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CONTENT

Economic problem

• How do we capture joint dynamics of many state variables in a tractable way?
• What are the tradeoffs between tractability and ability of the model to accurately capture true
underlying dynamics?

Tools

• Linear vector autoregressions
• Perturbation approximations leading to linear dynamics
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LITERATURE

Textbook

• Ljungqvist and Sargent (2020), Chapter 2 (Sections 2.4–2.5): Linear vector autoregressions,
Chapter 3: Applications, Chapter 6: Linear quadratic dynamic programming

• Judd (1998), Chapter 13 (perturbation methods)

QuantEcon

• Quantitative Economics with Python: Topic 24 (AR(1) processes), Topic 27–28 (linear state space
models), Topic 78 (linear regression)

• Advanced Quantitative Economics with Python: Topics 16–19 (dynamic linear economies)
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PROBLEM SETTING



CURSE OF DIMENSIONALITY

In multidimensional environments, we face computational tradeoffs.

• global approximations focus on capturing nonlinear dynamics
• multidimensional state spaces may cease to be tractable (curse of dimensionality)

If capturing joint dynamics of many state variables is essential, we may need to compromise.

• restrict attention to (semi)analytical dynamics under tractable functional forms …
• … while sacrificing the capacity to capture some of the nonlinearities
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LINEAR DYNAMICS AND PERTURBATION APPROXIMATIONS

Here, we focus on linear dynamics, and approximations that lead to such dynamics.

• a linear vector-autoregression is a tractable and well-understood model
• it is flexible and scalable to many dimensions while preserving tractability
• linear-quadratic models embed many appealing features in economic analysis

Perturbation methods approximate nonlinear models with linear dynamics

• asset pricing: loglinearization of valuation ratios
• macroeconomics: DSGE modeling
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LINEAR VECTOR AUTOREGRESSIONS

The multivariate stochastic linear model is described by the following components:

• state of the system xt ∈ Rn,
• initial distribution π0 (x0) ∼ N (µ0,Σ0),
• transition density π (x′ | x) ∼ N (Aox, CC′), where Ao is an n× n matrix and C is an n× p matrix.

The model can be equivalently represented using the stochastic linear difference equation

xt+1 = Aoxt + Cwt+1 wt+1 ∼ N (0, Ip) iid. (3.1)

where wt+1 is an p× 1 vector of iid Gaussian shocks (so-called random innovations).

Such a model is called a vector autoregression (VAR).
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INFORMATION STRUCTURE

When the VAR equation can be inverted to obtain

wt+1 = C−1 (xt+1 − Aoxt)

then information available at time t can be equivalently expressed using partial histories
xt = (x0, x1, . . . , xt) or using the histories of innovations (x0,w1, . . .wt).

• we denote this information set (σ-algebra) Ft

The VAR has a Markov structure

• the distribution of xt+j, j ≥ 1 conditional on xt is the same as the distribution conditional on Ft
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MARTINGALE DIFFERENCE SEQUENCES

Some of the results that follow will continue to hold under weaker assumptions.

We can relax the Gaussian assumption, and instead assume that wt+1 is a random vector satisfying

E [wt+1 | Ft] = 0 (3.2)
E
[
wt+1w′

t+1 | Ft
]

= Ip,

where Ft is the σ-algebra (information set) generated by (x0,w1, . . .wt). The sequence of shocks
{wt+1}∞t=0 satisfying (3.2) is called a martingale difference sequence.

An even weaker assumption further relaxes the conditional moments, and only assumes that the
shocks are unconditionally mean zero and uncorrelated

E [wt+1] = 0 (3.3)
E
[
wtw′

t−j
]

= Ip · 1 {j = 0} .

A sequence of shocks satisfying the pair of restrictions (3.3) is called white noise.
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A DIGRESSION: MARTINGALES

Probabilistic setup: Ω the sample space of paths, F a σ-algebra (sets of paths which can be
assigned a probability), Ft a filtration (sequence of information sets expressing information known
at time t), P a probability measure over F

Definition 3.1
An n-dimensional process {xt}∞t=0 on

(
Ω,F , {Ft}∞t=0 , P

)
is a martingale with respect to the

filtration {Ft} and the probability measure P if:

1. xt is Ft-measurable (i.e., xt only depends on the information available up to time t.),
2. E [|xt|] <∞ for all t ∈ T ,
3. E [xs|Ft] = xt for all s ≥ t.

Example: Asset pricing Euler equations

Qt = Et
[
St+1

St
Qt+1

]
The discounted price process xt = StQt is a martingale.
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STATE-SPACE REPRESENTATION

We will often append an observation equation, or measurement equation, to obtain what is called a
state-space representation of the model:

xt+1 = Aoxt + Cwt+1 (3.4)
yt = Gxt + vt

where yt and vt are m× 1 vectors.

• the vector yt represents observations of a potentially ‘hidden’ state xt
• vt is iid measurement noise with a given covariance matrix.

When xt is not observable, we will attempt to infer an estimate of the state from observations yt (a
filtering problem).

9/57



VAR EXAMPLES

A scalar second-order autoregression

zt+1 = α+ ρ1zt + ρ2zt−1 + wt+1 (3.5)

can be written as

xt+1 =

 zt+1

zt
1

 =

 ρ1 ρ2 α

1 0 0

0 0 1


 zt
zt−1

1

+

 1

0

0

wt+1

with measurement equation
zt = [1 0 0] xt

The matrix Ao constructed above is called the companion form.
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SLUTSKY–YULE EFFECT

The autoregressive model (3.5) is an example of how uncorrelated disturbances wt may generate
persistent oscillations in the observed series zt.

• This effect was independently described by Eugen Slutsky and Udny Yule in Slutsky (1927)
(appeared in English as Slutsky (1937)) and Yule (1927), and is known as the Slutsky–Yule effect.

• Slutsky (1927) noted, for example, that moving averages constructed from the random numbers
drawn in the Russian government lottery resemble the time series of British business cycles.
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IMPULSE AND PROPAGATION PROBLEMS

The idea revolutionized the way how to think about the propagation mechanism generating
business cycles.

• Ragnar Frisch constructed a continuous-time model of aggregate dynamics in Frisch (1933) in
which he distinguishes between the ‘impulse problem’ and the ‘propagation problem’.

• Oscillations in his model are generated by a time-to-build mechanism where capital goods
need time to be completed before they can be used for production, an early precursor to the
time-to-build model of Kydland and Prescott (1982).

• As another early example, the equilibrium dynamics for aggregate output in the
multiplier-accelerator model of Samuelson (1939) take exactly the form (3.5), where ρ1 and ρ2
are model parameters calibrated to mimic the characteristics of business cycle fluctuations,
generated by fluctuations in government spending.

See also https://www.minneapolisfed.org/article/2009/the-meaning-of-slutsky
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VAR EXAMPLES

The vector autoregression can incorporate moving-average dynamics by stacking the history of
shocks. The ARMA(1,1) model

zt+1 = ρzt + wt+1 + γwt
can be written as

xt+1 =

[
zt+1

wt+1

]
=

[
ρ γ

0 0

][
zt
wt

]
+

[
1

1

]
wt+1

with measurement equation
zt = [1 0] xt.

Other examples of models that can be suitably stacked into the VAR form include an order-k vector
autoregression

zt+1 =

k∑
j=1

Ajzt+1−j + Cywt+1,

or models that include deterministic or stochastic seasonality:

yt = yt−4

yt = ϕyt−4 + wt.
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FIRST AND SECOND MOMENTS

When innovations wt+1 are normally distributed and the unconditional distribution of the initial
state x0 is normal as well, then the linear form of (3.1):

xt+1 = Aoxt + Cwt+1 wt+1 ∼ N (0, Ip) iid.

implies that xt will be normally distributed as well.

Since normal distributions are completely described by their first two moments, tracing the first
two moments over time is sufficient for the description of the joint distribution of the process.

The dynamics of the first two moments is of interest even when innovations are not normal.

This leads us to the definition of covariance stationarity.
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COVARIANCE STATIONARY PROCESSES

Definition 3.2
A stochastic process is said to be covariance stationary if

• the mean is independent of time, E [xt] = E [x0] = µ̄

• the sequence of autocovariance matrices

E
[
(xt − E [xt]) (xt+j − E [xt+j])′

]
only depends on j, not on t.

• A stationary process is covariance stationary.
• A linear covariance stationary process with normal innovations and normal unconditional
distribution of the initial state is also stationary.
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STABLE MATRICES AND FINITE MOMENTS

Definition 3.3
A real square matrix Ao is said to be stable if all its eigenvalues are strictly within the unit circle.

In order for xt+1 to have a stationary mean different from zero, it will often be useful to impose a
particular structure on

xt+1 = Aoxt + Cwt+1 (3.6)

by singling out a constant from the evolution of the state:[
x1,t+1

x2,t+1

]
=

[
1 0

b Ã

][
x1,t
x2,t

]
+

[
0

C̃

]
wt+1 x0 =

[
x1,0
x2,0

]
(3.7)

where x1,t is scalar. The matrix Ao then has one unit root, and the remaining roots are the roots of Ã
which we assume is stable.
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LAW OF MOTION FOR FIRST MOMENT

Denote µt .= E [xt] the unconditional mean of xt. Then

µt+1 = Aoµt

and we can find limt→∞ µt = µ̄ as the unique solution to

µ̄ = A0µ̄ =⇒ (I− A0) µ̄ = 0

To provide more information let us look at the structured equation (3.7). Denote(
µ̄1

µ̄2

)
= lim

t→∞
E
[
x1,t
x2,t

]
.
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LAW OF MOTION FOR FIRST MOMENT

Obviously, x1,t = x1,0 = µ̄1.

The lower block of (3.7) can be written as

x2,t+1 = bx1,0 + Ãx2,t + C̃wt+1.

Taking unconditional expectations, we have

µ2,t+1 = bµ̄1 + Ãµ2,t.

When Ã is stable, limt→∞ µ2,t = µ2,∞ = µ̄2, and we can find the value as

µ̄2 =
(
I− Ã

)−1

bµ̄1.
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LAW OF MOTION FOR SECOND MOMENT

In order to derive the evolution of unconditional variance, denote

Σt
.
= E

[
(xt − µt) (xt − µt)

′] .
The law of motion for Σt can be derived from (3.6) by subtracting the unconditional mean
µt+1 = A0µt from both sides and taking the variance of both sides. Hence

Σt+1 = A0ΣtA′0 + CC′.

A fixed point of this recursion satisfies

Σ∞ = A0Σ∞A′0 + CC′. (3.8)

We will denote this fixed point Cx (0) = Σ∞. This fixed point is the covariance matrix

Cx (0) = E
[
(xt − µ̄) (xt − µ̄)′

]
under the stationary distribution. Equation (3.8) is a discrete Lyapunov equation and can be
efficiently solved using alternative algorithms (like the doubling algorithm).
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AUTOCOVARIANCE FUNCTION

Similarly, to compute the autocovariance function Cx (j), start with (3.6) and write

xt+j − µt+j = Ao (xt+j−1 − µt+j−1) + Cwt+j = . . .

= Ajo (xt − µt) + Aj−1
o Cwt+1 + . . .+ Cwt+j

Post-multiply by (xt − µt)
′ and take unconditional expectations to obtain

E
[
(xt+j − µt+j) (xt − µt)

′] = AjoE
[
(xt − µt) (xt − µt)

′]
Hence, when the process has a stationary mean, we obtain

Cx (j) = AjoCx (0) .

The sequence {Cx (j)}∞j=0 is the autocovariance function or autocovariogram.
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SUMMARY OF MOMENT DYNAMICS

To summarize, we distinguish different moments based on the conditioning we impose:

• conditional moments E [xt+1 | xt] = Axt, Cov (xt+1 | xt) = CC′

• moments conditional on x0,

E [xt | x0] = E0 [xt] = Atox0

E
[
(xt − E0 [xt]) (xt − E0 [xt])′

]
=

t−1∑
h=0

AhoCC′
(
Aho
)′

• unconditional moments E [xt] .= µt and E
[
(xt − µt) (xt − µt)

′] = Σt, satisfying

µt+1 = Aoµt
Σt+1 = AoΣtA′o + CC′

• stationary moments

(I− Ao) µ̄ = 0

Cx (0) = AoCx (0) A′o + CC′

Cx (j) = AjoCx (0)
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IMPULSE AND PROPAGATION MECHANISM

The stochastic process we posited in (3.1):

xt+1 = Aoxt + Cwt+1 wt+1 ∼ N (0, Ip) iid.

specifies a law of motion that describes a deterministic propagation mechanism for xt,
systematically perturbed by random innovations wt+1.

This idea goes back to the impulse and propagation problems described by Frisch (1933):

“There are several alternative ways in which one may approach the impulse problem…
One way which I believe is particularly fruitful and promising is to study what would become
of the solution of a determinate dynamic system if it were exposed to a stream of erratic
shocks that constantly upsets the continuous evolution, and by so doing introduces into
the system the energy necessary to maintain the swings.”

In order to understand the propagation mechanism, we want to capture how a shock today affects
the distribution of the stochastic process in the future.
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IMPULSE RESPONSE FUNCTIONS

What are the consequences of perturbing the shock w1 today for the distribution of xt, t ≥ 1?

Consider a common initial condition x0 and two alternative processes representing iid disturbances:

w = {w1,w2,w3, . . .}

w̃ =
{
w̃1, w̃2, w̃3, . . .

}
where we impose that w̃j = wj, ∀j ≥ 2.

The innovation processes thus have the same innovations except period one. Now define

xt+1 = Aoxt + Cwt+1, t ≥ 0

x̃t+1 = Aox̃t + Cw̃t+1

The impulse response function is defined as the difference

x̃t+1 − xt+1.

Observe that the impulse response function is a stochastic process that in general depends on x0,
as well as on both sequences of shocks w̃ and w.
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REPRESENTATION OF IMPULSE RESPONSE FUNCTIONS

In the general nonlinear case, we need to think about ways how to summarize information
contained in the process x̃t+1 − xt+1.

It turns out that in the linear case, this difference takes a convenient simple form.

In order to derive it, notice that

xt+1 = Aoxt + Cwt+1 = A2oxt−1 + AoCwt + Cwt+1

= At+1
o x0 +

t∑
j=0

AjoCwt+1−j (3.9)

This is the so-called moving-average representation of the process {xt} that specifies the process
as a linear combination of past innovations.

Using this moving-average representation, it is easy to infer that

x̃t+1 − xt+1 = At0C
(
w̃1 − w1

)
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REPRESENTATION OF IMPULSE RESPONSE FUNCTIONS

x̃t+1 − xt+1 = At0C
(
w̃1 − w1

)
In the study of linear models, it is a common choice to take w1 = 0 and w̃1 = ek, k = 1, . . . , p. The
matrix-valued function

ht = AtoC

is therefore also commonly referred to as (linear) impulse response function.

• ht is a matrix whose entry
[
AtoC
]
ik represents the response t periods after the impact of the

shock of the i-the element of the vector state process x to a perturbation of the k-th element
of the innovation w1
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PREDICTION, QUADRATIC FORMS, AND VALUATION

The linear-quadratic formulas used in the computation of conditional expectations and covariances
have wide-ranging applications.

• prediction formulas
• present discounted values
• geometric sums of quadratic forms
• asset valuation
• evaluation of dynamic criteria in linear-quadratic models
• optimal control in linear-quadratic models

See Ljungqvist and Sargent (2020) for extensive details

• Chapter 2 (Section 2.4): VAR time-series model
• Chapter 3: wide range of theoretical applications
• Chapter 6: implementation in dynamic programming
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PREDICTION AND DISCOUNTING

The moving average representation is an extremely powerful tool for computing expectations and
other statistics. Rewrite (3.9) as

xt+j = Ajoxt +
j−1∑
k=0

AkoCwt+j−k

Hence
Et [xt+j]

.
= E [xt+j | xt] = Ajoxt.

Similarly, consider a function yt = Gxt where G is a conformable matrix. Then

Et

 ∞∑
j=0

βjyt+j

 = G
∞∑
j=0

(βAo)j xt = G (I− βAo)−1 xt

provided that the matrix βAo has all unit roots smaller than one in modulus.
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GEOMETRIC SUMS OF QUADRATIC FORMS

In linear-quadratic models, we often want to calculate

αt = Et

 ∞∑
j=0

βjx′t+jYxt+j

 . (3.10)

We can proceed by guess and verify and establish a recursive formula

αt = x′tYxt + βEt

Et+1

∞∑
j=0

βjx′t+1+jYxt+1+j

 =

= x′tYxt + βEtαt+1.
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GEOMETRIC SUMS OF QUADRATIC FORMS

Guessing the solution of the form
αt = x′tνxt + σ

where ν is an unknown symmetric n× n matrix and σ an unknown scalar, we plug in to obtain

x′tνxt + σ = x′tYxt + βEt
[
x′t+1νxt+1 + σ

]
= x′tYxt + βx′tA′oνAoxt + βEt

[
w′
t+1C′νCwt+1

]
+ βσ

= x′tYxt + βx′tA′oνAoxt + βtr
[
C′νC

]
+ βσ.

Comparing coefficients on constant terms and terms involving squares of xt, we obtain

ν = Y+ βA′oνAo (3.11)
σ = (1− β)−1 βtr

[
C′νC

]
where tr [·] denotes the trace of a matrix. The equation for ν is again a discrete Lyapunov equation.
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ASSET PRICING

We want to determine the value of an asset as the present discounted value of future cash flows.

• we need to determine a model of cash flows, and a model of discounting

Consider a cash flow yt and a discount factor zt, modeled as

yt = Gxt zt = Hxt

where G and H are row vectors. We are interested in computing the asset price

pt = Et

 ∞∑
j=0

βjzt+jyt+j


• given the stochastic discount factor process βjzt+j, the asset price is a linear function of the
cash flows.

• the stochastic discount factor is typically derived from agent’s preferences, reflecting the
marginal rate of substitution between today and uncertain future states.
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ASSET PRICING

Rewriting the valuation equation as

pt = Et

 ∞∑
j=0

βjx′t+jH′Gxt+j

 ,
we can use (3.10) to evaluate this sum to obtain

pt = x′tνxt + σ.

• the coefficients ν and σ are determined in (3.11).
• σ is determined as the discounted sum of covariances of the innovations in zt and yt

ν = H′G+ βA′oνAo
σ = (1− β)−1 βtr

[
C′νC

]
• the term C′νC depends on the underlying volatility of xt reflected in C, as well as on H′G that
reflects the comovement of cash flows with the stochastic discount factor.

• we can interpret σ as a risk premium on asset with cash flow yt.
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PERTURBATION METHODS



APPROXIMATION OF NONLINEAR MODELS

Linear dynamics are appealing for their tractability.

• allow for easy treatment of high-dimensional problems

Most models do not adhere to such a linear form.

• however, a range of stochastic models can be suitably approximated on an ‘interesting’ part of
the state space using linear dynamics

Peturbation method idea

• consider the stochastic model without uncertainty and assume that such a deterministic
version of the model converges to a steady state.

• introduce a ‘small’ amount of uncertainty (perturb the deterministic model) and study the
approximate ‘local’ behavior of the model in the vicinity of the steady state

• extend the approximate local behavior to the original amount of uncertainty
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TAYLOR’S THEOREM

The method follows from an application of the idea of Taylor’s theorem to a dynamic environment.

• consider a function f (x) : R → R and a particular point x̄ ∈ R

• if f (x) is k-times differentiable at x̄, then f (x) can be written as

f (x) = f (x̄) + f′ (x̄) (x− x̄) + f′′ (x̄)
2

(x− x̄)2 + . . .+
f(k) (x̄)
k! (x− x̄)k + hk (x) (x− x̄)k

for a remainder (error) function hk (x) such that

lim
x→x̄

hk (x) = 0

• the error of the approximation in the vicinity of x̄ is thus smaller than order (x− x̄)k

For the ‘first-order’ case (k = 1)

f (x) = f (x̄) + f′ (x̄) (x− x̄) + h1 (x) (x− x̄) = f (x̄) + f′ (x̄) (x− x̄) + o (x− x̄)
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SERIES EXPANSION

Alternative approaches that formalize the idea of the perturbation method in dynamic settings.

• here, we rely on the series expansion method (Holmes (1995), Lombardo (2010), Borovička and
Hansen (2014))

Let xt be a Markov stochastic process of the form

xt+1 = ψ (xt,wt+1) wt+1 ∼ N (0, I)

• ψ is a nonlinear function

Consider the class of models indexed by a perturbation parameter q

xt+1 (q) = ψ (xt (q) ,qwt+1,q) (3.12)

• the perturbation parameter q scales the volatility of the Gaussian shock
• each q implies a different process xt (q)
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SERIES EXPANSION

Class of models indexed by a perturbation parameter q

xt+1 (q) = ψ (xt (q) ,qwt+1,q)

For q = 0, we obtain the deterministic model

xt+1 (0) = ψ (xt (0) , 0, 0)

• assume that there exists a fixed point x̄ that solves this deterministic equation, called the
steady state:

x̄ = ψ (x̄, 0, 0)

such that xt (0) = x̄.

For q = 1, we recover the original model

xt+1 (1) = ψ (xt (1) ,wt+1, 1)
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SERIES EXPANSION

Assume that there exists a series expansion of the process xt around q = 0

xt (q) ≈ x̄+ qx1t +
q2
2
x2t + . . .

• this extends the idea of Taylor expansion to a stochastic environment

The processes xjt can be viewed as derivatives of xt with respect to the perturbation parameter.

• their laws of motion can be inferred by differentiating the law of motion (3.12) j times and
evaluating the derivatives at q = 0

x̄ = ψ (x̄, 0, 0)
x1t+1 = ψq + ψxx1t + ψwwt+1

where
ψq =

∂ψ

∂q (x̄, 0, 0) ψx =
∂ψ

∂x (x̄, 0, 0) ψw =
∂ψ

∂w (x̄, 0, 0)

and so on for higher orders
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APPLICATIONS

Asset pricing

• Campbell and Shiller (1988) approximation of returns dynamics
• log-linear approximation of the price-dividend ratio

Optimal control problems in macroeconomics

• approximation of a control problem using a model with linear constraints and a quadratic
objective function

Equilibrium models

• solving for linearized versions of equilibrium models

37/57



LOG-LINEAR APPROXIMATION OF RETURNS

We apply the series expansion method to approximate dynamics of asset returns.

Start with the definition of the return

Rt+1 =
Qt+1 + Gt+1

Qt
=
Qt+1/Gt+1 + 1

Qt/Gt
Gt+1

Gt
and rewrite it in logarithms of the above quantities

rt+1 = logRt+1 qt = log QtGt
gt+1 = log Gt+1

Gt
to obtain

exp (rt+1) =
exp (qt+1) + 1

exp (qt)
exp (gt+1)

Now use the first-order series expansion

rt+1 ≈ r̄+ qr1t+1

qt ≈ q̄+ qq1t
gt+1 ≈ ḡ+ qg1t+1
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LOG-LINEAR APPROXIMATION OF RETURNS

We thus obtain the expression for the asset return (written in logarithms)

r̄+ qr1t+1 = log [exp (q̄+ qq1t+1) + 1]− (q̄+ qq1t) + (ḡ+ qg1t+1)

Apply the series expansion:

• evaluate the return equation at q = 0:

r̄ = log [exp (q̄) + 1]− q̄+ ḡ

• differentiate with respect to q and evaluate the derivative at q = 0:

r1t+1 =
exp (q̄)

exp (q̄) + 1
q1t+1 − q1t + g1t+1
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SOLVING THE LINEAR EQUATION FORWARD

Why is the loglinear approximation useful? We can solve the linear equation forward.

• denote ρ = exp(q̄)
exp(q̄)+1

, express q1t, and iterate forward

q1t = g1t+1 − r1t+1 + ρq1t+1 = g1t+1 − r1t+1 + ρ (g1t+2 − r1t+2) + ρ2q1t+2 = . . .

= lim
T→∞

T∑
j=1

ρj (g1t+j − r1t+j) + ρTq1T︸ ︷︷ ︸
→ 0

We thus obtain

q1t =
∞∑
j=1

ρj (g1t+j − r1t+j) =
∞∑
j=1

ρjg1t+j −
∞∑
j=1

ρjr1t+j

• this is an accounting identity, which follows solely from the definition of the return (must
always hold, does not assume any particular model

• when the price-dividend ratio is high today (relative to q̄), then either future dividend growth
must be high, or future returns must be high
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LOG-LINEAR APPROXIMATION OF THE PRICE DIVIDEND RATIO

We derive a similar equation from a different perspective. Consider the valuation equation

Qt
Gt

= Et
[
St+1

St
Gt+1

Gt

(
Qt+1

Gt+1
+ 1

)]

• denote
qt = log QtGt

st+1 = log St+1

St
gt+1 = log Gt+1

Gt
then

exp (qt) = Et [exp (st+1 + gt+1) (exp (qt+1) + 1)]

Now assume that each of the processes qt, st, gt can be written in the series expansion form (for
perturbation parameter q)

exp (q̄+ qq1t) = Et [exp (s̄+ qs1t+1 + ḡ+ qg1t+1) (exp (q̄+ qq1t+1) + 1)]
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LOG-LINEAR APPROXIMATION OF THE PRICE DIVIDEND RATIO

Differentiate

exp (q̄+ qq1t) = Et [exp (s̄+ qs1t+1 + ḡ+ qg1t+1) (exp (q̄+ qq1t+1) + 1)]

with respect to q to obtain

exp (q̄) = exp (s̄+ ḡ) (exp (q̄) + 1)

exp (q̄) q1t = Et [exp (s̄+ ḡ) (s1t+1 + g1t+1) (exp (q̄) + 1) + exp (s̄+ ḡ) exp (q̄) q1t+1]

The latter equation can be rewritten as

q1t = Et
[

exp (s̄+ ḡ) (exp (q̄) + 1)

exp (q̄) (s1t+1 + g1t+1) + exp (s̄+ ḡ) q1t+1

]
Using the steady-state equation, we get

q1t = Et [s1t+1 + g1t+1 + exp (s̄+ ḡ) q1t+1] .
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SOLVING FOR THE PRICE DIVIDEND RATIO

Impose linear dynamics on the model

• linear law of motion for the state xt ∈ Rn

xt+1 = Aoxt + Cwt+1, wt+1 ∼ N (0, Ip)

• linear structure of the SDF and dividend growth rate

s1t+1 = Sxt+1

g1t+1 = Gxt+1

where S and G are 1× n vectors

Conjecture that the solution for the price-dividend ratio is also linear:

q1t = Qxt
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SOLVING FOR THE PRICE DIVIDEND RATIO

The valuation equation implies

Qxt = Et [Sxt+1 + Gxt+1 + exp (s̄+ ḡ)Qxt+1]

= (S+ G) Aoxt + exp (s̄+ ḡ)QAoxt

This equation has to hold for every value of xt, so coefficients have to match

Q = (S+ G) Ao + exp (s̄+ ḡ)QAo

We can therefore solve for the vector Q

Q = (S+ G) Ao [I− exp (s̄+ ḡ) Ao]−1
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SOLVING FOR THE PRICE DIVIDEND RATIO

What are we losing with the linear approximation

q1t = Qxt = (S+ G) Ao [I− exp (s̄+ ḡ) Ao]−1 xt

• the mapping between state and the price-dividend ratio does not depend on uncertainty C

Recall that risk premia are given by covariances of the stochastic discount factor with returns:

0 = Et
[
St+1

St

(
Rt+1 − Rft+1

)]
=⇒ Et

[
Rt+1 − Rft+1

]
= −Rft+1Covt

[
St+1

St
,Rt+1 − Rft+1

]
The linear approximation

q1t = Et [s1t+1 + g1t+1 + exp (s̄+ ḡ) q1t+1] .

neglects these covariances.

• risk premia in a smooth model of preferences are a ‘second-order’ concept
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RISK PREMIA IN A PERTURBATION APPROXIMATION

exp (q̄+ qq1t) = Et [exp (s̄+ qs1t+1 + ḡ+ qg1t+1) (exp (q̄+ qq1t+1) + 1)]

Let us first manipulate the expression on the right-hand side. Substitute

s1t+1 = Sxt+1 g1t+1 = Gxt+1 xt+1 = Aoxt + Cwt+1

to obtain

exp (q̄+ qq1t) = Et [exp (s̄+ ḡ+ q̄+ q (S+ G+ Q) (Aoxt + Cwt+1))]

+Et [exp (s̄+ ḡ+ q (S+ G) (Aoxt + Cwt+1))]

Collect the deterministic and random components

exp (q̄+ qq1t) = exp (s̄+ ḡ+ q̄+ q (S+ G+ Q) Aoxt) Et [exp (q (S+ G+ Q) Cwt+1)]

+ exp (s̄+ ḡ+ q (S+ G) Aoxt) Et [exp (q (S+ G) Cwt+1)]
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RISK PREMIA IN A PERTURBATION APPROXIMATION

Now utilize an expression for the expectation of a log-normally distributed random variable

w ∼ N (0, I) =⇒ E [exp (µ+ σw)] = exp
(
µ+

1

2
σσ′
)

Here, σ = q (S+ G+ Q) and σ = q (S+ G)

exp (q̄+ qq1t) = exp
(
s̄+ ḡ+ q̄+ q (S+ G+ Q) Aoxt +

1

2
q2 (S+ G+ Q) CC′ (S+ G+ Q)′

)
+ exp

(
s̄+ ḡ+ q (S+ G) Aoxt +

1

2
q2 (S+ G) CC′ (S+ G)′

)
The effect of risk premia is embedded in

1

2
q2 (S+ G) CC′ (S+ G)′

• interaction of uncertainty in the SDF and cash flows
• depends on the uncertainty of the underlying economy in CC′
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RISK PREMIA IN A PERTURBATION APPROXIMATION

Risk-premium contribution

1

2
q2 (S+ G) CC′ (S+ G)′

The risk premium scales with q2, so it vanishes in the linear approximation.

• in the perturbation, terms with q2 are higher order relative to terms with q

Solutions

• higher-order approximation
• a different type of series expansion (Borovička and Hansen (2014), Bhandari et al. (2019))
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LINEAR-QUADRATIC DECISION MODELS

Consider the following decision problem in sequence formulation:

max
{at}∞t=0

E0
∞∑
t=0

βtu (xt, at) subject to xt+1 = ψ (xt, at,wt+1)

• xt is the state vector, with x0 given
• at is the vector of controls that affect utility and the evolution of the state
• ψ is the set of restrictions that determine the controlled law of motion for the state

We can apply the same perturbation logic here.

• convenient choice: second-order expansion of the utility function and first-order expansion of
the law of motion
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SERIES EXPANSION OF THE DECISION MODEL

Approximate the state and control dynamics to first order

xt ≈ x̄+ qx1t at = ā+ qa1t

Approximate the law of motion to first order

x̄ = ψ (x̄, ā, 0)
x1t+1 = ψq + ψxx1t + ψaa1t + ψwwt+1

• partial derivatives ψq, ψx and ψw evaluated at the steady state (x̄, ā, 0).

Approximate the utility function to second order

u (xt (q) , at (q) ,q) = ut (q) ≈ ū+ qu1t +
q2
2
u2t (3.13)

To obtain ū, u1t, and u2t, evaluate the derivatives of

u (xt (q) , at (q)) ≈ u (x̄+ qx1t, ā+ qa1t,q)
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SERIES EXPANSION OF THE UTILITY FUNCTION

Zero-th order derivative of the utility function

ū = u (x̄, ā, 0) .

First order derivative of the utility function

u1t = uq + uxx1t + uaa1t

Second order derivative

u2t = uqq + 2uqxx1t + 2uqaa1t + x′1tuxxx1t + a′1tuaaa1t + 2a′1tuaxx1t

where all partial derivatives of u are evaluated at the steady state (x̄, ā, 0)

Then we can construct the second-order approximation of ut in (3.13) evaluated at q = 1, by
combining ū, u1t and 1

2
u2t.
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APPROXIMATED DECISION MODEL

We thus obtain the decision problem

max
{a1t}∞t=0

E0
∞∑
t=0

βtû (xt, at)

with

û (xt, at) = ū+ uq +
1

2
uqq + (ux + uqx) x1t + (ua + uqa) a1t +

1

2
x′1tuxxx1t +

1

2
a′1tuaaa1t + a′1tuaxx1t

subject to
x1t+1 = ψq + ψxx1t + ψaa1t + ψwwt+1

with x0 given.

This is a linear-quadratic problem with a tractable solution even for high-dimensional state spaces.

• solution based on computation of quadratic sums using formula (3.10) together with an
optimization step

• the crucial observation is that the optimal policy a∗t is linear in the state xt
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EQUILIBRIUM DYNAMICS

Dynamic equilibria in macroeconomics often feature a combination of backward-looking and
forward-looking equations.

• a backward-looking equation represents the current value of a variable as a function of past
values

xt+1 = Aoxt + Cwt+1

• a forward-looking equation represents the current value of a variable as a function of future
values

q1t = Et [s1t+1 + g1t+1 + exp (s̄+ ḡ) q1t+1]

We want to find a solution for all involved variables:

• backward-looking evolution of an appropriately defined state
• a mapping from the state to all remaining endogenous variables
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EQUILIBRIUM DYNAMICS

In the case of the price-dividend ratio, we imposed

xt+1 = Aoxt + Cwt+1 s1t+1 = Sxt+1 g1t+1 = Gxt+1

and solved the forward-looking equation

q1t = Et [s1t+1 + g1t+1 + exp (s̄+ ḡ) q1t+1]

for q1t = Qxt.
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EQUILIBRIUM DYNAMICS

Another example: neoclassical growth model

• backward-looking equation: law of motion for capital

kt+1 = (1− δ) kt + G (kt)− ct

• forward-looking equation: optimal consumption choice

U′ (ct) = βU′ (ct+1)
(
1− δ + G′ (kt+1)

)
Solution involves finding the mapping ct = c (kt).

There are well-established methods for solving these sets of forward- and backward-looking
equations

• Ljungqvist and Sargent (2020), Chapter 6, Blanchard and Kahn (1980), Sims (2002)
• implementation in available packages, for example Dynare
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VAR ESTIMATION

Another advantage of the linear system lies in estimation:

xt+1 = Aoxt + Cwt+1

• estimate rows of A0 using OLS, equation by equation
• collect residuals from all equations, compute covariance to obtain CC′

Covariance matrix CC′ cannot be used to find a unique C

• this is important for shock identification, when we want to know the impact of individual
components of wt+1

Ao and CC′ may have a particular structure, for example implied by a macroeconomic model

• these cross-equation restrictions must be incorporated in estimation
• have to use GMM, maximum likelihood or Bayesian estimation instead of OLS
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SUMMARY



SUMMARY

Linear state space models are widely used for their tractability.

• they can handle multidimensional state spaces at negligible computational costs
• they cannot handle nonlinearities

Perturbation methods provide linear approximation of nonlinear models

• they are an example of local approximations: methods work well in the neighborhood of a
particular point in the state space, and become less accurate further away

• asset pricing: loglinearization of price-dividend ratios (Campbell and Shiller (1988))
• linear-quadratic dynamic programming: Ljungqvist and Sargent (2020), Chapters 3, 5, and 6
• linear solutions of equilibrium (DSGE) models: Blanchard and Kahn (1980), Sims (2002)
• methods can be extended to higher-order perturbations (Judd (1998), Chapter 13)
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