
TOPIC 2: VALUE FUNCTION ITERATION IN SEARCH PROBLEMS

Jaroslav Borovička
Computational Dynamics (Spring 2023)

New York University



CONTENT

Economic problem

• Worker receives repeated wage offer and decided to accept or continue searching.
• When should the worker accept the offer?
• What does the acceptance decision depend on?

Tools

• Recursification of infinite-horizon problems
• Discretization of continuous-state space problems to a finite grid (global approximation)
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LITERATURE

Textbook

• Ljungqvist and Sargent (2020), Chapter 7 (Sections 7.1–7.4)

Search models

• McCall (1970)

QuantEcon

• Quantitative Economics with Python: Topics 33–39 (the baseline search model and various
extensions)
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PROBLEM SETTING



THE ECONOMY

An infinite-horizon model of job search (McCall (1970))

• time is discrete and infinite, t = 0, 1, 2, . . .

• every period t, an iid wage offer w from distribution F (w) is drawn, with F (0) = 0, F (B) = 1 for
some B > 0

A worker decides to accept or reject the offer, at ∈ {accept, reject}

• when accepts, the worker receives income yt = w forever
• when rejects, the worker receives unemployment benefit yt = c and moves to next period
where a new offer is drawn

• time is discounted at rate β
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WORKER’S PROBLEM

The worker solves the sequence problem

V∗0 = max
{at}∞t=0

E0

[
∞∑
t=0

βtyt

]
(2.1)

where at ∈ {accept, reject} if the worker has not yet accepted any earlier offer, and at ∈ {}
otherwise.

• V∗0 is the value function, assume V∗0 conditions on the initial offer w0

• every decision at is made conditional on the time-t information set, which contains the history
of all offers up to time t, wt = (w0, . . . ,wt)

• E [·] is the mathematical expectations operator

E [w] =
∫ B

0

wdF (w) =
∫ B

0

wf (w)dw.
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INFORMATION SETS, BELIEFS, AND STRATEGIES

Time-t information set based on perfect memory

• the current wage offer wt,
• the history of previously rejected offers (w0,w1, . . . ,wt−1)

.
= wt−1,

• time t, and potentially other observed information.

Beliefs about future offers

• offers are iid with distribution F (w)
• correct beliefs coincide with the data-generating process =⇒ rational expectations

Worker’s strategy

• a complete description of worker’s decisions in every contingency
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RECURSIFYING THE PROBLEM

Recursive formulation utilizes the principle of optimality

V∗0 = max
{at}∞t=0

{
y0 + βE0

[
∞∑
t=1

βt−1yt

]}
= max

a0

{
y0 + β max

{at}∞t=1

E0

[
∞∑
t=1

βt−1yt

]}
(2.2)

= max
a0

{
y0 + βE0

[
max

{at}∞t=1

{
y1 + βE1

[
∞∑
t=2

βt−2yt

]}]}
= max

a0
{y0 + βE0 [V∗1]} .

In order to make the problem tractable, we need to find a representation in which V∗0 and V∗1 have
the same structure.

• find the state that encodes all relevant information for worker’s time-t decision problem
• finding the state is an art (Thomas Sargent)
• here, relevant information can be summarized by the current wage offer

Denote V (w) the value associated with current offer w, before any decision is taken.

6/37



ACCEPT AND REJECT DECISIONS

Accept a wage offer w at time t

• yt+j = w, ∀j ≥ 0, which implies value

Va (w) =
∞∑
t=0

βtw =
w

1− β
.

Reject a wage offer w at time t

• unemployment benefit yt = c, and then draw a next-period w′

c+ β

∫ B

0

V
(
w′)dF (w′) .

The function V (w) is given by

V (w) = max
{accept, reject}

{
Va (w) , c+ β

∫ B

0

V
(
w′)dF (w′)} . (2.3)
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BELLMAN EQUATION

The functional equation characterizing the decision problem is called the Bellman equation:

V (w) = max
{accept, reject}

{
Va (w) , c+ β

∫ B

0

V
(
w′)dF (w′)} (2.4)

• the solution consists of the function V(w) and the decision rule a (w) ∈ {accept, reject}
• V (w) is the fixed point of the Bellman equation
• this is in contrast to the sequence problem (2.2) where the solution {V∗t }∞t=0 and optimal
decisions {a∗t }∞t=0 are stochastic processes that depend on the history of wage draws w

t
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PRINCIPLE OF OPTIMALITY

The recursive representation (2.3) is the foundation of the dynamic programming method

• the validity of this approach is based on the principle of optimality
• this principle, due to Richard Bellman (Bellman (1952, 1957)), breaks down the
infinite-dimensional problem (2.1) into smaller subproblems:

An optimal policy has the property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decision. (Bellman (1957), Chapter III.3)

The equivalence between the value function V∗0 and the fixed point V (w) of the Bellman equation
needs to be shown and requires technical assumptions.

9/37



CHARACTERIZING OPTIMAL POLICY

Value of accepting the offer is linear and increasing in w

Va (w) = w
1− β

Value of rejecting the offer is constant

Q = c+ β

∫ B

0

V
(
w′)dF (w′) . (2.5)

Optimal decision must be in the form of a reservation wage w̄ such that

• worker accepts if w > w̄
• worker rejects if w < w̄
• worker is indifferent between accepting and rejecting at w = w̄
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CHARACTERIZING THE VALUE FUNCTION

This implies that the function V (w) is given by

V (w) =


c+ β

∫ B

0

V
(
w′)dF (w′) =

w̄
1− β

if w ≤ w̄
w

1− β
if w ≥ w̄

(2.6)

The only unknown in the characterization is the reservation wage w̄.

w̄

Q

w

V(w)

accept
reject
V(w)
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UNIQUENESS OF THE SOLUTION

Solution V (w) takes the form (2.6) but there could perhaps be two reservation wages w̄1 and w̄2.

The first line in (2.6) implies

w̄
1− β

= c+ β

∫ w̄

0

w̄
1− β

dF
(
w′)+ β

∫ B

w̄

w′

1− β
dF

(
w′)

= c+ β

∫ B

0

w̄
1− β

dF
(
w′)+ β

1− β

∫ B

w̄

(
w′ − w̄

)
dF

(
w′)

and hence
w̄− c = β

1− β

∫ B

w̄

(
w′ − w̄

)
dF

(
w′) . (2.7)

• left-hand side is the cost of searching one more time when the current offer is w̄
• right-hand side is the net benefit of searching one more time, denote it h (w̄)
• the only unknown is w̄
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PROOF OF UNIQUENESS OF THE SOLUTION

LHS and RHS in (2.7) are equalized for a unique value of w̄.

w̄ B

−c

β
1−β

E[w′]
w− c

h(w)

w
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ANALYTICAL RESULTS

Introspection of equation (2.7) also yields the following associated results:

• w̄ > c as long as F (c) < 1. Option value of waiting: worker rejects some offers higher than c in
order to wait for better future offers.

• w̄ does not depend on the shape of F (w) on [0, w̄). Reservation wage does not depend on the
distribution of offers that get rejected anyway.

• dw̄/dc > 0. An increase in c shifts the curve w− c down, decreasing the cost of searching. This
shifts w̄ to the right. A higher unemployment benefit makes workers pickier.

• dw̄/dβ > 0. An increase in β makes h (w) steeper. Consequently, w̄ shifts to the right. Higher
patience increases the option value of waiting.
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FINITE-HORIZON PROBLEM

We now modify the problem and assume that the economy has a finite horizon.

• time is discrete, t = 0, 1, . . . , T
• if accepting offer w at time t, worker works at wage w until time T, yielding continuation value

Vat (w) =
1− βT−t+1

1− β
w

• the state for the decision problem is (w, t), and value of optimal policy is denoted Vt (w)

Vt (w) = max
{accept, reject}

{
1− βT−t+1

1− β
w, c+ β

∫ B

0

Vt+1

(
w′)dF (w′)} t = 0, . . . , T (2.8)

VT+1 (w) = 0
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CHARACTERIZING THE FINITE-HORIZON PROBLEM

Optimal policy is given by a reservation wage w̄t which now depends explicitly on t.

• This can be shown using steps analogous to the infinite-horizon problem.
• w̄T = c. Any offer better than the unemployment benefit will be accepted in the last period,
since there is no option value of waiting.

• As T→ ∞, we have w̄t → w̄ for every fixed t. When the terminal period is far in the future, the
reservation wage approaches the time-invariant solution.

• The reservation wage w̄t is decreasing in time t. Option value of waiting decreases as the
worker approaches the terminal period T.

These results can be proven analytically, we will show them numerically.
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NUMERICAL IMPLEMENTATION



NUMERICAL SOLUTION

We implement a range of numerical methods that help us find the model solution.

1. Numerical evaluation of integrals
· needed to evaluate the expectation operator

2. Solving the reservation wage equation

w̄− c = β

1− β

∫ B

w̄

(
w′ − w̄

)
dF

(
w′)

· root finding
· using the contraction mapping property to implement an iteration scheme

3. Value function iteration

Vn+1 (w) = max
{accept, reject}

{
w

1− β
, c+ β

∫ B

0

Vn
(
w′)dF (w′)}

· backward induction
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DISCRETIZATION OF THE STATE SPACE

The model involves a continuous state space. Numerical implementation requires discretization.

• replace [0,B] with a grid of nodes wi, i = 0, . . . I, such that 0 = w0 < w1 < . . . < wI = B
• an equidistant grid that splits [0,B] into I subintervals of length B/I, such that wi = iB/I

• replace the distribution of wage offers F (w) on [0,B] with a discrete distribution f̂i .
= f̂

(
wi
)
on

nodes wi that approximates F (w), for example,

f̂i =



F
(
1

2

(
w1 + w0)) i = 0

F
(
1

2

(
wi+1 + wi

))
− F

(
1

2

(
wi + wi−1

))
0 < i < I

1− F
(
1

2

(
wI + wI−1

))
i = I

(2.9)

• concentrates continuous density f (w) into nearest mass points on the grid
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QUADRATURE METHODS

Using the approximation (2.9), the expectations operator is approximated as

E [g (w)] =
∫ B

0

g (w)dF (w) ≈
I∑

i=0

g
(
wi
)
f̂i

• this method is called a quadrature rule

There exist efficient quadrature rules that achieve desirable properties with a sparse grid.
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GAUSSIAN QUADRATURE

Gaussian quadrature designs the choice of nodes
{
w̃j
}J

j=1
and associated weights

{
f̃j
}J

j=1
in rule

∫ w

w
g (w)dF (w) =

∫ w

w
g (w) f (w)dw ≈

J∑
j=0

g
(
w̃j
)
f̃j

to yield a good approximation for a particular class of functions on (w,w).

• a J-node approximation is constructed to provide an exact formula for the evaluation of the
expectation of all polynomial functions up to degree 2J− 1

• the choice of nodes and weights depends on the particular density f (w)
• f (w) does not need to be a density, it can be a general weighting function

More detail in Tauchen and Hussey (1991) and on Wikipedia:

https://en.wikipedia.org/wiki/Gaussian_quadrature.
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GENERAL APPROACH TO GAUSSIAN QUADRATURE

1. Pick a weighting function f (w) and interval (w,w). These define an ‘inner product’ space: for
any two functions G (w), H (w), their inner product is∫ w

w
G (w)H (w) f (w)dw.

2. Denote Pn (w) a polynomial of degree n. Construct an orthogonal polynomial basis Pn (w),
n = 0, . . . , J.

Orthogonality: inner product of Pm (w) and Pn (w) is zero for m ̸= n.

Basis: Any polynomial of degree up to J is a linear combination of basis polynomials.

The basis (its monic version) can be built recursively: P0 (w) = 1, P1 (w) = w, and

Pn+1 (w) = (w− an,n) Pn (w)− an,n−1Pn−1 (w) (2.10)

for appropriate coefficients an,n, an,n−1 (Gram–Schmidt orthogonalization).
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GENERAL APPROACH TO GAUSSIAN QUADRATURE

Theorem 2.1
Let Pn (w), n = 0, 1, . . . , J be the orthogonal basis of the space of polynomials of degree up to J on
[w,w] under a weighting function f (w), and w̃j, j = 1, . . . , J the roots of PJ (w). Then there exist
weights f̃j, j = 1, . . . J such that the quadrature rule∫ w

w
h (w) f (w)dw =

J∑
j=1

h
(
w̃j
)
f̃j

is exact for all polynomials of degree up to 2J− 1. Moreover, all the nodes w̃j lie in the open
interval (w,w).

Proof. See notes.
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GOLUB–WELSCH ALGORITHM

3. It can be shown that the nodes
{
w̃j
}J

j=1
are equal to the eigenvalues of the matrix

Λ̂ =



a0,0
√a1,0 0 . . . . . . . . .

√a1,0 a1,1
√a2,1 0 . . . . . .

0
√a2,1 a2,2

√a3,2 0 . . .

0 . . . . . . . . . . . . 0

. . . . . . 0
√aJ−2,J−3 aJ−2,J−2

√aJ−1,J−2

. . . . . . . . . 0
√aJ−1,J−2 aJ−1,J−1


where an,n and an,n−1 are the coefficients in the monic rule (2.10).

4. Weights
{
f̃j
}J

j=1
can be found from the associated eigenvectors ϕj:

f̃j =
µ0

(
ϕj1

)2

∥ϕj∥2
, µ0 =

∫ w

w
f (w)dw

where ϕj1 denotes the first element of vector ϕj.

See notes for details.
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GAUSS–LEGENDRE RULE

Gauss–Legendre rule designed for weighting function and interval

f (w) = 1, (w,w) = (−1, 1) .

• nodes in the J-node approximation given by roots of Legendre polynomials
• (monic) Legendre polynomials defined recursively: P0 (w) = 1, P1 (w) = w

Pn+1 (w) = wPn (w)−
n2

4n2 − 1
Pn−1 (w)

• hence coefficients to be used in matrix Λ̂ are

an,n = 0 an,n−1 =
n2

4n2 − 1
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GAUSS–LEGENDRE RULE: CHANGE OF VARIABLES

The nodes and weights can also be directly translated to an approximation over an arbitrary
interval (w,w) and weighting function f (w) = c through a simple linear transformation.

In this case, the new nodes w̌j and weights f̌j are related to w̃j and f̃j through

w̌j = w+
w− w

2

(
w̃j + 1

)
f̌j = cw− w

2
f̃j

For example, when f (w) is a density on (w,w), then c = (w− w)−1
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GAUSS–HERMITE RULE

Gauss–Hermite rule designed for weighting function and interval

f (w) = exp
(
−1

2
w2

)
, (w,w) = (−∞,∞) .

• the weighting function satisfies ∫ ∞

−∞
f (w)dw =

√
π.

• nodes in the J-node approximation given by roots of Hermite polynomial PJ (w)
• (monic) Hermite polynomials defined recursively: P0 (w) = 1, P1 (w) = w

Pn+1 (w) = wPn (w)−
n
2
Pn−1 (w)

• hence coefficients to be used in matrix Λ̂ are

an,n = 0 an,n−1 =
n
2
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GAUSS–HERMITE RULE

The Gauss-Hermite rule is frequently used to compute expectations of a normally distributed
random variable with mean µ and variance σ2.

The weighting function is then the density

f (w) = 1√
2πσ2

exp
(
−1

2

(w− µ)2

σ2

)
.

Since the density integrates to one, and the new variable is a linear transformation of the original
one, the nodes and weights are transformed as

w̌j = µ+
√
2σw̃j f̌j = 1√

π
f̃j, j = 1, . . . , J.
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INTERPOLATION

We now have two grids:

•
{
wi
}
for the discretization of the value function V (w) (denoted V̂

(
wi
)
),

•
{
w̃j
}
for the quadrature rule.

These two grids may not align (unless specifically designed), so to evaluate∫ B

0

V
(
w′)dF (w′) ≈

J∑
j=1

V
(
w̃j
)
f̃j

we must interpolate the values V̂
(
wi
)
onto

{
w̃j
}

The simplest form of interpolation is linear interpolation.

• imagine node w̃j lies in the interval
[
wi,wi+1

]
for a particular value of i = 0, . . . , I = 1. Then

V
(
w̃j
)
can be approximated as

V
(
w̃j
)
= V̂

(
wi
)
+

(
w̃j − wi

) V̂(wi+1
)
− V̂

(
wi
)

wi+1 − wi .
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SOLVING THE RESERVATION WAGE EQUATION

We now return to the reservation wage equation (2.7)

w̄− c = β

1− β

∫ B

w̄

(
w′ − w̄

)
dF

(
w′) .

Since the LHS is increasing in w̄ and RHS decreasing in w̄, the root is unique.

• simple numerical problem (e.g., bisection method, Newton–Raphson method)
• requires the numerical evaluation of the integral (with lower bound changing)

Once we determine w̄, we also have the whole function V (w)

V (w) =


w̄

1− β
if w ≤ w̄

w
1− β

if w ≥ w̄
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ITERATION USING THE CONTRACTION MAPPING PROPERTY

We can also approach the problem as finding a fixed point of a contraction mapping.

Let us return to equation (2.5) representing the value of rejecting an offer

Q = c+ β

∫ B

0

V
(
w′)dF (w′) = c+ β

∫ B

0

max
{accept, reject}

{
w

1− β
,Q

}
dF

(
w′) .

This is equivalent to the reservation wage equation since

Q =
w̄

1− β
.
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ITERATION USING THE CONTRACTION MAPPING PROPERTY

Define
Tq = c+ β

∫ B

0

max
{accept, reject}

{
w

1− β
, q

}
dF

(
w′)

Then Q is the solution (fixed point) to the equation q = Tq.

T is a contraction mapping operator if for two values Q1, Q2 ∈
[
0, (1− β)−1 B

]
|TQ1 − TQ2| ≤ ρ |Q1 − Q2| for some ρ ∈ (0, 1)

The contraction mapping theorem then implies that

• solution Q that satisfies Q = TQ exists and is unique,
• starting from any value Q0 ∈

[
0, (1− β)−1 B

]
, the fixed point Q can be found as the limit

Q = limn→∞ Qn of successive approximations

Qn+1 = c+ β

∫ B

0

max
{accept, reject}

{
w

1− β
,Qn

}
dF

(
w′) .

• consequently, the reservation wage is w̄ = limn→∞ (1− β)Qn

31/37



PROOF OF THE CONTRACTION MAPPING PROPERTY

To show that T is a contraction mapping, notice that for Q1, Q2 ∈
[
0, (1− β)−1 B

]

|TQ2 − TQ1| = β

∣∣∣∣∫ B

0

(
max

{
w

1− β
,Q2

}
− max

{
w

1− β
,Q1

})
dF

(
w′)∣∣∣∣

≤ β

∫ B

0

∣∣∣∣max
{

w
1− β

,Q2

}
− max

{
w

1− β
,Q1

}∣∣∣∣dF (w′)
= β

∫ V̄1

0

|Q2 − Q1|dF
(
w′)+ β

∫ V̄2

V̄1

∣∣∣∣Q2 −
w

1− β

∣∣∣∣dF (w′)
+β

∫ B

V̄2

∣∣∣∣ w
1− β

− w
1− β

∣∣∣∣dF (w′)
≤ β

∫ V̄1

0

|Q2 − Q1|dF
(
w′)+ β

∫ V̄2

V̄1
|Q2 − Q1|dF

(
w′)

≤ β |Q2 − Q1|
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THE BELLMAN OPERATOR

Alternatively, we can iterate on the whole value function using functional equation (2.4).

Define the Bellman operator

(Tv) (w) = max
{accept, reject}

{
w

1− β
, c+ β

∫ B

0

v
(
w′)dF (w′)}

• the operator maps a function v : [0,B] → R+ into a new function Tv.
• the solution to the Bellman equation (2.4) is a function V that satisfies

V = TV.
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VALUE FUNCTION ITERATION

If T is a contraction mapping (on a space of functions), then we can construct the recursive scheme

Vn+1 (w) = max
{accept, reject}

{
w

1− β
, c+ β

∫ B

0

Vn
(
w′)dF (w′)} (2.11)

• start from an initial guess, e.g., V0 (w) = 0.
• given Vn (w), computing Vn+1 (w) is straightforward
• the contraction mapping property guarantees that Vn (w) → V∞ (w) = V (w) as n→ ∞.
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NUMERICAL IMPLEMENTATION OF VALUE FUNCTION ITERATION

1. Approximate the distribution F (w) on [0,B] using a discrete distribution
{
f̂i
}I

i=0
on a grid of

nodes
{
wi
}I

i=0
, with 0 = w0 < w1 < . . . < wI = B.

2. Approximate the function V (w) using an (I+ 1)× 1 vector V̂ with elements V̂i.
3. Start with an initial guess V̂0.
4. Replace the functional equation (2.11) with the algebraic system

V̂in+1 = max
{accept, reject}

 wi
1− β

, c+ β

I∑
j=0

V̂jn f̂j
 i = 0, . . . , I

5. If the numerical scheme is also a contraction mapping, V̂n converges to a unique fixed point V̂.
6. The degree to which V̂ approximates well then true function V depends on the quality of the
approximation scheme.
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NUMERICAL IMPLEMENTATION OF VALUE FUNCTION ITERATION

Compare backward induction on the finite horizon problem (2.8)

Vt (w) = max
{accept, reject}

{
1− βT−t+1

1− β
w, c+ β

∫ B

0

Vt+1

(
w′)dF (w′)} t = 0, . . . , T

VT+1 (w) = 0

with successive approximations implementing the value function iteration

Vn+1 (w) = max
{accept, reject}

{
w

1− β
, c+ β

∫ B

0

Vn
(
w′)dF (w′)}

V0 (w) = 0

They would be equivalent if accepting in the finite-horizon problem implied employment forever.

Infinite-horizon solution (fixed point) is a limit of the finite-horizon problem.
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SUMMARY



SUMMARY

Value function iteration is a widely used method to solve a range of decision problems in
economics.

• it is often not the fastest but is robust and relies on very few assumptions
• for example, decision rules do not need to be continuous or differentiable

Discretization of the problem on a grid constitutes a global approximation.

• strives for accuracy of the solution across the whole state space
• curse of dimensionality: computational intensity grows exponentially with the dimension of
the state space unless smart methods are used (e.g., endogenous grids), so the method is not
suitable for high-dimensional problems

• in such cases, perturbation or projection methods will be more useful
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