamma)$.

- It consists of the following steps,
- Step 0 Initialization. Set t = 1, sample $\{\hat{s}_0^i\}_{i=1}^N$ from $p(S_{t-1}|\mathcal{Y}^{t-1};\gamma) = p(S_0;\gamma)$.
- Step 1 **Prediction**. Sample $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ using the state equation and the sample $\{\hat{s}_{t-1}^i\}_{i=1}^N$.
- Step 2 **Filtering**. Assign to each draw $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ a weight q_i^t .
- Step 3 **Sampling**. Sample N times from $\{\hat{s}_{t|t-1}^i\}_{i=1}^N$ with replacement and probabilities $\{q_i^t\}_{i=1}^N$. Call the new sample $\{\hat{s}_t^i\}_{i=1}^N$: they are draws from $p(S_t|\mathcal{Y}^t;\gamma)$. Go to step 1 if t < T and set t=t+1.

Computing the Likelihood

- After this process we end up with $\{\{\hat{s}_{t|t-1}^i\}_{i=1}^N\}_{t=0}^T$.
- It is easy to estimate the likelihood,

$$p(\mathcal{Y}^T|\gamma) \simeq \prod_{t=0}^T \frac{1}{N} \sum_{i=1}^N p(\mathcal{Y}_t|\hat{s}_{t|t-1}^i;\gamma)$$

Pitfalls

- The process is easy and fast.
- However, it has some problems.
 - Sample impoverishment or weight degeneracy: the sampling step reduces the effective sample size.
 - Blind proposal. Step 1 ignores information on S_t contained in †_t. This could be inefficient: we might potentially need many blind proposals to be in the right part of the likelihood/posterior.
- Good idea to start with a high N.
- Might want to improve blind proposals through an important sampler (Pitt and Shephard 2001).

Estimation: MLE

• Follow the next steps to compute the MLE estimator.

Step 0 Initialization: Set i = 0 and an initial γ_i . Set i=i+1

Step 1 Solve the model: for γ_i and compute $f(.,.;\gamma_i)$ and $g(.,.;\gamma_i)$.

- Step 2 Evaluating the Likelihood: using the PF compute $p(\mathcal{Y}^T; \gamma_i)$ and get γ_{i+1} from a maximization routine.
- Step 3 Stopping rule: If $||p(\mathcal{Y}^T; \gamma_i) p(\mathcal{Y}^T; \gamma_{i+1})|| > \xi$ set i = i + 1 and go to step 1.

- We need twice differentiability to: (i) be able to get the Hessian that is actually related to $var(\hat{\gamma}_{MLE})$, and (ii) use a gradient based method to do the maximization.
- Lack of differentiability is likely.
- They avoid the second problem by using simulated annealing.

Estimation: MCMC

- Follow the next steps to compute the posterior distribution: $\pi(\gamma|\mathcal{Y}^T) \propto p(\mathcal{Y}^T|\gamma)\pi(\gamma).$
- Step 0 Initialization: Set i = 0 and an initial γ_i . Solve the model for γ_i and compute $f(.,.;\gamma_i)$ and $g(.,.;\gamma_i)$. Evaluate the prior $\pi(\gamma_i)$ and approximate $p(\mathcal{Y}^T;\gamma_i)$. Set i=i+1.

Step 1 Proposal draw: Get a draw γ_i^* from a proposal density $q(\gamma_{i-1}, \gamma_i^*)$.

Step 2 Solve the model for γ_i^* and compute $f(.,.;\gamma_i^*)$ and $g(.,.;\gamma_i^*)$.

Step 3 Evaluating the proposal. Get $\pi(\gamma_i^*)$ and $p(\mathcal{Y}^T; \gamma_i^*)$.

Step 4 Accept/Reject. Draw χ from U[0,1]. If $\chi \leq \frac{p(\mathcal{Y}^T;\gamma_i^*)\pi(\gamma_i^*)}{p(\mathcal{Y}^T;\gamma_{i-1})\pi(\gamma_{i-1})}$ set $\gamma_i = \gamma_i^*$, otherwise $\gamma_i = \gamma_{i-1}$. Set i=i+1 and go to step 1.

Computation

- The authors estimate a model with 8 states.
- Using PF with 80,000 particles, each likelihood evaluation takes 12 sec.
- Kalman filter takes a fraction of a second.