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CONTENT

Economic problem

• How are asset prices determined in an equilibrium model?
• How is equilibrium valuation linked to absence of arbitrage?
• What are the short- and long-run implications for valuation?
• How can we empirically verify the asset pricing implications of an equilibrium model?

Tools

• Linear algebra and matrix operations, Perron–Frobenius theorem
• Markov chains
• GMM estimation

1/44



LITERATURE

Textbook

• Ljungqvist and Sargent (2020), Chapter 2 (Sections 2.2–2.3, Markov chains), Chapters 14 and 15
(asset pricing).

Generalized method of moments

• Hansen (1982), Hansen (2008).

Asset pricing applications

• Lucas (1978), Hansen and Singleton (1982), Hansen and Singleton (1983), Mehra and Prescott
(1985).

QuantEcon

• Quantitative Economics with Python: Topic 3 (linear algebra), Topic 25 (finite Markov chains),
Topics 74–76 (asset pricing applications in finite state models).

• Advanced Quantitative Economics with Python: Topics 34–35 (more advanced asset pricing
applications).
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PROBLEM SETTING



THE ECONOMY

An infinite-horizon endowment economy (Lucas (1978))

• time is discrete and infinite, t = 0, 1, 2, . . .

• every period t, one of a finite number of states xt ∈ X can be realized
• history of states xt = (x0, x1, . . . , xt), conditional probability P

(
xt|x0

)
• exogenously given aggregate endowment Yt = Y

(
xt
)

A representative utility-maximizing investor (von Neumann and Morgenstern (1947), Savage (1954))

• receives individual endowment yt = y
(
xt
)

• trades a set of N assets with prices Qnt = Qn
(
xt
)
and promised cash flows Gnt = Gn

(
xt
)
,

n = 1, . . . ,n
• subjective beliefs described by probability Pi

(
xt|x0

)
, potentially distinct from P

(
xt|x0

)
• separable utility over consumption u (c) with usual properties and time preference β
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INVESTOR’S PROBLEM

For simplicity restrict attention to just one asset.

Investor chooses state-dependent consumption ct = c
(
xt
)
and quantity of asset bt = b

(
xt
)

max
{ct,bt}∞t=0

∞∑
t=0

∑
xt
Pi
(
xt|x0

)
βtu (ct)

subject to the sequence of budget constraints, t = 0, 1, 2, . . .

ct(xt) + bt(xt)Q(xt) = bt−1(xt−1)
[
Q(xt) + G(xt)

]
+ y(xt)

and no-Ponzi conditions that prevent asymptotic overaccumulation of financial liabilities.

Measurability restrictions

• choices made at time t and constraints imposed at time t can only depend on information xt

observed up to time t

Observations

• Problem depends on subjective belief Pi
(
xt|x0

)
, not on the data-generating probability P

(
xt|x0

)
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LANGRANGIAN AND OPTIMALITY CONDITIONS

Impose Lagrange multiplier Pi
(
xt|x0

)
βtµt

(
xt
)
on the time t constraint

L (x0) =
∞∑
t=0

∑
xt
Pi
(
xt|x0

)
βtu (ct) +

+
∞∑
t=0

∑
xt
Pi
(
xt|x0

)
βtµt(xt)

[
bt−1(xt−1)

[
Q(xt) + G(xt)

]
+ y(xt)− ct(xt)− bt(xt)Q(xt)

]

Optimality conditions[
ct(xt)

]
: u′

(
ct(xt)

)
= µt(xt)[

bt(xt)
]

: Pi
(
xt|x0

)
βtµt(xt)Q(xt) =

∑
xt+1|xt

Pi
(
xt+1|x0

)
βt+1µt+1(xt+1)

[
Q(xt+1) + G(xt+1)

]
plus transversality conditions.
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EULER EQUATIONS

Combining the optimality conditions and noticing that

Pi
(
xt+1|xt

)
=
Pi
(
xt+1|x0

)
Pi (xt|x0)

we obtain the Euler equation

Q(xt) =
∑
xt+1|xt

Pi
(
xt+1|xt

)
β
u′
(
ct+1

(
xt+1

))
u′ (ct (xt))

[
Q(xt+1) + G(xt+1)

]
Dropping arguments, the Euler equation can be written as

Qt = Eit
[
β
u′ (ct+1)

u′ (ct)
(Qt+1 + Gt+1)

]
(1.1)

where Eit [·] is the conditional expectations operator under probability Pi conditional on time-t
information.
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STOCHASTIC DISCOUNT FACTOR

Euler equation (one for each traded asset n = 1, . . . ,N)

Qnt = Eit
[
β
u′ (ct+1)

u′ (ct)︸ ︷︷ ︸
st+1

(
Qnt+1 + Gnt+1

)]

The process St with increments

st+1 =
St+1

St
= β

u′
(
ct+1

(
xt+1

))
u′ (ct (xt))

that represent the marginal rate of substitution between states xt and xt+1 is called the stochastic
discount factor (SDF).

• existence of such a strictly positive SDF is a general property of no-arbitrage markets
• existence of SDF does not require utility-maximizing investors but utility maximization
associates the SDF with investors’ marginal rate of substitution
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EQUILIBRIUM

Assume traded assets are in zero net supply (this is without loss of generality).

A competitive equilibrium in this endowment economy consists of the endowment process Y
(
xt
)
,

cash flows Gn
(
xt
)
, the price processes Qn(xt), and allocations ct

(
xt
)
, bnt

(
xt
)
such that

1. Given prices Qn(xt), cash flows Gn
(
xt
)
, n = 1, . . . ,n, and individual endowment y

(
xt
)
, the

investor chooses consumption ct
(
xt
)
and portfolio allocation bnt

(
xt
)
, n = 1, . . . ,n, that solve

the utility maximization problem;
2. The individual investor is representative

ct(xt) = Ct(xt) y
(
xt
)
= Y(xt),

3. Markets clear:

ct(xt) = y(xt) = Ct(xt) = Y(xt)
bnt (xt) = 0 n = 1, . . . ,N.

Individual and aggregate variables (consumption and endowment) coincide because of the
representative agent assumption (the “little k, big K” analogy, Ljungqvist and Sargent (2020),
Chapters 8 and 13).
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SUBJECTIVE BELIEFS AND RATIONAL EXPECTATIONS

In the definition of the equilibrium

• the dynamics of the state xt and hence aggregate endowment depend on the data-generating
probability measure P

(
xt|x0

)
• given state xt the asset price Q (xt) is computed using recursion (1.1) which depends on the
subjective belief Pi

(
xt|x0

)
• this is a critical distinction

We now impose a rational expectations assumption (Muth (1961), Lucas (1972))

• subjective belief Pi
(
xt|x0

)
is identical to the data-generating measure P

(
xt|x0

)
• we will return to this implications of this assumption later
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TYPES OF ASSETS

Stocks

• cash flow Gt is the dividend flow, ex-dividend price Qt

return Rt+1 =
Qt+1 + Gt+1

Qt
expected return Et [Rt+1]

Bonds

• cash flow Gt are coupons in t+ 1, . . . , t+ T, and principal at time t+ T, bond price Q[T]
t

• T-period zero-coupon bond: only principal Gt+T = 1 at time t+ T

yield to maturity y[T]t = −1

T logQ[T]
t

• one-period risk-free bond: equal to Gt+1 = 1, zero otherwise, implying Qt+1 = 0

risk-free return (rate) Rft+1 =
Qt+1 + Gt+1

Qt
=

1

Qt
=

(
Et
[
St+1

St

])−1
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FUNDAMENTAL VALUE AND BUBBLES

Asset values are derived recursively:

Qt = Et
[
St+1

St
Gt+1

]
+ Et

[
St+1

St
Qt+1

]
= Et

[
St+1

St
Gt+1 +

St+2

St
Gt+1

]
+ Et

[
St+2

St
Qt+2

]
.

Iterating forward

Qt = lim
T→∞

T∑
j=1

Et
[
St+j
St

Gt+j
]

︸ ︷︷ ︸
fundamental value

+ lim
T→∞

Et
[
St+T
St

Qt+T
]

︸ ︷︷ ︸
rational bubble

.

Rational bubbles can emerge in specific models (Bewley (1980), Tirole (1985)) but rational
expectations equilibria put strong discipline on when this can happen (Santos and Woodford (1997)).

• money is one example in which an asset is valuable for other purposes than delivering cash
flows (liquidity purposes, insurance of idiosyncratic risk, intergenerational insurance in OLG
models)
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EMPIRICAL IMPLICATIONS



SOLVING THE MODEL

In order to assess the model implications, we need to specify exogenous components

• endowment process, equal, in equilibrium, to the consumption of representative agent: ct = Yt
• cash flows Gt of traded assets
• preferences of the representative agent: β, u (·)

The model makes predictions for the dynamics of asset prices Qt that can be compared to data.

• in order to fully solve the model, we need to put tractable structure on the dynamics of the
underlying state xt
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PREFERENCE SPECIFICATION

Assume representative investor with constant relative risk aversion (CRRA) preferences

u (c) =
c1−γ − 1

1− γ
, 1 ̸= γ > 0

u (c) = log (c) , γ = 1

Then the SDF is given by
St+1

St
= β

u′ (ct+1)

u′ (ct)
= β

(
ct+1

ct

)−γ

.

• parameters β and γ are to be determined
• consumption growth ct+1/ct can be measured directly in the data
• under the representative agent assumption, ct+1/ct = Ct+1/Ct.
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TESTABLE IMPLICATIONS OF EULER EQUATIONS

Divide Euler equation (1.1) by Qnt to obtain

1 = Et
[
St+1

St
Qnt+1 + Gnt+1

Qnt︸ ︷︷ ︸
Rnt+1

]

• Rnt+1 is the one-period return on asset n

With the CRRA model of preferences, we obtain a set of restrictions

1 = Et

[
β

(
Ct+1

Ct

)−γ

Rnt+1

]
n = 1, . . . ,N (1.2)

• collect data on one-period returns Rnt+1 and aggregate consumption growth Ct+1/Ct
• attempt to find parameters β and γ so that equations (1.2) are satisfied
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EXPECTED RETURNS AND COVARIANCES

Recall the expression for (conditional) covariance of two random variables:

Covt (Xt+1, Yt+1) = Et [Xt+1Yt+1]− Et [Xt+1] Et [Yt+1]

Take a risky return Rnt+1 (e.g., stock return), and the return on a one-period risk-free bond (risk-free
rate), denoted Rft+1, subtract the two Euler equations, and apply the above formula:

0 = Et
[
St+1

St

(
Rnt+1 − Rft+1

)]
= Et

[
St+1

St

]
Et
[
Rnt+1 − Rft+1

]
+ Covt

(
St+1

St
,Rnt+1 − Rft+1

)
Reorganizing,

Et
[
Rnt+1 − Rft+1

]
= −

(
Et
[
St+1

St

])−1

Covt
(
St+1

St
,Rnt+1 − Rft+1

)
.
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INTERPRETATION OF EULER EQUATIONS

Euler equations yield a relationship between expected excess returns and covariances with SDF

Et
[
Rnt+1 − Rft+1

]
= − Rft+1︸︷︷︸

≈ 1

Covt
(
St+1

St
,Rnt+1 − Rft+1

)
.

Recall the CRRA SDF
St+1

St
= β

(
Ct+1

Ct

)−γ

• ‘bad’ states at t+ 1 with low consumption Ct+1 imply high realizations of the SDF (high MRS)
• vice versa for ‘good’ states
• an asset that delivers low excess returns Rnt+1 − Rft+1 in ‘bad’ states and high returns in ‘good’
states will have a negative covariance with the SDF

• such assets are risky: deliver low returns when consumption is valuable
• investors must be compensated for this risk with higher expected returns
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EMPIRICAL IMPLEMENTATION

Euler equations (1.2) have to hold conditionally (with Et [·]) but they can be conditioned down:

0 = E
[
β

(
Ct+1

Ct

)−γ

Rnt+1 − 1

]
n = 1, . . . ,N.

Replace unconditional mean with sample average

• follows from the law of large numbers
• valid when we assume that consumption growth and returns follow stationary processes that
satisfy integrability restrictions (finite moment restrictions)

0 =
1

T

T−1∑
t=0

[
β

(
Ct+1

Ct

)−γ

Rnt+1 − 1

]
n = 1, . . . ,N.
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USING CONDITIONING INFORMATION

Additional restrictions can be obtained using conditioning information.

0 = Et
[
St+1

St
Rnt+1 − 1

]
• conditions from previous slide test whether this relationship holds unconditionally (E [·])
• but what if we are concerned that the conditional equation does not hold?
• then we should be able to predict when it does not hold: denote the predictor variable zt

The variable zt (must be in the time-t information set) is called an instrument.

• multiply Euler equation with zt and apply unconditional expectation

0 = E
[

zt︸︷︷︸
instrument

(
St+1

St
Rnt+1 − 1

)
︸ ︷︷ ︸
Euler equation

error

]

• these unconditional expectations can again be implemented using time-series averages
• zt can for example by a cyclical variable to test systematic violations over the business cycle
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IMPLEMENTATION USING GENERALIZED METHOD OF MOMENTS

Generalized Method of Moments (Hansen (1982)) provides a formal econometric test

• how to find parameters β and γ that yield the best fit to the instrumented Euler equations?
• how to conduct inference using sample data about the validity of the theoretical restrictions?

Imagine instruments zkt , k = 1, . . . K, and returns Rnt+1, n = 1, . . . ,N =⇒ total M moments

• denote the vector of (unknown) parameters θ = (β, γ), data xt+1 = (zt, Ct+1/Ct,Rt+1), and

fm (xt+1; θ) = zkt

(
β

(
Ct+1

Ct

)−γ

Rnt+1 − 1

)
, m = 1, . . . ,M

Denoting f (xt+1; θ) the column vector with elements fm (xt+1; θ) yields the vector moment condition

0 = E [f (xt+1; θ)] .

• asset pricing implementation in Hansen and Singleton (1982).
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GENERALIZED METHOD OF MOMENTS

Denote θ0 the true parameter value, in the sense that it is the unique solution to 0 = E [f (xt+1; θ)].

The solution can be equivalently found by solving

θ0 = min
θ
E [f (xt+1; θ)]

′WE [f (xt+1; θ)] (1.3)

• W is a positive definite weighting matrix, which implies that the right-hand side is strictly
positive whenever E [f (xt+1; θ)] is nonzero

In a finite data sample, we replace the theoretical E [f (xt+1; θ)] with sample average

gT (θ) =
1

T

T−1∑
t=0

f (xt+1; θ)

and solve
θ̂T = min

θ
gT (θ)′WgT (θ) . (1.4)
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CHOICE OF WEIGHTING MATRIX AND INFERENCE

Consider the covariance matrix

V =

∞∑
j=−∞

E
[
f (xt+1; θ0) f (xt+1+j; θ0)

′]

• this is the long-run covariance matrix of the moment conditions

Hansen (1982) shows that in this case

TgT (θ0)′ V−1gT (θ0) → χ2 (M) (1.5)

• moment conditions that have a lot of variability are downweighed in the objective function
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CHOICE OF WEIGHTING MATRIX AND INFERENCE

Choice of the weighting matrix W can in practice be a complex issue.

1. Theoretical V involves an infinite-horizon covariance structure which must be approximated
(Newey and West (1987)).
Fortunately, our time-series setup that uses conditional moments simplifies V:

for j ≥ 1 : E
[
f (xt+1; θ0) f (xt+1+j; θ0)

′] = E
[
f (xt+1; θ0) Et+j

[
f (xt+1+j; θ0)

′]︸ ︷︷ ︸
= 0

]
= 0

so the covariance matrix simplifies to

V = E
[
f (xt+1; θ0) f (xt+1; θ0)

′] ≈ 1

T

T−1∑
t=0

f (xt+1; θ0) f (xt+1; θ0)
′
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CHOICE OF WEIGHTING MATRIX AND INFERENCE

2. The theoretical V is a function of the true parameter θ0, which is a priori unknown.
Hansen et al. (1996) propose a continuously updated estimator

θ̂T = min
θ
gT (θ)′ VT (θ)−1 gT (θ)

where

VT (θ) =
1

T

T−1∑
t=0

f (xt+1; θ) f (xt+1; θ)
′ (1.6)
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CHOICE OF WEIGHTING MATRIX AND INFERENCE

3. A two-step procedure is asymptotically valid as well because V can be replaced by its
consistent estimator. For example:

• compute θ̂T by minimizing (1.4) for some positive definite W
• compute V

(
θ̂T
)
using (1.6)

• evaluate the left-hand-side of (1.5) using θ0 = θ̂T

In principle, we could also use the estimated V
(
θ̂T
)
as a new W in the minimization (1.4) and

obtain a new estimate θ̂T.
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CHOICE OF WEIGHTING MATRIX AND INFERENCE

4. In theory, using V = V (θ0) as the weighting matrix is asymptotically efficient. But there are
obstacles:

• θ0 must be estimated using a finite sample of data, so we can at best use V
(
θ̂T
)
instead

• in practical applications, V
(
θ̂T
)
can be hard to estimate, which may lead to fragility that puts

excessive emphasis on a small number of moments
• this issue is further magnified when misspecifications are present
• asset pricing applications are prone to such fragility
• various aproaches exist how to modify the weighting matrix to deal with these issues

For more discussion on GMM in the time-series context see, for example, Hansen (2001, 2008).
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GMM AND PARTIAL IDENTIFICATION

GMM estimation required very little structure, beyond regularity conditions on the estimator.

• we took consumption and returns as data, and estimated preference parameters
• much of the structure of the model was put aside (probability distributions)
• this approach is called partial identification

The GMM estimation approach also critically relied on rational expectations

• the original Euler equation (1.1) depended on the subjective expectation Eit [·]
• GMM replaced the expectations operators with time-series averages
• but time-series averages approximate expectations operators under the data-generating
measure Et [·]

• rational expectations impose Et [·] = Eit [·]; without this assumption, we would need to impose
other conditions how to link Eit [·] and Et [·]
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NUMERICAL IMPLEMENTATION



MARKOV CHAIN STRUCTURE

We now want to use the model to explicitly solve for asset prices Q (xt) and their dynamics.

In order to do that, we need to put explicit structure on

• the probabilities P
(
xt|x0

)
and Pi

(
xt|x0

)
• mapping from xt to C

(
xt
)

A Markov chain structure is a computationally tractable approach

• the state xt follows a Markov process: P
(
xt+1|xt

)
= P (xt+1|xt)

• growth rates of consumption and cash flows are functions of the Markov state
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MARKOV CHAINS AND TRANSITION PROBABILITIES

A time-invariant finite-state Markov chain xt is characterized by

• a set of states X = {e1, . . . , en} where ei are coordinate vectors
• a transition matrix P with elements

Pij = P (xt+1 = ej|xt = ei)

• a time-0 distribution π0 = P (x0)
• investors endowmed with correct beliefs PI = P, πI0 = π0.

While this is not necessary, it is convenient to assume that P has strictly positive elements.

• then xt has a unique stationary distribution to which xt converges

For more details, see

• Ljungqvist and Sargent (2020), Chapter 2 (Section 2.2)
• QuantEcon https://python.quantecon.org/finite_markov.html
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OPERATIONS WITH MARKOV CHAINS: EVOLUTION OF THE MARGINAL DENSITY

Conditional probability πt,j = P (xt = ej) can be computed as

πt,j = P (xt = ej) =
n∑
i=1

P (xt = ej|xt−1 = ei) P (xt−1 = ei) =
n∑
i=1

Pijπt−1,i = π′
t−1P·j

• in stacked form
π′
t = π′

t−1P

• multiperiod conditional probabilities obtained iteratively

π′
t = π′

t−1P = π
′
t−2P2 = . . . = π

′
0Pt

which also implies that
[
Pt]

ij = (xt = ej|x0 = ei).
• when P has strictly positive elements, then

lim
t→∞

π′
t = lim

t→∞
π

′
0Pt = π′

where π is the unique stationary density, π′ = π′P.
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OPERATIONS WITH MARKOV CHAINS: CONDITIONAL EXPECTATIONS

Let yt = y′xt be a random variable, a function of the Markov chain.

• conditional expectations of xt+1 are given by

E [xt+1|xt = ei] =
n∑
j=1

ejP (xt+1 = ej|xt = ei) =
n∑
j=1

ejPij = P′ei

• conditional expectations of yt+1

E [yt+1|xt = ei] = y′E [xt+1|xt = ei] = y′P′ei = e′iPy

• longer-horizon conditional expectations can be computed iteratively

E [yt+j|xt = ei] = e′iPjy

• asymptotically, we obtain the unconditional expectation

lim
j→∞

E [yt+j|xt = ei] = lim
j→∞

e′iPjy = π′y
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MARKOV STRUCTURE FOR THE STOCHASTIC DISCOUNT FACTOR

Assume that the stochastic discount factor can be written as

log St+1 − log St = gS (xt, xt+1)

• incorporates a large class of models of interest
• denote ΓS the n× n matrix with elements

[ΓS]ij = exp (gS (xt = ei, xt+1 = ej))

CRRA stochastic discount factor

• stationary consumption Ct = C (xt)

[ΓS]ij = β

(
C (xt+1 = ej)
C (xt = ei)

)−γ

• stationary consumption growth

log Ct+1 − log Ct = gC (xt, xt+1)

log St+1 − log St = logβ − γgC (xt, xt+1)
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MARKOV STRUCTURE OF ASSET PRICES

Denote Q[T]
t the time-t price of an asset that pays Gt+T = G (xt+T) at time t+ T.

• an example of a stationary payoff, special case Gt+T = 1 a zero-coupon bond
• asset prices will have Markov structure, Q[T]

t = Q[T] (xt), and can be computed iteratively:

Q[1] (xt) = Eit [exp (gS (xt, xt+1))G (xt+1)]

and, for T = 1, 2, . . .

Q[T+1] (xt) = Eit
[
exp (gS (xt, xt+1))Q[T] (xt+1)

]
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MARKOV STRUCTURE OF ASSET PRICES

Denote the q[T] the vector of state-dependent prices[
q[T]
]
i
= Q[T] (xt = ei)

Using the matrix structure, the recursive equation can be expressed as[
q[T+1]

]
i
= Q[T+1] (xt = ei) =

n∑
j=1

[P]ij [ΓS]ij
[
q[T]
]
j

This can be written in compact form as

q[T+1] = (P ∗ ΓS) q[T]

where P ∗ ΓS is the element-wise multiplication of the two matrices.
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STATIONARY PRICE-DIVIDEND RATIOS

In many models, cash flows can be non-stationary, with stationary growth rates.

To incorporate this, rewrite the Euler equations (1.1) as
Qt
Gt

= Eit
[
St+1

St

(
Qt+1

Gt+1
+ 1

)
Gt+1

Gt

]
(1.7)

Let us assume that we can write

logGt+1 − logGt = gG (xt, xt+1)

[ΓG]ij = exp (gG (xt = ei, xt+1 = ej))

Then we can conclude that the price-dividend ratio is stationary:
Qt
Gt

= q (xt)

• with this guess, the right-hand side in (1.7) is an expectation over xt+1 with conditional
probability that depends on xt

• this validates the conclusion that the left-hand side is only a function of xt
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STATIONARY PRICE-DIVIDEND RATIOS

The matrix implementation is analogous to the case with stationary cash flows.

Denote the q the vector of state-dependent price-dividend ratios

[q]i = q (xt = ei) .

Using the matrix structure, the recursive equation (1.7) can be expressed as

[q]i = q (xt = ei) =
n∑
j=1

[P]ij [ΓS]ij [ΓG]ij
(
[q]j + 1

)
This can be written in compact form as

q = (P ∗ ΓS ∗ ΓG)︸ ︷︷ ︸
= M

(q + 1) . (1.8)

The solution for this equation is the fixed point (assuming M is a stable matrix):

q = (I − M)−1 M1

• can also be obtained by iterations on (1.8) start with any initial guess q0
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EXAMPLE: EQUITY PREMIUM PUZZLE

Mehra and Prescott (1985) construct an endowment economy with a 2-state Markov chain for the
growth rate of aggregate endowment.

• assume rational expectations, P = Pi, with

P =

[
ϕ 1− ϕ

1− ϕ ϕ

]

• assume CRRA utility function and vary the risk aversion parameter γ
• the growth rate of aggregate endowment is given by

ΓC =

[
1 + µ+ δ 1 + µ− δ

1 + µ+ δ 1 + µ− δ

]

state e1 is the high-growth state, state e2 is the low-growth state
• calibrate annual parameters µ = 0.018, δ = 0.036, ϕ = 0.43
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EXAMPLE: EQUITY PREMIUM PUZZLE

Compute the price-dividend ratio on the claim on aggregate endowment (wealth-consumption
ratio) Qt/Ct = q (xt) and compute the ‘equity’ return

Rct+1 =
Qt+1 + Ct+1

Qt
=
q (xt+1) + 1

q (xt)
Ct+1

Ct
=⇒ Rc

ij =
qj + 1

qi
[ΓC]ij

and the risk-free rate

Rft+1 =

(
Et
[
St+1

St

])−1

=⇒ Rf
ij =

([
Pi ∗ ΓS

]
i·

1
)−1

.

The conditional equity premium is the difference between expectations of the two returns:

Et
[
Rct+1 − Rft+1|xt = ei

]
=

2∑
j=1

(
Rc
ij − Rf

ij

)
Pij

and the unconditional premium, under the unconditional distribution π,

E
[
Rct+1 − Rft+1

]
=

2∑
i=1

πi

2∑
j=1

(
Rc
ij − Rf

ij

)
Pij.
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EXAMPLE: EQUITY PREMIUM PUZZLE

Mehra and Prescott (1985) vary parameters β ∈ (0, 1), γ ∈ (0, 10) and compute resulting
combinations of the risk-free rate and the risk premium

• find that the model is vastly inconsistent with data =⇒ equity premium puzzle
• same conclusion reached in Hansen and Singleton (1983)R. Mehra and E.C. Prescott, The equity premium 155 

Averac3e 
IR,sk Premi8 
(percent} 

Re - R ~ 

Aclr~,ssL ble Re~ion 

0 I ~, 3 N (percent) 

Avera~3e R~sk Free Rate 

Fig. 4. Set of admissible average equity risk premia and real returns. 

tion. 5 With a less than ten, we found the results were essentially the same for 
very different consumption processes, provided that the mean and variances of 
growth rates equaled the historically observed values. An advantage of our 
approach is that we can easily test the sensitivity of our results to such 
distributional assumptions. 

The average real return on relatively riskless, short-term securities over the 
1889-1978 period was 0.80 percent. These securities do not correspond per- 
fectly with the real bill, but insofar as unanticipated inflation is negligible 
a n d / o r  uncorrelated with the growth rate x t+  1 conditional upon information 
at time t, the expected real return for the nominal bill will equal R[. Litterman 
(1980), using vector autoregressive analysis, found that the innovation in the 
inflation rate in the post-war period (quarterly data) has standard deviation of 
only one-half of one percent and that his innovation is nearly orthogonal to the 
subsequent path of the real GNP growth rate. Consequently, the average 
realized real return on a nominally denoted short-term bill should be close to 
that which would have prevailed for a real bill if such a security were traded. 
The average real return on the Standard and Poor's 500 Composite Stock 

Sin a private communication, Fischer Black using the Merton (1973) continuous time model 
with investment opportunities constructed an example with a curvature parameter (a) of 55. We 
thank him for the example. 
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FUNDAMENTAL THEOREM OF ASSET PRICING



STOCHASTIC DISCOUNT FACTORS AND ABSENCE OF ARBITRAGE

In the endowment economy, we derived valuation formulas in the form of expected discounted
values of cash flows

• the stochastic discount factor was associated with investor’s marginal rate of substitution

However, the existence of some stochastic discount factor is not restricted to markets with utility
maximizing agents.

• the central link is absence of arbitrage (Harrison and Kreps (1979), Harrison and Pliska (1981),
Kreps (1981))
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TWO-PERIOD MARKET

We restrict attention to a two-period market with K traded securities. There is a single state at time
t and n possible states xt+1 at time t+ 1.

• probability distribution given by an 1× n vector p
• time-t+ 1 cash flows Gkt+1 = Gk (xt+1), k = 1, . . . , K, stacked as rows into a K× n matrix G
• time-t prices Qkt , stacked into a 1× K vector Q

At time t, agent chooses a portfolio θ of the securities (a K× 1 vector).

• time-t+ 1 payoff θ′G, time-t price Qθ.
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ARBITRAGE

Definition 1.1
An arbitrage is a portfolio θ such that either

1. Gθ ∈ R+ \ {0} and Qθ ≤ 0; or
2. Gθ ∈ R+ and Qθ < 0.

In words, an arbitrage is a portfolio that allows to generate a nonnegative payoff with strictly
positive payoffs in some states out of a nonpositive investment, or a nonnegative payoff out of a
strictly negative investment.

• existence of such arbitrages is inconsistent with investor optimization in the equilibrium model
studied earlier
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FUNDAMENTAL THEOREM OF ASSET PRICING

Definition 1.2
A stochastic discount factor st+1 = s (xt+1), represented by an n× 1 vector s, is a strictly positive
random variable such that

Qk =

n∑
j=1

pjsjGkj k = 1, . . . , K

Theorem 1.3 (Fundamental theorem of asset pricing)
A stochastic discount factor exists if and only if there is no arbitrage.
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INTERPRETATION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING

SDF represents marginal valuation of payoffs in alternative states j = 1, . . . ,N

• the valuation formulas

Qk =
n∑
j=1

pjsjGkj

are consistency conditions: prices Q of more complicated payoffs are represented as linear
aggregates of prices of payoffs in individual states

• when there is no arbitrage, prices Q must be consistent in the sense that they allow such
representation

• SDF may not be unique when markets are incomplete, will be unique in complete markets.

Equilibrium in the competitive market guarantees the existence of an SDF

• consequence of the optimal choice of a utility-maximizing investor
• existence of arbitrage would imply that solution to the investor’s problem does not exist =⇒
no equilibrium
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SUMMARY



SUMMARY

The finite-state Markov chain environment served as a laboratory that allowed to

• outline foundations of asset pricing theory
• provide tractable calculations using finite-state Markov chains
• test valuation equations implied by utility-maximizing agents using GMM

Generalizations

• theoretical results carry over to more complicated setups, with continuous state spaces,
continuous time, and more sophisticated underlying structure of the economy

• numerical solutions of such economies often rely on discretizations which translate the model
to a finite-state approximation

• in such approximations, numerical methods based on Markov chains apply again

44/44



APPENDIX



LITERATURE I

Bewley, Truman F. (1980) “The Optimum Quantity of Money,” in Kareken, John H. and Neil Wallace eds. Models in
Monetary Economics: Federal Reserve Bank of Minneapolis, Minneapolis, MN.

Hansen, Lars Peter (1982) “Large Sample Properties of Generalized Method of Moments Estimators,”
Econometrica, 50 (4), 1029–1054.

(2001) “Method of Moments,” in Smelser, Neil J. and Paul B. Baltes eds. International Encyclopedia of the
Social & Behavioral Sciences, 9743–9751: Elsevier.

(2008) “Generalized Method of Moments Estimation,” in Durlauf, Steven N. and Lawrence Blume eds. The
New Palgrave Dictionary of Economics: Palgrave Macmillan, London.

Hansen, Lars Peter, John C. Heaton, and Amir Yaron (1996) “Finite-Sample Properties of Some Alternative GMM
Estimators,” Journal of Business & Economic Statistics, 14 (3), 262–280.

Hansen, Lars Peter and Kenneth J. Singleton (1982) “Generalized Instrumental Variables Estimation of Nonlinear
Rational Expectations Models,” Econometrica, 50 (5), 1269–1286.

(1983) “Stochastic Consumption, Risk Aversion, and the Temporal Behavior of Asset Returns,” Journal of
Political Economy, 91 (2), 249–265.

Harrison, J. Michael and David M. Kreps (1979) “Martingales and Arbitrage in Multiperiod Securities Markets,”
Journal of Economic Theory, 20 (3), 381–408.



LITERATURE II
Harrison, J. Michael and Stanley R. Pliska (1981) “Martingales and Stochastic Integrals in the Theory of
Continuous Trading,” Stochastic Processes and their Applications, 11 (3), 215–260.

Kreps, David M. (1981) “Arbitrage and Equilibrium in Economies with Infinitely Many Commodities,” Journal of
Mathematical Economics, 8 (1), 15–35.

Ljungqvist, Lars and Thomas J. Sargent (2020) “Recursive Macroeconomic Theory,” Unpublished manuscript, draft
of 5th edition.

Lucas, Jr., Robert E. (1972) “Expectations and the Neutrality of Money,” Journal of Economic Theory, 4 (2), 103–124.
(1978) “Asset Prices in an Exchange Economy,” Econometrica, 46 (6), 1429–1445.

Mehra, Rajnish and Edward C. Prescott (1985) “The Equity Premium: A Puzzle,” Journal of Monetary Economics, 15
(2), 145–161.

Muth, John F. (1961) “Rational Expectations and the Theory of Price Movements,” Econometrica, 29 (3), 315–335.
von Neumann, John and Oskar Morgenstern (1947) Theory of Games and Economic Behavior: Princeton
University Press, 2nd edition.

Newey, Whitney K. and Kenneth D. West (1987) “A Simple, Positive Semi-Definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix,” Econometrica, 55 (3), 703–708.

Santos, Manuel S. and Michael Woodford (1997) “Rational Asset Pricing Bubbles,” Econometrica, 65 (1), 19–57.
Savage, Leonard J. (1954) The Foundations of Statistics: Wiley, New York.
Tirole, Jean (1985) “Asset Bubbles and Overlapping Generations,” Econometrica, 53 (5), 1071–1100.


	Problem setting
	Empirical implications
	Numerical implementation
	Fundamental theorem of asset pricing
	Summary
	Appendix
	Appendix


