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Introduction

Most DSGE models do not imply a likelihood function (or posterior)
that can be easily evaluated analytically or numerically.

One way of dealing with this problem is to linearize the model and get
an approximation to the likelihood.

However, there are contexts in which a linearization can generate
considerable approximation errors.

This errors accumulate period by period: the longer the sample, the
larger the error.
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Introduction

This paper presents one way of evaluating the likelihood (or posterior
kernel) of non-linear and/or non-normal macroeconomic models:
Particle Filter (PF).

General idea:
1 For a given set of parameters, solve the equilibrium of the model using

any non-linear solution method;
2 With the solution in hand, construct a state space representation

(define the state and measurement equations);
3 Use particle filter to evaluate the likelihood function (posterior kernel)

of the model.
4 Find estimates of parameters through ML or simulating the posterior

using a MCMC routine.
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Model

Assume that we have a model with the following state-space
representation.

St = f (St−1,Wt ; γ)

Yt = g (St ,Vt ; γ)

where St are the states, Yt are observables, and Wt and Vt are
shocks that are independent from each other.

Note that most macroeconomic models do not admit closed-form
solutions for functions f and g . The PF only requires a numerical
procedure to approximate them.
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Likelihood function

We want p
(
YT ; γ

)
. where Yt denotes a realization of Yt and

YT = {Yt}Tt=1. Using the prediction error decomposition,

p
(
YT ; γ

)
=

T∏
t=1

p
(
Yt |Yt−1; γ

)
Note the following,

p
(
Yt |Yt−1; γ

)
=

∫
p
(
Yt ,St |Yt−1; γ

)
dSt

=

∫
p (Yt |St ; γ) p

(
St |Yt−1; γ

)
dSt
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Assumptions

Assumption 1

There exists a partition of {Wt} into two sequences {W1,t} and {W2,t},
such that Wt = (W1,t ,W2,t) and dim(W2,t) + dim(Vt) ≥ dim(Yt) for all t.

Assumption 1 (for these slides)

dim(Vt) ≥ dim(Yt) for all t, which implies W1,t = Wt
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Assumptions

Assumption 2

For all γ, S t realization st = {s0, s1, .., st} and t, the system,

Ym = g (sm,Vm; γ) for m = 1, 2, .., t

has a unique solution νt(st ,Yt ; γ), where νt = g−1(st ,Yt ; γ).

Note that this implies that we can evaluate p (Yt |St ; γ) by a change
of variables.

p (Yt |St ; γ) = p(νt ; γ)|Jg |−1
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Assumptions

Assumption 3

For all γ ∈ Γ, st , and t, the model gives some positive probability to the
data YT ,that is,

p (Yt |st ; γ) > 0

for all γ ∈ Γ, st , and t.

Assumption 1 and 3 are jointly a sufficient condition for the model
not to be stochastically singular.
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A particle filter

p
(
Yt |Yt−1; γ

)
=

∫
p (Yt |St ; γ) p

(
St |Yt−1; γ

)
dSt

By Assumption 2, p (Yt |St ; γ) is easy to evaluate.

Hence, conditional on having N evenly weighted draws {ŝ it|t−1}
N
i=1

from p
(
St |Yt−1; γ

)
,

p(Yt |Yt−1) ' 1

N

N∑
i=1

p(Yt |ŝ it|t−1; γ)

A particle filter specifies a way of getting these draws (or particles)
ŝ it|t−1.
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A particle filter

We want draws from p
(
St |Yt−1; γ

)
for every t.

Notation.
Let {ŝ it−1}Ni=1 be a sequence of N iid draws from p

(
St−1|Yt−1; γ

)
.

Let {ŝ it|t−1}
N
i=1 be a sequence of draws from p

(
St |Yt−1; γ

)
.

The filter in this paper is a sampling/importance resampling (SIR)
algorithm.
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A particle filter

It consists of the following steps,

Step 0 Initialization. Set t = 1, sample {ŝ i0}Ni=1 from
p(St−1|Y t−1; γ) = p(S0; γ).

Step 1 Prediction. Sample {ŝ it|t−1}
N
i=1 using the state equation and the

sample {ŝ it−1}Ni=1.

Step 2 Filtering. Assign to each draw {ŝ it|t−1}
N
i=1 a weight qti (to be defined).

Step 3 Sampling. Sample N times from {ŝ it|t−1}
N
i=1 with replacement and

probabilities {qti }Ni=1. Call the new sample {ŝ it}Ni=1: they are draws
from p(St |Y t ; γ). Go to step 1 if t < T and set t=t+1.
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sample {ŝ it−1}Ni=1.

Step 2 Filtering. Assign to each draw {ŝ it|t−1}
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Step 1: Prediction

We start this step with a sample {ŝ it−1}Ni=1 from p(St−1|Yt−1; γ)

It is easy to get a sample {ŝ it|t−1}
N
i=1.

Let ωi
t be a draw from Wt ’s distribution. Then, a draw ŝ it|t−1 is

defined by,

ŝ it|t−1 = f (ŝ it−1, ω
i
t)

{ŝ it|t−1}
N
i=1 is a sample from p(St |Yt−1; γ). Remember,

p(St |Yt−1; γ) =

∫
p(St |St−1; γ)p(St−1|Yt−1; γ)dSt−1
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Step 2: Filtering

We have a sample {ŝ it|t−1}
N
i=1 from p(St |Yt−1; γ) from the previous

step.

The aim of step 2 and 3 is to draw a sample {ŝ it}Ni=1 from p(St |Yt ; γ).

By Bayes Law,

p(St |Yt ; γ) ∝ p(St |Yt−1; γ)p(Yt |St ,Yt−1; γ)

Hence, drawing a sample from p(St |Yt ; γ) is similar to drawing from
p(St |Yt−1; γ) but using importance weights proportional to
p(Yt |St ,Yt−1; γ).
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Step 2: Filtering

Note the following,

p(St |Yt ; γ) =
p(St |Yt ; γ)

p(St |Yt−1; γ)
p(St |Yt−1; γ)

And we also know that,

p(St |Yt ; γ)

p(St |Yt−1; γ)
∝ p(Yt |St ,Yt−1; γ)
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Step 2: Filtering

But we already have a sample from p(St |Yt−1; γ) which came from
step 1: {ŝ it|t−1}

N
i=1.

We can easily compute the weights proportional to p(Yt |St ,Yt−1; γ).

qit =
p(Yt |ŝ it|t−1,Y

t−1; γ)∑N
i=1 p(Yt |ŝ it|t−1,Yt−1; γ)

Next step applies the computed weights to get a sample from
p(St |Yt ; γ).
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Step 3: Sampling

Rubin (1988) proposed the method applied in this step to draw from
p(St |Yt ; γ) using weights qit .

Corollary 1

Given a draw {ŝ it|t−1}
N
i=1, let the sequence {s̃ i}Ni=1 be a draw with

replacement from {ŝ it|t−1}
N
i=1 where qit is the probability of ŝ it|t−1 being

drawn for all i . Then {s̃ i}Ni=1 is a draw from p(St |Yt ; γ).

Can use multinomial resampler to get {s̃ i}Ni=1 = {ŝ it}Ni=1.

With {ŝ it}Ni=1 move to Step 1 again, get {ŝ it+1|t}
N
i=1, and repeat until

t = T .
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N
i=1 using the state equation and the
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Computing the Likelihood

After this process we end up with {{ŝ it|t−1}
N
i=1}Tt=0.

It is easy to estimate the likelihood,

p(YT |γ) '
T∏
t=0

1

N

N∑
i=1

p(Yt |ŝ it|t−1; γ)
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Pitfalls

The process is easy and fast.

However, it has some problems.
1 Sample impoverishment or weight degeneracy: the sampling step

reduces the effective sample size.
2 Blind proposal. Step 1 ignores information on St contained in †t . This

could be inefficient: we might potentially need many blind proposals to
be in the right part of the likelihood/posterior.

Good idea to start with a high N.

Might want to improve blind proposals through an important sampler
(Pitt and Shephard 2001).
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Estimation: MLE

Follow the next steps to compute the MLE estimator.

Step 0 Initialization: Set i = 0 and an initial γi . Set i=i+1

Step 1 Solve the model: for γi and compute f (., .; γi ) and g(., .; γi ).

Step 2 Evaluating the Likelihood: using the PF compute p(YT ; γi ) and get
γi+1 from a maximization routine.

Step 3 Stopping rule: If ‖p(YT ; γi )− p(YT ; γi+1)‖> ξ set i = i + 1 and go to
step 1.
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Estimation: MLE

We need twice differentiability to: (i) be able to get the Hessian that
is actually related to var(γ̂MLE ), and (ii) use a gradient based method
to do the maximization.

Lack of differentiability is likely.

They avoid the second problem by using simulated annealing.
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Estimation: MCMC

Follow the next steps to compute the posterior distribution:
π(γ|YT ) ∝ p(YT |γ)π(γ).

Step 0 Initialization: Set i = 0 and an initial γi .Solve the model for γi and
compute f (., .; γi ) and g(., .; γi ). Evaluate the prior π(γi ) and
approximate p(YT ; γi ). Set i=i+1.

Step 1 Proposal draw: Get a draw γ∗i from a proposal density q(γi−1, γ
∗
i ).

Step 2 Solve the model for γ∗i and compute f (., .; γ∗i ) and g(., .; γ∗i ).

Step 3 Evaluating the proposal. Get π(γ∗i ) and p(YT ; γ∗i ).

Step 4 Accept/Reject. Draw χ from U[0, 1]. If χ ≤ p(YT ;γ∗
i )π(γ

∗
i )

p(YT ;γi−1)π(γi−1)
set

γi = γ∗i , otherwise γi = γi−1. Set i=i+1 and go to step 1.
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Computation

The authors estimate a model with 8 states.

Using PF with 80, 000 particles, each likelihood evaluation takes 12
sec.

Kalman filter takes a fraction of a second.
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