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CONTENT

Economic problem

• In a variety of setups, agents do not have perfect information about the environment.
• They however use available information to update their beliefs about the state of the economy.
• How exactly is this information processed? Bayesian agents use information efficiently but
there are other belief updating schemes as well.

Tools

• Kalman filter
• Relationship to VAR estimation
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LITERATURE

Textbook

• Ljungqvist and Sargent (2020), Chapter 2 (Sections 2.7–2.9, Kalman filter)

QuantEcon

• Quantitative Economics with Python: Topic 31 (Kalman filter), Topic 50–52 (Bayes law), Topic 53
(Search with learning)
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KALMAN FILTER



AN ILLUSTRATIVE EXAMPLE

Jovanovic (1979) consider the problem of a worker-firm pair that learns about the productivity of the
worker in the match.

• worker in the given firm has true productivity θ
• the worker-firm pair starts with some prior belief about this true productivity parameter
• every period, they observe worker’s output, which can be interpreted as a noisy realization of θ

yt = θ + vt

• given this observation, they update their belief about θ

How should such belief updating be conducted?

• Bayes law!
• the key question is how to keep the problem tractable
• the belief is a whole distribution over the support of θ
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STATE SPACE MODEL

We consider the linear model

xt+1 = Aoxt + Cwt+1 n× 1 wt+1 ∼ N (0, Ip)
yt = Gxt + vt m× 1 vt ∼ N (0,R) .

(4.1)

• xt is an unobservable vector with a law of motion given by a Gaussian VAR
• yt is a measurement vector
• vt is measurement noise independent of {wt}∞t=1

• we assume an initial condition
x0 ∼ N (x̂0,Σ0) . (4.2)
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SIMPLIFICATION UNDER THE LINEAR GAUSSIAN STRUCTURE

The problem is to construct the optimal forecast of the path of the underlying state, given the
observed measurements.

• solved by Kalman (1960)
• the algorithm leads to a recursive formula for the best predictor of xt given observations
yt−1 = (yt−1, . . . , y0)

• because of the linear-Gaussian structure of the whole system, we can infer that the predictor
will also be Gaussian, so it is sufficient to construct predictors for the first two moments of its
distribution

x̂t = E
[
xt | yt−1

]
(4.3)

Σt = E
[
(xt − x̂t) (xt − x̂t)′

]
.

• this is a critical simplification of the problem because we do not need to keep track of the
whole distribution in the form of a function over the state space

5/24



RECURSIFICATION OF THE PROBLEM

Since the underlying state xt is persistent, observed data yt will be serially correlated.

• The idea is to derive the contribution of the information embedded in the new observation yt
to the prediction of xt+1, relative to what we already could have inferred from yt−1.

• Mathematically, we are applying the Gram–Schmidt orthogonalization process to the sequence
of the data observations yt, and constructing an orthogonal basis of innovations (a0, a1, . . . at)
from (y0, y1, . . . yt).

• A particular innovation at will represent new information in the additional data point yt relative
to what we learned from yt−1. Since the innovations are orthogonal, projecting the unobserved
state xt on the innovations will be simpler than projecting on the original data.

• Effectively, we are replacing (4.3) with an equivalent representation

x̂t = E
[
xt | at−1

]
.
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INFORMATION CONTENT OF A NEW OBSERVATION

Let us start from the initial condition for the prior x0 ∼ N (x̂0,Σ0) .

• this prior represents the agent’s belief before any data have been observed
• we now study how much we can learn about the unknown x0 from observing y0

We will proceed by using linear projections, which corresponds to running theoretical OLS
regressions.

• this method is justified as a way of obtaining efficient forecasts given the linear-Gaussian
environment for the problem
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INFORMATION CONTENT OF A NEW OBSERVATION

Since
yt = Gxt + vt

we infer that the prior belief about y0 before y0 has been observed is

x0 ∼ N (x̂0,Σ0) =⇒ y0 ∼ N
(
Gx̂0,GΣ0G′ + R

)
.

The agent expects y0 to be on average Gx̂0, so y0 − Gx̂0 can be viewed as a surprise, or innovation,
relative to the expected value.

To construct the forecast of x0 given the observation of the data point y0

• we can split x0 = x̂0 + (x0 − x̂0), where x̂0 is known and x0 − x̂0 is the unknown part
• similarly, we can split y0 = Gx̂0 + (y0 − Gx̂0)
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A LINEAR PROJECTION

Let us project the unknown x0 − x̂0 on the new information embedded in the observation of y0:

x0 − x̂0 = L0 (y0 − Gx̂0)︸ ︷︷ ︸
innovation a0

+ η0

• the residual η0 is orthogonal on the innovation a0 .
= y0 − Gx̂0 by construction

• the innovation a0 represents the ‘surprise’, or new information, embedded in the observation
of y0 relative to its expected value Gx̂0

• a0 contains the same information as y0
• this innovation also constitutes the first element in the construction of the orthogonal basis
(a0, a1, . . .) constructed from observations (y0, y1, . . .).
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A PROJECTION COEFFICIENT

Given the orthogonality between η0 and a0, post-multiplying by (y0 − Gx̂0)′ and taking expectations
yields

E
[
(x0 − x̂0) (y0 − Gx̂0)′

]︸ ︷︷ ︸
= Cov (x0, y0|x̂0,Σ0)

= L0E
[
(y0 − Gx̂0) (y0 − Gx̂0)′

]︸ ︷︷ ︸
= Var (y0|x̂0,Σ0)

+ E
[
η0 (y0 − Gx̂0)′

]︸ ︷︷ ︸
= 0

so that
Σ0G′ = L0

(
GΣ0G′ + R

)
.

and hence the n×m matrix regression coefficient L0 takes the form

L0 = Σ0G′ (GΣ0G′ + R
)−1 .
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PREDICTION OF NEXT PERIOD STATE

Equation (4.1) then implies that we can write

x1 = Aox0 + Cw1 = Aox̂0 + Ao (x0 − x̂0) + Cw1. (4.4)

• Aox̂0 is the best prediction of x1 based on the prior
• Ao (x0 − x̂0) represents uncertainty about x1 inherited from prior uncertainty about x0
• Cw1 is the new uncertainty linked to the new random innnovation

The mean forecast of the state x1 given the data point y0 is therefore given by

x̂1 = E
[
x1|y0

]
= E

[
x1|a0

]
= Aox̂0 + E

[
Ao (x0 − x̂0) |a0

]
= Aox̂0 + AoL0︸︷︷︸

= K0

(y0 − Gx̂0) , (4.5)

where the matrix
K0 = AoΣ0G′ (GΣ0G′ + R

)−1

is called the Kalman gain.

• the Kalman gain captures how informative the new innovation is for predicting x1
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LAW OF MOTION FOR THE COVARIANCE MATRIX

Subtracting (4.5) from (4.4) yields

x1 − x̂1 = Ao (x0 − x̂0) + Cw1 − K0 (y0 − Gx̂0)
= (Ao − K0G) (x0 − x̂0) + Cw1 − K0v0.

Notice that the three terms on the previous line are independent. Hence the variance of the
forecast given the data point y0

Σ1 = E
[
(x1 − x̂1) (x1 − x̂1)′

]
=

= (Ao − K0G)Σ0 (Ao − K0G)′ + CC′ + K0RK′0

We therefore have the distribution x1 | y0 ∼ N (x̂1,Σ1).
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INNOVATIONS REPRESENTATION OF THE STATE SPACE SYSTEM

We therefore have the recursive system

at = yt − Gx̂t (4.6)
Kt = AoΣtG′ (GΣtG′ + R

)−1

x̂t+1 = Aox̂t + Ktat
Σt+1 = (Ao − KtG)Σt (Ao − KtG)′ + CC′ + KtRK′t

• The first equation defines the innovation at, which is the deviation of the observed yt from its
best predictor Gx̂t constructed given yt−1.

• The second equation defines the Kalman gain, which tells how much the innovation updates
the previous best guess of the state x̂t+1

• The third equation is the law of motion for the mean forecast x̂t+1. Notice that the best forecast
of x̂t+1 given yt−1 is A0x̂t, to which we add Ktat as the contribution of the information from yt.

• Finally, we update the accuracy (variance) of the forecast Σt+1.
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INNOVATIONS REPRESENTATION OF THE STATE SPACE SYSTEM

We can substitute for Kt into the law of motion for Σt to obtain

Σt+1 = AoΣtA′o − AoΣtG′ (GΣtG′ + R
)−1 GΣtA′o + CC′. (4.7)

This is a matrix Riccati equation which often appears in linear-quadratic dynamic programming.

• The evolution of x̂t is stochastic, being updated by the innovations that are constructed from
the observations of yt.

• The evolution of Σt deterministic. Σt typically converges to a constant in a time-invariant
model, and the constant is zero when CC′ = 0.

• This says that all observations yt are equally informative, regardless of their particular value.
This result is specific to this particular linear-Gaussian model.
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FILTERED PATH AND KALMAN SMOOTHER

The path x̂t is often called the filtered path of xt

• it represents the most likely location of xt conditional on yt−1

Can subsequent realizations of yt+j, j = 0, 1, 2, . . . make the estimate of xt more precise?

• They can. yt+j is a signal about xt+j, and knowledge where the state x is at time t+ j is also
informative about where the state has been at time t.

• This is what the Kalman smoother does.
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OTHER BAYESIAN FILTERS

The linear-Gaussian model was used specifically to keep the filtering problem tractable.

Other such environments exist

• for example, filtering of the unknown state of the n-state Markov chain

Filtering methods are also applied in continuous-time environments

• Kalman and Bucy (1961) filter for filtering paths of Brownian motions
• Liptser and Shiryaev (2001) filters as a generalization of Kalman and Bucy (1961)
• Wonham (1964) filter for filtering regime shifts in continuous-time models

Additional informational frictions may be added.

• rational inattention/costly signal acquisition: Sims (2003)
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NON-BAYESIAN BELIEF UPDATING SCHEMES

Departures from Bayesian updating may be used to model behavioral features.

• adaptive expectations: Cagan (1956), Friedman (1957)
• least squares learning: Marcet and Sargent (1989)
• diagnostic expectations: Bordalo et al. (2020)
• extrapolation from past observations: Adam et al. (2016)
• memory loss: Azeredo da Silveira et al. (2022)

The literature is extensive, the key is how to discipline departures from Bayesian updating.

17/24



APPLICATIONS



MUTH’S EXAMPLE

In the 1950’s, Phillip Cagan (Cagan (1956)), Milton Friedman (Friedman (1957)), and others studied
models of adaptive expectations

• expectations about the future slowly adjust in response to arrival of new data

In Muth (1960), John Muth asked what type of underlying stochastic processes would ‘rationalize’
the adaptive expectations model as the best statistical forecast of the future.

• this can be viewed a precursor of the assumption of rational expectations, more fully
developed in Muth (1961)

• the solution to the problem is close to the filtering solution of Kalman (1960)
• the idea is to postulate a stochastic process under which the adaptive expectations model can
be interpreted as the result of optimal learning (filtering)
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ADAPTIVE EXPECTATIONS

Consider the model for agent’s adaptive expectations

y∗t+1 = K
∞∑
j=0

(1− K)j yt−j

= (1− K) y∗t + Kyt (4.8)

• yt is a time series we want to forecast, given its observations up to time t
• K is the weight on the current observation for the time-t forecast of yt+1, denoted y∗t+1.
• Cagan (1956): model of agent’s forecasts of future inflation
• Friedman (1957) for forecasts of future income in a consumption-saving problem
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MUTH’S FRAMEWORK

Muth (1960) studied a model that can be written as a special case of the system in the Kalman filter
problem:

xt+1 = xt + wt+1 (4.9)
yt = xt + vt

where wt, vt are independent scalar shocks with covariances Q and R, respectively, and yt and xt are
also scalar. In the context of the Kalman filter model (4.1), we have

A0 = 1, CC′ = Q, G = 1

Then the filtering equations (4.6) together with (4.7) become

at = yt − x̂t

Kt =
Σt

Σt + R
x̂t+1 = x̂t + Ktat

Σt+1 = Σt −
Σ2
t

Σt + R + Q
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MUTH’S INTEPRETATION OF ADAPTIVE EXPECTATIONS

When we take the limit as t→ ∞, we expect Σt → Σ and Kt → K.

Then the law of motion for the forecast is given by

x̂t+1 = x̂t + Kat = x̂t + K (yt − x̂t) = (1− K) x̂t + Kyt

=
R

Σ+ R x̂t +
Σ

Σ+ Ryt

• this forecasting formula is in line with the ‘adaptive’ forecast model (4.8)
• optimal filtering (best forecast) in the model (4.9) yields an belief updating formula which
Cagan (1956) and Friedman (1957) interpreted as adaptive expectations.

21/24



LEARNING ABOUT MATCH QUALITY

We can map the motivating model of Jovanovic (1979) into our framework.

• θ is the unknown match quality, which can be treated as a constant state

θt+1 = θt = θ

yt = θt + vt

• the worker-firm pair has a prior θ ∼ N (m−1,Σ0)

• the time-t forecast of θ is denoted mt = x̂t+1 = E
[
θ | yt

]
• the model then fits into the Kalman filter framework with Ao = 1, C = 0, G = 1, R > 0, and we
thus obtain

at = yt −mt−1

Kt =
Σt

Σt + R
mt = mt−1 + Ktat

Σt+1 =
ΣtR

Σt + R .
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LEARNING ABOUT MATCH QUALITY

This can be summarized as

mt = (1− Kt)mt−1 + Ktyt

Kt =
Σt

Σt + R
1

Σt+1
=

1

R +
1

Σt

• the quantity Σ−1
t is called precision of the forecast

• since Σ−1
t → ∞ over time, the value of the parameter θ is ultimately learned

• over time, the Kalman gain declines to zero, as additional observations become less and less
informative

• this is contrary to the case when the unknown state xt fluctuates over time
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SUMMARY



SUMMARY

Information problems are essential in macroeconomics and finance.

• a key aspect is how to preserve tractability of the environment

The linear state space model preserves its tractability also under learning.

• the dynamics under learning continue to be linear
• this means that the model can easily be embedded in models solved by perturbation
approximations etc.

The hidden state space model is heavily featured in estimation.

• many macroeconomic models have a Markov solution with a Markov state that is not
observable

• the econometrician observes macroeconomic data that are an imperfect reflection of the
underlying state

• part of the estimation involves filtering the best estimation of the path of the Markov state
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