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CONTENT

Economic problem

• We have a financial market with known price dynamics for a set of assets.
• We are interested in pricing securities whose payoffs are derived from the price of these assets.
• Valuation of these derivative securities must not lead to arbitrages.

Tools

• Brownian motion and Itô processes
• Black–Scholes formula
• Finite difference approximation of partial differential equations
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LITERATURE

Textbook

• Brownian motion and Itô calculus: Duffie (2001), Chapters 5.A–5.D. Øksendal (2007), Chapters
1–6.

• Black–Scholes model: Duffie (2001), Chapters 5.E–5.H, 6.G–6.I. Øksendal (2007), Chapter 12.3.
• Numerical methods: Judd (1998), Chapter 10, Holmes (2007), Thomas (1995), Candler (2001).

Applications

• Merton (1973), Black and Scholes (1973), Cox et al. (1979)

2/87



BROWNIAN MOTION AND ITÔ CALCULUS



PRICING DERIVATIVE SECURITIES

We study the problem of pricing of derivative securities in a continuous-time environment.

• Two assets: a stock with price Qt that follows a given process, and a risk-free investment at
interest rate r

• A derivative security that generates a one-time cash flow at time T in the amount G (QT)
• We are interested in the price of this derivative security at time t ≤ T.

Black and Scholes (1973) and Merton (1973) provided a path-breaking solution to this problem.

• An application of the arbitrage pricing theory (APT) of Ross (1976)
• Two assets or portfolios that provide identical payoffs also must have the same price.

The derivative pricing result was formulated in a continuous-time model.

• Uncertainty is driven by a special process called the Brownian motion
• Characterization of the solution takes the form of a partial differential equation (PDE).
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CAPITAL ACCUMULATION EXAMPLE

Discrete-time deterministic model of capital accumulation

kt+1 = (1− δt) kt + it, (5.1)

• δt is the depreciation rate and it is the investment rate

Now assume a time period of length ∆t. Then

kt+∆t − kt = it∆t− δtkt∆t

• terms involving ∆t represent investment and depreciation flows

Dividing by ∆t and taking the limit as ∆t→ 0 yields
dkt
dt = it − δtkt.

• denote the investment rate ιt = it/kt, then
dkt
dt

1

kt
=
d log kt
dt = ιt − δt.
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CAPITAL ACCUMULATION EXAMPLE: CONTINUOUS-TIME LIMIT

The differential equation
dkt
dt

1

kt
=
d log kt
dt = ιt − δt.

with initial condition k0 has the solution

kt = k0 exp
(∫ t

0

(ιs − δs)ds
)
.

• We have solved for the stock of capital kt by integrating up net investment ιs − δs along the
trajectory of the economy over time on s ∈ [0, t].

• This continuous-time limit expressed in the form of an integral is valid even in situations when
functions ι and δ are stochastic, as long as the integral exists for each stochastic path.

• In this stochastic case, ιt and δt are adapted to filtration {Ft}, t ∈ T = {0, 1, . . . , T} .
• For a given path, the integral is a standard Riemann–Stieltjes integral, since the law of motion
(5.1) implies that kt+1 is so-called ‘predictable’, i.e., kt+1 is Ft-measurable.
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STOCHASTIC ASSET RETURNS

The predictability assumption used in the preceding example is rather restrictive.

Consider the joint evolution of two security prices

Qt+1 = Qt + µt + σt (Wt+1 −Wt) (5.2)
Bt+1 = Bt + rtBt.

• Qt is the price of a non-dividend paying stock
• Bt is the cumulative value of investment into a sequence of one-period risk-free bond
contracts with one-period interest rate rt

• Wt+1 −Wt ∼ N (0, I) is a normally distributed shock
• the joint dynamics of the two processes generate a filtration {Ft}, t ∈ T = {0, 1, . . . , T}

The expected return on the stock is

E
[
Qt+1 − Qt

Qt
| Ft

]
=
µt
Qt

and σt is the one-period volatility of the stock return.
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PORTFOLIO CHOICE AND WEALTH ACCUMULATION

At any date t, the investor chooses to invest the current wealth Jt

• purchase θft units of the risk-free asset at price Bt, and θrt units of the risky asset at price Qt
• the budget constraint is

Jt = θftBt + θrtQt.

• the value of this portfolio at time t+ 1 is

Jt+1 = θftBt+1 + θrtQt+1,

which can be subsequently reinvested again.

Manipulating this expression yields

Jt+1 = θft (Bt+1 − Bt) + θrt (Qt+1 − Qt) + θftBt + θrtQt︸ ︷︷ ︸
Jt

.
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PORTFOLIO CHOICE AND WEALTH ACCUMULATION

Summing up wealth gains Jt+1 − Jt over time, we have

T−1∑
t=0

(Jt+1 − Jt) = JT − J0 =

T−1∑
t=0

[
θft (Bt+1 − Bt) + θrt (Qt+1 − Qt)

]
.

The intertemporal portfolio choice is determined as a solution to the problem of maximizing
expected utility from time-T wealth JT,

E [u (JT)]

subject to the intertemporal budget constraint and initial condition J0, with

JT = J0 +
T−1∑
t=0

[
θftrtBt + θrtµt + θrtσt (Wt+1 −Wt)

]
.

• the fact that the investor chooses the portfolio at time t and has to hold it fixed until returns in
period t+ 1 are realized is also called the self-financing property
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STOCHASTIC ASSET RETURNS: CONTINUOUS-TIME LIMIT

Repeating the continuous-time approximation, we have the dynamics on periods with interval ∆t

Qt+∆t − Qt = µt∆t+ σt (Wt+∆t −Wt)

Bt+∆t − Bt = rtBt∆t,

with Wt+∆ −Wt ∼ N (0,∆t). We would like to take the continuous-time limit that should lead to

dQt ≈ µt + σt“dWt” (5.3)
dBt = rtBtdt.

• The question is how to construct the limiting approximation of the stochastic component “dWt”
on the first line rigorously.

• The limit will lead to a so-called stochastic differential equation, which cannot be
characterized by a Riemann–Stieltjes or Lebesgue integral.

• Uncertainty in Qt will be driven by innovations to a Brownian motion that could be interpreted
as a limiting sequence of normally distributed increments.
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PORTFOLIO CHOICE AND WEALTH ACCUMULATION: CONTINUOUS-TIME LIMIT

Similarly, the time refinement of the wealth accumulation process is given by

JT = J0 +
I−1∑
i=0

[
θfi∆t

(
B(i+1)∆t − Bi∆t

)
+ θri∆t

(
Q(i+1)∆t − Qi∆t

)]

= J0 +
I−1∑
i=0

[(
θfi∆tri∆tBi∆t + θri∆tµi∆t

)
∆t+ θri∆tσi∆t

(
W(i+1)∆t −Wi∆t

)]
with I = T/∆t.

• We are interested in the continuous-time limit of the portfolio strategy
{
θft, θ

r
t

}
that leads to

JT = J0 +
∫ T

0

[(
θftrtBt + θrtµt

)
dt+ θrtσt“dWt”

]
. (5.4)
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PORTFOLIO CHOICE AND WEALTH ACCUMULATION: CONTINUOUS-TIME LIMIT

In the discrete-time model, the investor chooses the portfolio shares θft, θrt at discrete times
t = 0, 1, . . . , T− 1, where each pair θft, θrt is Ft-measurable.

In the continuous-time limit, the investor will adjust the portfolio continuously in a sense that
needs to be made precise so that it preserves the self-financing property.

• Wealth accumulation needs to satisfy the principle that the investor chooses a portfolio and
then must hold it fixed ‘over the next instant’.

This strategy will be represented by a pair of stochastic processes θft, θrt , t ∈ [0, T] that will depend
on the observed histories of the shocks, and satisfy certain measurability restrictions.
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BROWNIAN MOTION

Definition 5.1

A k-dimensional Brownian motion is a stochastic process W on Rk such that

1. W0 = 0,
2. ∀s, t ∈ T for which s ≤ t, the difference Wt −Ws ∼ N (0, (t− s) Ik),
3. for all t0 < t1 < t2 < . . . tn ∈ T , the random variables Wtj −Wtj−1

, j ∈ {1, . . . ,n} are
independent.

Said simply, the Brownian motion is a process with independent, normally distributed increments.

This definition characterizes a unique process, as long as we restrict our attention to processes with
continuous sample paths.
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SAMPLE PATHS OF A BROWNIAN MOTION
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Sample paths of a Brownian motion are nowhere differentiable, and have ‘infinite length’.
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FILTERED PROBABILITY SPACE FOR THE BROWNIAN MOTION

Formally, the Brownian motion is defined on a filtered probability space (Ω,F , {Ft} , P).

• Ω is the sample space, or the set of all paths of the Brownian motion, with elements ω ∈ Ω

• W (ω) represents one particular path of the Brownian motion, and Wt (ω) the associated value
along that path at time t

• the σ-algebra F represents the set of all sets of paths to which probabilities can be assigned
• the Brownian motion generates a filtration {Ft} where, somewhat informally, Ft is the
information set that contains all information about the realized path of the Brownian motion
up to time t.

• P is the probability measure over the paths implied by the Gaussian assumption
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PROPERTIES OF THE BROWNIAN MOTION

The Brownian motion satisfies the Markov property: ∀t, s ≥ 0 and for every (Borel) set H ∈ B on Rk

P (Wt+s ∈ H | Ft) = P (Wt+s ∈ H | Wt) .

• distribution of Wt+s conditional on time-t information set is the same as the distribution
conditional only on the value Wt

The Brownian motion is also a martingale with respect to filtration {Ft}. For s ≤ t,

E [Wt | Fs] = E [Wt −Ws | Fs] +Ws = Ws

and, at the same time,
(E [|Wt|])2 ≤ E

[
|Wt|2

]
= nt < +∞.
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PARTITION OF A TIME INTERVAL

We want to establish a formal definition of how ‘variable’ the paths of a stochastic process are.

• partition a particular time interval T
• define a discrete-time version of variability of the paths by measuring changes in the value of
the stochastic process along the path between the nodes of the partition

• take a continuous-time limit as the partition is refined and the distance between the nodes of
the partition vanishes to zero.

Definition 5.2
The set of points P = {t0, . . . , tn} with 0 = t0 < t1 < . . . < tn = t is a partition of the interval [0, t].
Define

l (P) = max |tj − tj−1| .

to be the norm of the partition.
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VARIATION OF A STOCHASTIC PROCESS

Denote l (P) → 0 to be the limit of an arbitrary sequence of partitions P such that the norm of the
partitions in the sequence converges to zero.

Definition 5.3

Let X : Ω× T → R be a continuous stochastic process. Then for p > 0 define the p-th variation
process of Xt as

⟨X, X⟩pt (ω) = lim
l(P)→0

n−1∑
j=0

∣∣Xtj+1
(ω)− Xtj (ω)

∣∣p
where the limit is in probability.

For p = 1, the variation process is called the total variation process, and for p = 2, it is called the
quadratic variation process.
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QUADRATIC VARIATION OF A BROWNIAN MOTION

Lemma 5.4
For the univariate Brownian motion W,

⟨W,W⟩2t (ω) = t a.s..

To show this, start with a partition P of the time interval [0, t], and consider

E

∑
tj≤t

(
Wtj+1

−Wtj
)2 − t

2 = E

∑
tj≤t

(
Wtj+1

−Wtj
)22− 2t

∑
tj≤t

E
[(
Wtj+1

−Wtj
)2]

+ t2

=
∑
tj≤t

3 (tj+1 − tj)2 +
∑
tj,tk≤t
j ̸=k

(tj+1 − tj) (tk+1 − tk)− 2t2 + t2 =

= 2
∑
tj≤t

(tj+1 − tj)2 + t2 − 2t2 + t2 → 0

as l (P) → 0. Therefore
∑

tj≤t
(
Wtj+1

−Wtj
)2 → t.
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QUADRATIC VARIATION OF A BROWNIAN MOTION

For the univariate Brownian motion W,

⟨W,W⟩2t (ω) = t a.s..

• this shows that every individual path of the Brownian motion on [0, t] has the same ‘length’ t
when measured using the quadratic variation.

• hence ⟨W,W⟩2∆t (ω) = ∆t for an arbitrarily short interval ∆t
• this provides heuristic intuition why we can write “(dWt)

2 = dt”, which is a central insight of Itô
calculus, as manifested in Itô’s lemma

Since the quadratic variation is finite, it can be shown that the total variation of a Brownian motion
must be infinite,

∀t > 0 : ⟨W,W⟩1t (ω) = +∞.

This conclusion also implies that the paths of a Brownian motion are nowhere differentiable.
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FROM BROWNIAN MOTION TO STOCHASTIC INTEGRALS

We now use the Brownian motion to build more complicated processes called stochastic integrals.

• the geometric argument underlying the construction is conceptually similar to that of the
Riemann–Stieltjes integral

• technical complications associated with the irregularity of paths of the Brownian motion are
substantial and require a careful treatment

Stochastic integrals are incredibly versatile

• martingale representation theorem: any martingale in an environment with uncertainty
generated by a Brownian motion can be represented as a stochastic integral
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CONSTRUCTION OF RIEMANN–STIELTJES INTEGRAL

In order to construct the Riemann integral of a piecewise continuous function f (t) on T = [0, T] we
choose a partition P of T , and then define the integral through the limit∫ T

0

f (t)dt .= lim
l(P)→0

n−1∑
j=0

f (τj) (tj+1 − tj) , (5.5)

• τj are arbitrary values within the intervals of the partition, τj ∈ [tj, tj+1].
• the integral is well defined only if the limit does not depend on a particular choice of the
sequence of partitions, nor on the choices of the points τj ∈ [tj, tj+1].

• feometrically, the construction approximates the area under the curve f (t) using the sum of
rectangular areas f (τj) (tj+1 − tj).

The Stieltjes integral integrates along the path of a sufficiently smooth function g (t):∫ T

0

f (t)dg (t) .= lim
l(P)→0

n−1∑
j=0

f (τj) (g (tj+1)− g (tj)) . (5.6)
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STOCHASTIC INTEGRALS

The idea underlying the construction of the stochastic integral is similar

• integration along the path of a smooth function g is replaced with integration along the path
of the Brownian motion W (ω)

We desire to form the discrete-time approximation using a partition P ,
n−1∑
j=0

fτj (ω)
(
Wtj+1

(ω)−Wtj (ω)
)
, (5.7)

and ask how to construct a well-defined limit as l (P) → 0, in the same way the Riemann–Stieltjes
integral is formulated in (5.6).

• the sum in (5.7) depends on the particular path ω of the Brownian motion
• integrand fτj (ω) can also be a stochastic process
• integral defined pathwise, for each ω

The stochastic integral that is the desired outcome of this construction is therefore also a
stochastic process.
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STOCHASTIC INTEGRALS

Due to the infinite total variation of W, we need to choose the points τj in a specific way to make
the limit well defined.

• our particular interest in financial applications leads us to choose τj to be the initial point of
the interval, τj = tj

• this yields the so-called Itô integral

The construction proceeds in several steps.

• first providing the definition of the integral for a class of so-called elementary processes
• then extend this definition to larger classes of processes through limits
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WEALTH ACCUMULATION EXAMPLE

Let the share price evolve as a Brownian motion W. Consider an investor who can trade shares only
at a finite number of dates tj ∈ [0, T] which define a partition P .

Denote θtj (ω) the number of shares bought at time tj.

• we assume that the choice θtj (ω) can depend on information available up to time tj
• evolution of wealth Jt is given by

Jt (ω) = J0 +
n(t)−1∑
j=0

θtj (ω)
(
Wtj+1

(ω)−Wtj (ω)
)
+ θn(t) (ω)

(
Wt (ω)−Wtn(t) (ω)

)
(5.8)

where n (t) is the index of the interval in the partition such that t ∈ [tn(t), tn(t)+1), and n (T) = n.
• the wealth process represents cumulative gains from investments between trading dates
• the process θt viewed as a continuous-time process is constant on the intervals [tj, tj+1), and is
called a dynamic strategy
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ITÔ INTEGRALS FOR ELEMENTARY PROCESSES

Processes that have piecewise constant trajectories that are allowed to jump only at a finite
number of times are called elementary processes.

Definition 5.5
An elementary (also called simple) process ϕ on [0, T] is a process for which there exists a
partition P of [0, T] such that ϕt = ϕtj for t ∈ [tj, tj+1).

Definition 5.6

For the class of elementary processes ϕ, the Itô integral of ϕ is defined as∫ t

0

ϕs (ω)dWs (ω)
.
=

n(t)−1∑
j=0

ϕtj (ω)
(
Wtj+1

(ω)−Wtj (ω)
)

(5.9)

+ϕtn(t) (ω)
(
Wt (ω)−Wtn(t) (ω)

)
,

where the last term reflects the interrupted last interval of the partition and n (t) is such that
t ∈ [tn(t), tn(t)+1).
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PATH APPROXIMATIONS

We use elementary processes to approximate more complicated processes. The goal is to extend
the definition of Itô integral as a limiting approximation using Itô integral of elementary processes.

To illustrate the challenge, consider two candidate approximations of the path of a Brownian
motion W on the interval T = [0, T], on a given partition P of T :

ϕt (ω) =

n−1∑
j=0

Wtj (ω)1[tj,tj+1)
(t)

ψt (ω) =

n−1∑
j=0

Wtj+1
(ω)1[tj,tj+1)

(t) .

• ϕt approximates path of Wt (ω) on [tj, tj+1) with the initial value Wtj (ω) on each interval
• ψt approximates path of Wt (ω) on [tj, tj+1) with the terminal value Wtj+1

(ω) on each interval
• as we refine the partition, the approximations approach each other in a loose sense, so it
would seem that choosing ϕt or ψt will lead to the same conclusions l (P) → 0.
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RIEMANN INTEGRAL OF A BROWNIAN MOTION

In the case of a Riemann integral, the limits of integrals of the two approximations as we refine the
partition indeed coincide, and define the Riemann integral of the Brownian motion:

lim
l(P)→0

∫ T

0

ϕt (ω)dt = lim
l(P)→0

∫ T

0

ψt (ω)dt .=
∫ T

0

Wt (ω)dt.

This is not surprising because this construction is in line with the definition of Riemann integral.

• since the path of a Brownian motion is continuous, the path is Riemann integrable
• for a Riemann integral, the choice of approximation points τj ∈ [tj, tj+1] is inconsequential
• geometrically, the areas under the two curves given by ϕt and ψt converge to each other
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STOCHASTIC INTEGRAL OF A BROWNIAN MOTION

The situation is markedly different in the case of the stochastic integral. Since ϕ and ψ are
elementary processes, their Itô integrals on [0, T] are defined, omitting the path arguments ω, as∫ t

0

ϕsdWs
.
=

n(t)−1∑
j=0

Wtj
(
Wtj+1

−Wtj
)
+Wtn(t)

(
Wt −Wtn(t)

)
∫ t

0

ψsdWs
.
=

n(t)−1∑
j=0

Wtj+1

(
Wtj+1

−Wtj
)
+Wtn(t)+1

(
Wt −Wtn(t)

)
.

To see the distinction between the two constructions, compute the expectations

E
[∫ T

0

ϕtdWt | F0

]
= E

n−1∑
j=0

Wtj
(
Wtj+1

−Wtj
)
| F0

 = 0, (5.10)

E
[∫ T

0

ψtdWt | F0

]
= E

n−1∑
j=0

Wtj+1

(
Wtj+1

−Wtj
)
| F0

 = T.

These expectations will therefore remain distinct even if we take the limit l (P) → 0.
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STOCHASTIC INTEGRAL OF A BROWNIAN MOTION

Despite the fact that both ϕ and ψ seem to be reasonable approximations of W, they yield different
answers for the stochastic integral of W.

• the intuitive reason is that there is too much variation in W over time (W is a process of infinite
total variation)

• the approximations ϕ and ψ are too distinct once we integrated along a path with infinite total
variation

• in contrast, the Riemann–Stieltjes integral (5.6) integrates against a function g that has finite
total variation

29/87



ITÔ INTEGRALS AS ADAPTED PROCESSES

From the perspective of financial applications, the approximation via ϕ that uses the initial points
of the intervals is the desirable choice.

• this choice aligns with the wealth accumulation process generated by self-financing dynamic
portfolio strategies

• mathematically, the Itô integral is adapted to filtration {Ft} generated by the Brownian motion,
meaning that the portfolio choice at the t cannot depend on information at future dates u > t

• on the other hand, the integral constructed using ψ is not adapted to {Ft} because the
integral up to time t ∈ [tj, tj+1) uses the value of ψ at tj+1 > t

• while this may seem innocuous in the limit as l (P) → 0, it is a key difference
• in the wealth accumulation example, ψ corresponds to choosing the portfolio θtj at time tj
according to the realized return Wtj+1

at the future date tj+1
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MARTINGALE PROPERTY OF ITÔ INTEGRALS

The Itô integral is also a martingale with respect to the filtration generated by the Brownian motion,
consistently with the expected value in (5.10). For u < t,

E
[∫ t

0

ϕsdWs | Fu

]
= E

[∫ u

0

ϕsdWs +

∫ t

u
ϕsdWs | Fu

]
(5.11)

=

∫ u

0

ϕsdWs + E
[∫ t

u
ϕsdWs | Fu

]
=

∫ u

0

ϕsdWs.

• the first equality follows from the linearity of the integral
• the second equality from the fact that

∫ u
0
ϕsdWs is measurable with respect to Fu

• the third equality utilizes the same calculation as in (5.8).
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ITÔ INTEGRALS OF SQUARE INTEGRABLE PROCESSES

Having defined the Itô integral on the class of elementary processes in Definition 5.6, the goal now
is to extend this definition to a larger class of stochastic processes f, giving a meaning to the
expression ∫ t

0

fs (ω)dWs (ω) .

• construction is based on limiting approximations of the stochastic process f using elementary
processes (for details, see, for example, Øksendal (2007), Chapter 3)

We need to restrict attention to a suitable class of processes that can be meaningfully
approximated.

• Let L be the set of all processes adapted to the filtration generated by the Brownian motion.
Define

H2 =

{
f ∈ L : E

[∫ T

0

(ft)2 dt
]
<∞

}
.
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ITÔ INTEGRALS OF SQUARE INTEGRABLE PROCESSES

Definition 5.7

Let f ∈ H2. Then the Itô integral of f is defined by∫ T

0

ft (ω)dWt (ω) = lim
k→∞

∫ T

0

ϕkt (ω)dWt (ω) (5.12)

where
{
ϕk

}
is a sequence of elementary functions in H2 such that

E
[∫ T

0

(
ft (ω)− ϕkt (ω)

)2

dt
]
→ 0 as k→ ∞. (5.13)
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ITÔ INTEGRALS OF SQUARE INTEGRABLE PROCESSES

The idea of the definition is to construct a sequence of elementary processes
{
ϕk

}
with piecewise

constant paths such that ϕk approximates the process f successively better as k→ ∞.

The definition is only meaningful if every such sequence
{
ϕk

}
that satisfies (5.13) yields the same

value of the limit on the right-hand side of (5.12), which is a result that needs to be proven. Then
this common value defines the Itô integral of f.

Itô integrals of processes f ∈ H2 preserve the martingale property, just like in the case of
elementary processes (5.11):

E
[∫ t

0

fs (ω)dWs (ω) | Fu

]
=

∫ u

0

fs (ω)dWs (ω) .
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ITÔ PROCESSES

We now define a class of processes called Itô processes that additively combine Riemann integrals
and Itô integrals. This class is sufficiently general to cover many interesting applications.

Definition 5.8

An n-dimensional Itô process is a process X : Ω× T →Rn such that

Xt = X0 +
∫ t

0

µsds+
∫ t

0

σsdWs (5.14)

where W is a k-dimensional Brownian motion. We assume that µ and σ are Ft-adapted where
{Ft} is a filtration with respect to which W is a martingale.

An Itô diffusion is an Itô process for which the coefficients satisfy µs = µ (Xs) and σs = σ (Xs) for
all s ∈ T .
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ITÔ PROCESSES

Often, equation (5.14) is written in the ‘differential’ form

dXt = µtdt+ σtdWt.

• The process µ is called drift, and σ is called the volatility of the Itô process.
• The Itô process Xt defined above is n-dimensional, with uncertainty generated by a
k-dimensional Brownian motion

• µ is an n× 1-dimensional vector process, and σ is an n× k dimensional
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DRIFT AND VOLATILITY OF AN ITÔ PROCESS

When the processes µ, σ ∈ H2, then the Itô integral is a martingale and the argument of the Itô
integral is square integrable.

It then follows that for t,u ≥ 0,

E [Xt+u | Ft] = Xt +
∫ t+u

t
µsds

Var [Xt+u | Ft] = E
[(∫ t+u

t
σsdWs

)2

| Ft

]
= E

[∫ t+u

t
|σs|2 dt | Ft

]
where the last equality follows from a result known as Itô isometry.
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DRIFT AND VOLATILITY OF AN ITÔ PROCESS

Then we can localize the mean and variance by constructing the infinitesimal expected growth rate
and variance of the process:

d
duE [Xt+u | Ft]

∣∣∣∣
u=0

= µt a.s.

d
duVar [Xt+u | Ft]

∣∣∣∣
u=0

= |σs|2 = σtσ
′
t a.s.

which justifies calling the two coefficients the drift and volatility of the Itô process.

Informally, we will write these results in the shorthand differential form

Et [dXt] = µtdt
Vart [dXt] = σtσ

′
tdt,

where Et [·] = E [· | Ft].
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TRANSFORMATIONS OF ITÔ PROCESSES

The definition of an Itô process X in (5.14) seems to be restrictive, since it involves a linear
combination of a Riemann integral and an Itô integral.

• It would then seem that nonlinear transformations of X would no longer be Itô processes.
• For example, in the case of the discrete-time linear vector-autoregression

xt+1 = Aoxt + Cwt+1 wt+1 ∼ N (0, Ip) iid,

a transformation yt = f (xt) for some nonlinear function f would no longer yield a linear
vector-autoregression for yt.

Starting from a given Itô process X, we want to characterize its nonlinear transformation Yt = f (t, Xt)
where f is a given, sufficiently differentiable function.

• It turns out that Yt is again an Itô process.
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ITÔ’S LEMMA

The characterization is provided by a key result of stochastic calculus, Itô’s lemma, due to Itô (1951).

We provide its scalar version, with only a heuristic proof.

Theorem 5.9 (Itô’s lemma)

Let X be a univariate Itô process
dXt = µtdt+ σtdWt

where W is a univariate Brownian motion. Let f : R2 → R with f ∈ C2 (T × R) (twice continuously
differentiable). Then Yt = f (t, Xt) is an Itô process and

dYt = ft (t, Xt)dt+ fx (t, Xt)µtdt+
1

2
fxx (t, Xt)σ2

t dt+ fx (t, Xt)σtdWt.
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ITÔ’S LEMMA

Proof. The heuristic proof goes as follows. First consider a ‘second-order’ Taylor approximation

dYt = ftdt+ fxdXt +
1

2
ftt (dt)2 + ftxdtdXt +

1

2
fxx (dXt)2

Now observe

dtdXt = dt (µtdt+ σtdWt) = µt (dt)2 + σtdtdWt

(dXt)2 = µ2
t (dt)2 + 2µtσtdtdWt + σ2

t (dWt)
2

• when we computed the quadratic variation of an Itô process, we argued that (dWt)
2 = dt

• hence (dWt)
2 is a first-order term in dt

• since dWt can be argued to have mean zero and variance dt, the term dtdWt will be mean zero
and variance (dt)2, which is a higher-order stochastic term than dWt

• therefore, the only term left in the two expressions above is σ2
t (dWt)

2 = σ2
t dt.

• combining these results yields the statement of Itô’s lemma
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ITÔ’S LEMMA

A key observation obtained from Itô’s lemma is that the process Yt also follows an Itô diffusion:

Yt = Y0 +
∫ t

0

[
ft (s, Xs) + fx (s, Xs)µs +

1

2
fxx (s, Xs)σ2

s

]
ds+

∫ t

0

fx (s, Xs)σsdWs.

• The linearity of the Itô process and additivity of its two integrals is therefore without loss of
generality, and preserved under the nonlinear transformation Yt = f (t, Xt).

• The nonlinearity is embedded in the transformation of the drift and volatility coefficients of
the Itô process.
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MULTIVARIATE ITÔ’S LEMMA

Itô’s lemma can be directly extended to multivariate Brownian motions when we note that for two
independent Brownian motions Wj and Wk, we have

(
dWj

t

)(
dWk

t

)
= 0.

Theorem 5.10 (Multivariate Itô’s lemma)
Let W be a k-dimensional Brownian motion, X an n-dimensional Itô process

dXt = µtdt+ σtdWt

and f : T × Rn → Rm be from C2. Then for Yt = f (t, Xt), we have for the k-th component Ykt

dYkt =
[
fkt + fkxµt +

1

2
tr
[
σtσ

′
t fkxx

]]
dt+ fkxσtdWt.
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ARITHMETIC BROWNIAN MOTION

Let X be an Itô process characterized in differential form by

dXt = µdt+ σdWt

with a given initial condition X0. We can proceed by integrating∫ t

0

dXs = Xt − X0

=

∫ t

0

µds+
∫ t

0

σdWs = µ

∫ t

0

ds+ σ

∫ t

0

dWs = µt+ σ (Wt −W0) .

Since W0 = 0, we obtain the explicit solution for Xt in the form

Xt = X0 + µt+ σWt,

which is a process called the arithmetic Brownian motion. In particular, since Wt ∼ N (0, t), the
distribution of Xt conditional on X0 is

Xt ∼ N
(
X0 + µt, σ2t

)
.
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GEOMETRIC BROWNIAN MOTION

Let X be an Itô process characterized in differential form by

dXt = µXtdt+ σXtdWt

with a given initial condition X0. To find an explicit solution for Xt, we cannot integrate both sides of
the above formulas since the right-hand side also depends on Xt.

Let us therefore first define Yt = log Xt and apply Itô’s lemma

dYt = d log Xt =
1

Xt
dXt −

1

2

1

X2t
(dXt)2 =

1

Xt
(µXtdt+ σXtdWt)−

1

2

1

X2t
σ2X2t dt

=

(
µ− 1

2
σ2

)
dt+ σdWt.

We can now integrate both sides of the equation∫ t

0

dYs = Yt − Y0 =

∫ t

0

(
µ− 1

2
σ2

)
ds+

∫ t

0

σdWs =

(
µ− 1

2
σ2

)
t+ σWt.
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GEOMETRIC BROWNIAN MOTION

Hence we obtain
Yt = Y0 +

(
µ− 1

2
σ2

)
t+ σWt.

Exponentiating and noticing that Xt = exp (Yt), we have the solution

Xt = X0 exp
((

µ− 1

2
σ2

)
t+ σWt

)
,

which is a process called the geometric Brownian motion.

Xt is therefore a random variable that is log-normally distributed conditional on X0,

Xt ∼ N
(

log X0 +
(
µ− 1

2
σ2

)
t, σ2t

)
,

and
E [Xt|X0] = X0 exp (µt) ,

which follows from the formula for the mean of a log-normally distributed variable.

46/87



THE BLACK–SCHOLES MODEL



A MODEL FOR PRICING OF DERIVATIVE SECURITIES

The Black–Scholes model for option pricing has been developed in Black and Scholes (1973), with a
central insight based on dynamic hedging provided by Robert Merton.

The model was extended to the pricing of more complicated derivative securities in Merton (1973),
and to more complex environments in the subsequent literature.

While research on the pricing of derivative securities has been active before, the central
contribution of Black and Scholes (1973) and Merton (1973) is that they were able to derive the
valuation formulas in terms of relatively easy-to-measure parameters.
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MARKET STRUCTURE

Time is continuous and given by a finite interval T = [0, T]. Two securities are traded.

Risk-free bond provides a constant risk-free return r over each infinitesimal horizon.

• An initial investment B0 = 1 into this security accumulates over time as

dBt = rBtdt (5.15)

so that the value of such an investment at time t is

Bt = exp
(∫ t

0

rds
)

= exp (rt) . (5.16)

Risky non-dividend yielding stock has price Qt that follows a geometric Brownian motion

dQt = µQtdt+ σQtdWt (5.17)

• constant scalar parameters µ and σ and a given initial price Q0.

The security market is hence characterized by three parameters, the risk-free rate r, the expected
return on the risky investment µ and the volatility of the risky investment σ.
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ASSET RETURNS

The stock price process has an explicit solution

Qt = Q0 exp
((

µ− 1

2
σ2

)
t+ σWt

)
. (5.18)

The expected price conditional on Q0 then is

E [Qt|Q0] = Q0 exp (µt) .

We can compute the annualized expected returns over an infinitesimal horizon t.

For the investment into the risk-free security

lim
t→0

1

t
E [Bt]− B0

B0
= lim

t→0

1

t (exp (rt)− 1) = r,

and for the risky stock
lim
t→0

1

t
E [Qt]− Q0

Q0
= lim

t→0

1

t (exp (µt)− 1) = µ.

The infinitesimal risk premium on the stock therefore is µ− r.
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PORTFOLIO CHOICES

At any time t, an investor can choose to purchase

• θft units of the risk-free asset at price Bt
• θrt units of the stock at price Qt.

The financial gain over an infinitesimal horizon from this investment is

θftdBt + θrtdQt

and a given portfolio strategy θf, θr yields terminal wealth at time T

JT = J0 +
∫ T

0

[(
θftrBt + θrtµ

)
dt+ θrtσdWt

]
.

The value JT is the terminal payoff from the self-financing portfolio strategy.
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COMPLETE MARKETS

We have a market with two assets and uncertainty driven by a univariate Brownian motion

• one risk-free and one risky with a nontrivial volatility of the price, with portfolio strategy θf, θr

This market is so-called complete.

• consider an arbitrary time-T payoff GT that is FT-measurable
• market completeness means that any such payoff GT can be replicated as an outcome of a
suitably chosen dynamic portfolio strategy θf, θr, with a particular amount of initial wealth.

Hence every other security with a given time-T payoff is so-called redundant.
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DERIVATIVE SECURITIES

We are interested in pricing a security with terminal payoff at time T equal to G (QT).

Since the payoff is a function of the underlying stock price, such a security is called derivative.

• Typical examples of derivative securities are options. A call option with strike price K has payoff

G (QT) = max (QT − K, 0) ≡ (QT − K)+ , (5.19)

while a put option with strike price K has payoff

G (QT) = max (K− QT, 0) ≡ (K− QT)+ . (5.20)

• The term option comes from the fact that, for example in the case of a call option, its payoff is
equivalent to the right to buy the underlying stock at time T for the price K.
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PRICING FUNCTION FOR THE DERIVATIVE SECURITY

We want to infer the price of the derivative security at time t ≤ T.

• the time-T payoff G (QT) of the derivative security only depends on QT
• the interest rate r is constant
• the distribution of the future stock price conditional on time-t information only depends on Qt
• we also need to explicitly encode time, to measure time remaining to maturity

We can therefore conjecture that the time-t price can be written as g (Qt, t), where g is a pricing
function we need to derive.

53/87



PRICING FUNCTION FOR THE DERIVATIVE SECURITY

Since the market is complete, the derivative security is redundant.

• its payoff can be achieved by a suitable dynamic portfolio strategy in the bond and stock

It follows from absence of arbitrage that the price g (Qt, t) must be equal to the value of the
portfolio needed to replicate the same terminal payoff G (QT).

• if it were not, then a strategy that would purchase the cheaper asset or portfolio while selling
the more expensive one would generate immediate positive payoff without any future financial
consequences

The central argument is to characterize the replicating portfolio.
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REPLICATION ARGUMENT

We need to determine the portfolio positions that generate the replicating portfolio.

• based on a dynamic hedging argument (pointed out to Black and Scholes by Robert Merton,
see Footnote 3 in Black and Scholes (1973))

• the idea is to find a particular combination of the bond and stock such that the infinitesimal
return is the same as the infinitesimal return on the derivative security

• extending the infinitesimal argument to finite horizon T yields the desired answer

If the portfolio replicates the returns ‘step-by-step’, it also has to replicate the time T payoff.
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REPLICATION ARGUMENT

We develop the idea in an equivalent way, from a slightly different angle.

• construct a portfolio consisting of a particular combination of the stock and the derivative that
makes the return on this portfolio risk-free, over an infinitesimal horizon

• since the portfolio is risk-free, it must earn the risk-free rate r, otherwise an arbitrage
opportunity would emerge

Let such a self-financing portfolio consist of

• one option with current price g (Qt, t)
• a position of θrt units of the risky stock with price Qt

The value of this portfolio is
1 · g (Qt, t) + θrtQt.
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FINANCIAL GAIN ON THE REPLICATING PORTFOLIO

By the self-financing assumption, the infinitesimal financial gain is

• θrtdQt on stock portion of this portfolio
• 1 · dg (Qt, t) on the option portion.

An application of Itô’s lemma implies that

dg (Qt, t) = gQ (Qt, t)dQt +
1

2
gQQ (Qt, t) (dQt)2 + gt (Qt, t)dt

=

[
gQ (Qt, t)µQt +

1

2
gQQ (Qt, t)σ2 + gt (Qt, t)

]
dt+ gQ (Qt, t)σQtdWt.

The evolution of the value of the portfolio is therefore given by

dg (Qt, t) + θrtdQt =

[(
gQ (Qt, t) + θrt

)
µQt +

1

2
gQQ (Qt, t)σ2Q2

t + gt (Qt, t)
]
dt

+
[
gQ (Qt, t) + θrt

]
σQtdWt.
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CONSTRUCTING A RISK-FREE PORTFOLIO

The evolution of the value of the portfolio:

dg (Qt, t) + θrtdQt =

[(
gQ (Qt, t) + θrt

)
µQt +

1

2
gQQ (Qt, t)σ2Q2

t + gt (Qt, t)
]
dt

+
[
gQ (Qt, t) + θrt

]︸ ︷︷ ︸
risk exposure

σQtdWt.

We want to choose θrt to make the gain on the portfolio locally risk-free

• this corresponds to a zero risk exposure of the financial gain

This implies we must choose
θrt = −gQ (Qt, t) .
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A NO-ARBITRAGE ARGUMENT

With the choice θrt = −gQ (Qt, t), the financial gain on the portfolio is equal to

dg (Qt, t)− gQ (Qt, t)dQt =
[
1

2
gQQ (Qt, t)σ2Q2

t + gt (Qt, t)
]
dt. (5.21)

Absence of arbitrage implies that this portfolio then must earn the risk-free rate r, and hence also

dg (Qt, t)− gQ (Qt, t)dQt = r [g (Qt, t)− gQ (Qt, t)Qt]dt. (5.22)

Equalizing the drift terms on the right-hand sides of (5.21) and (5.22), and writing Q instead of Qt, we
obtain the equation

rg (Q, t) = gt (Q, t) + gQ (Q, t) rQ+
1

2
gQQ (Q, t)σ2Q2.

This is a second-order partial differential equation for the price of the derivative security g (Q, t).
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A SECOND-ORDER PDE FOR THE VALUE OF THE DERIVATIVE

Second-order PDE for g (Q, t):

rg (Q, t) = gt (Q, t) + gQ (Q, t) rQ+
1

2
gQQ (Q, t)σ2Q2. (5.23)

This second-order PDE has a terminal boundary condition g (Q, T) = G (Q) .

• the price of the derivative security at maturity time T is equal to the payoff G (Q)

The PDE does not depend on the expected return on the stock µ.

• this is a path-breaking result shown by Black and Scholes (1973)
• the risk-free rate r is directly observable and the volatility of risky asset returns σ can be
reasonably inferred from high-frequency data

• measuring the expected return on a risky asset µ is an inherently difficult task

Independence of µ is the result of the replication argument combined with absence of arbitrage.

• this argument carries over to a variety of extensions as well
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ANALYTICAL SOLUTIONS FOR OPTION PRICES

The prices of the call and put options with payoffs (5.19)–(5.20) can be determined as closed-form
expressions which only depend on quantiles of the normal distribution.

Proposition 5.11
Time-t prices of European call and put options with payoffs (5.19) and (5.20), respectively, with
strike price K and maturity T, are given by

C (Q, t) = QN (z1)− exp (−r (T− t)) KN (z2)
P (Q, t) = exp (−r (T− t)) KN (−z2)− QN (−z1)

where N (·) is the cumulative standard normal distribution function, and

z1 =
log

(Q
K
)
+

(
r+ 1

2
σ2

)
(T− t)

σ
√
T− t

z2 = z1 − σ
√
T− t.

It can be verified that C (Q, t) and P (Q, t) satisfy the partial differential equation (5.23).
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PUT-CALL PARITY

Given a strike price K, it is sufficient to compute only the price of one of the options because the
call and put option price are related through the so-called put-call parity

P (Qt, t) + Qt = C (Qt, t) + K exp (−r (T− t)) . (5.24)

The put-call parity result is based on a replication argument.

• the left-hand side of (5.24) is the value of a portfolio consisting of a put option and the stock,
with payoff max (K− QT, 0) + QT = max (K,QT)

• the right-hand side is the value of a portfolio invested in a call option and a risk-free
investment with face value K, with total payoff max (QT − K, 0) + K = max (QT, K)

Portfolios on both sides of the equation have identical payoffs at time T.

• by the no-arbitrage argument, they must also have the same time-t valuation.
• P (Qt, t) and C (Qt, t) are the prices of the options, Qt is the stock price, and K exp (−r (T− t)) is
the time-t value of the risk-free investment.
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TRANSFORMATION OF VARIABLES

For computational purposes, it may be useful to transform the state variable in the PDE

• use q = logQ instead of Q
• more suitable for an equidistant grid when Q follows a geometric Brownian motion

Define the transformation f (q, t) = f (logQ, t) = g (Q, t) = g (exp (q) , t):

fq (q, t) =
d
dqg (exp (q) , t) = gQ (exp (q) , t) exp (q) = gQ (Q, t)Q

fqq (q, t) =
d
dq (gQ (exp (q) , t) exp (q)) = gQQ (Q, t)Q2 + gQ (Q, t)Q.

• the partial differential equation is transformed to

rf (q, t) = ft (q, t) +
(
r− 1

2
σ2

)
fq (q, t) +

1

2
σ2fqq (q, t)

with the terminal boundary condition f (q, t) = G (exp (q)).
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FINITE-DIFFERENCE METHOD



PROBLEM SETUP

We study numerical solutions to a general class of PDEs

h (x, t)−v (x, t) r (x, t) + vx (x, t)µ (x, t) +
1

2
vxx (x, t)σ (x, t)2︸ ︷︷ ︸

.
= Dv (x, t)

+ vt (x, t) = 0 (5.25)

• state-time space X × T = [l, r]× [0, T]
• v (x, t) unknown function, h (x, t), r (x, t), µ (x, t), σ (x, t) known parameters
• terminal condition v (x, T) = H (x, T)
• boundary condition

α (x, t) vx (x, t) + β (x, t) v (x, t) = γ (x, t) x ∈ {l, r} , t ∈ [0, T] (5.26)
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RELATIONSHIP TO THE BLACK–SCHOLES PROBLEM

The Black–Scholes PDE is (almost) a special case of (5.25):

rg (Q, t) = gt (Q, t) + gQ (Q, t) rQ+
1

2
gQQ (Q, t)σ2Q2 (5.27)

so we have
r (x, t) = r, µ (x, t) = rx, σ (x, t) = σx, h (x, t) = 0, H (x, T) = G (x) .

The issue is the state space: X = (0,∞) in the Black–Scholes model

• boundary conditions need to be determined using other considerations
• a heuristic approach: specify a sufficiently ‘wide’ interval [l, r] and approximate the boundary
condition (5.26) with (5.27), setting gQQ (Q, t) = gt (Q, t) = 0

• then we have β (x, t) = r, α (x, t) = −rx, and γ (x, t) = 0

• heuristic: nonlinearity vanishes in the tails + solution interior to choice of ‘distant’ boundaries
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RELATIONSHIP TO THE FEYNMAN–KAC FORMULA

The Feynman–Kac formula relates the solution of the PDE for v (x, t)

h (x, t)−v (x, t) r (x, t) + vx (x, t)µ (x, t) +
1

2
vxx (x, t)σ (x, t)2︸ ︷︷ ︸

.
= Dv (x, t)

+ vt (x, t) = 0 (5.28)

with terminal condition v (x, T) = H (x, T) to the present value problem

v (x, t) = E
[∫ T

t
ϕ (t, s)h (Xs, s)ds+ ϕ (t, T)H (XT, T) | Xt = x

]
(5.29)

ϕ (t, s) = exp
(
−
∫ s

t
r (Xτ , τ)dτ

)
dXt = µ (Xt, t)dt+ σ (Xt, t)dWt on X = (l, r) ⊆ R.
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BLACK–SCHOLES EQUATION AS A RISK-NEUTRAL PRESENT-VALUE FORMULA

We can map the Black–Scholes PDE

rg (Q, t) = gt (Q, t) + gQ (Q, t) rQ+
1

2
gQQ (Q, t)σ2Q2

with terminal condition g (Q, T) = G (T) to the Feynman–Kac formula.

This implies that the solution to the Black–Scholes problem can be equivalently written as

g (Qt, t) = E
[
e−r(T−t)G (QT) |Qt

]
(5.30)

with Qt following the dynamics
dQt = rQtdt+ σQtdW∗

t . (5.31)

Equation (5.30) is the present value of G (QT), discounted by a hypothetical SDF
S∗T
S∗t

= e−r(T−t)

with dynamics of the stock price modified to (5.31)

• expected return on the stock equal to r instead of µ =⇒ risk-neutral pricing

67/87



PARABOLIC DIFFERENTIAL EQUATION

We have the PDE in the form
−vt (x, t) = Dv (x, t) + h (x, t)

with Dv (x, t) given in (5.25), terminal condition v (x, T) = H (x, T), and a general boundary condition

α (x, t) vx (x, t) + β (x, t) v (x, t) = γ (x, t) x ∈ {l, r} , t ∈ [0, T]

• allows to incorporate various types of boundary behavior

The idea is to overlay a grid of points over the rectangle [l, r]× [0, T], approximate derivatives with
differences, and turn the problem to an algebraic system of linear equations.

• The PDE is of the so-called ‘parabolic’ type =⇒ allows solving the problem in ‘time layers’.
• classification based on coefficients on the second order terms

Avxx + Bvxt + Cvtt + lower order terms = 0

B2 − AC < 0 elliptic (models of static equilibria), = 0 parabolic (heat dissipation), > 0 hyperbolic
(wave propagation)

68/87



EQUIDISTANT GRID

Construct grids

• space dimension i = {0, . . . , I}, step size ∆x = (r− l) /I
• time dimension j = {0, . . . , J}, step size ∆t = T/J
• denote vi,j = v (i∆x, j∆t)

Considerations

• What if l, r are infinite? Need to choose a suitable truncation.
• Equidistant grids are not the only choice. More complicated notation.
• Often a change of variable (logs vs levels) is a better adjustment than choosing
non-equidistant grids.
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EQUIDISTANT GRID

v0,0 · · · v0,j−1 v0,j · · · v0,J
...

...
...

...
vi−1,0 vi−1,j−1 vi−1,j vi−1,J

vi,0 vi,j−1 vi,j vi,J
vi+1,0 vi+1,j−1 vi+1,j vi+1,J

...
...

...
...

vI,0 · · · vI,j−1 vI,j · · · vI,J

t = Tt = 0

x = l

x = r
∆t

∆x

• terminal condition v (x, T) = G (x, T) for x ∈ [l, r]
• boundary conditions v (l, t) and v (r, T) for t ∈ [0, T]
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DISCRETE APPROXIMATION OF SPACE DERIVATIVES

We replace derivatives vx, vxx and vt at an interior node (i, j) with differences.

Approximation of first-order derivative vx at x = i∆x and t = j∆t :

forward difference : vx (i∆x, j∆t) ≈ vx̄i,j
.
=

1

∆x (vi+1,j − vi,j)

central difference : vx (i∆x, j∆t) ≈ vxci,j
.
=

1

2∆x (vi+1,j − vi−1,j)

backward difference : vx (i∆x, j∆t) ≈ vxi,j
.
=

1

∆x (vi,j − vi−1,j)

• which difference is used sometimes matters a lot (see upwind scheme)

Approximation of second-order derivative vxx at x = i∆x and t = j∆t :

vxx (i∆x, j∆t) ≈ vx̄xi,j =
1

∆x

(
vx̄i,j − vx̄i,j−1

)
=

1

(∆x)2
(vi+1,j − 2vi,j + vi,j−1)
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DISCRETE APPROXIMATION OF SPACE DERIVATIVES

Collecting terms, we replace

Dv (x, t) = −v (x, t) r (x, t) + vx (x, t)µ (x, t) +
1

2
vxx (x, t)σ (x, t)2

at (x, t) = (i∆x, j∆t)
(Dv)i,j = −vi,jri,j + vx̄i,jµi,j +

1

2
vx̄xi,jσ

2
i,j

• here, we used forward difference vx̄i,j as an example

72/87



DISCRETE APPROXIMATION OF DERIVATIVES AT BOUNDARIES

At the boundaries, proceed in the same way.

• use forward difference at x = l and backward difference at x = r

α0,jv0,j + β0,jvx̄0,j = γ0,j

αI,jvI,j + βI,jvxI,j = γI,j

• solve for v0,j and vI,j and use it to substitute out v0,j at node i = 1 and vI,j at node i = I− 1.

Recall that the (known) coefficients α, β, γ will depend on the economics of the problem and
boundary behavior of Xt.

If the boundary condition also contains time derivative vt, then treat the boundary points i ∈ {0, I}
in the same way as interior points.
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APPROXIMATION IN THE TIME DIMENSION

In the time dimension, we proceed in the same way

forward difference: vt (i∆x, j∆t) ≈ vt̄i,j
.
=

1

∆t (vi,j+1 − vi,j)

backward difference: vt (i∆x, j∆t) ≈ vti,j
.
=

1

∆t (vi,j − vi,j−1)

The choice will determine two difference solution methods

• forward difference =⇒ implicit scheme
• backward difference =⇒ explicit scheme

We characterize stability properties of these choices in some simple cases.
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EXPLICIT SCHEME

The PDE approximation at node (i, j) using the backward time difference is

−vti,j = (Dv)i,j + hi,j

which we can write as
vi,j−1 = (∆t) (Dv)i,j + vi,j + (∆t)hi,j

If we know the solution at nodes

(i, j) for all i ∈ {1, . . . , I− 1} [i.e., at time t = j∆t]

we can explicitly compute the solution at nodes

(i, j− 1) for all i ∈ {1, . . . , I− 1} [i.e., at time t = (j− 1)∆t].
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EXPLICIT SCHEME

v0,0 · · · v0,j−1 v0,j · · · v0,J
...

...
...

...
vi−1,0 vi−1,j−1 vi−1,j vi−1,J

vi,0 vi,j−1 vi,j vi,J
vi+1,0 vi+1,j−1 vi+1,j vi+1,J

...
...

...
...

vI,0 · · · vI,j−1 vI,j · · · vI,J

t = Tt = 0

x = l

x = r

• equation at node (i, j) involves known values vi−1,j, vi,j, vi+1,j and an unknown value vi,j−1
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MATRIX FORM

The system of equation is linear in vi,j, and we can write it in matrix form.

vint·,j−1 = Ajvint·,j + h̃j

• Aj in an (I− 1)× (I− 1) matrix
• vin·,j = (v1,j, . . . vI−1,j)

′ is the vector for the solution at interior nodes

• h̃j is an (I− 1)× 1 vector

For notational simplicity, restrict ourselves to the heat equation case

r (x, t) = µ (x, t) = 0, σ (x, t) = σ

with boundary conditions

α (x, t) = 1, β (x, t) = 0, γ (l, t) = γl, γ (r, t) = γr
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MATRIX FORM

In this simple case, we have

A =


1− ∆t

(∆x)2 σ
2 ∆t

(∆x)2
σ2

2
0 0 · · ·

∆t
(∆x)2

σ2

2
1− ∆t

(∆x)2 σ
2 ∆t

(∆x)2
σ2

2
0 · · ·

0 ∆t
(∆x)2

σ2

2
1− ∆t

(∆x)2 σ
2 ∆t

(∆x)2
σ2

2
. . .

0 0
. . . . . . . . .



h̃j =



(∆t)hi,j + ∆t
(∆x)2

σ2

2
γl

(∆t)hi,j
...

(∆t)hi,j
(∆t)hi,j + ∆t

(∆x)2
σ2

2
γh


Even in the general case, A remains tri-diagonal.
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STABILITY OF THE EXPLICIT SCHEME

In the explicit scheme (with Aj = A), solving the problem corresponds to iterating backward

vint·,0 = Avint·,1 + h̃1 = A2vint·,2 + Ah̃2vint·,1 + h̃1 = . . .

Stability of the explicit scheme depend on the eigenvalues of A.

• eigenvalues of this matrix are given by

λi = 1− 2
∆t

(∆x)2
σ2

(
sin iπ

2I

)2

i ∈ {1, . . . , I− 1}

• we require |λi| < 1, ∀i, i.e.,

−1 < 1− 2
∆t

(∆x)2
σ2

(
sin iπ

2I

)2

< 1

• it is sufficient to choose ∆t and ∆x so that they satisfy

σ2∆t < (∆x)2
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STABILITY OF THE EXPLICIT SCHEME

Explicit scheme is therefore conditionally stable

• we should choose the space and time grids suitably

σ2∆t < (∆x)2

• stability assures that small inaccuracies in the solution do not explode as we iterate

In the more general case with non-constant coefficients, it is not easy to characterize sufficient
conditions explicitly, but the general intuition (stability of matrices Aj) still holds.
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IMPLICIT SCHEME

The PDE approximation at node (i, j− 1) using the forward time difference is

−vt̄i,j−1 = (Dv)i,j−1 + hi,j−1

which we can write as
vi,j−1 − (∆t) (Dv)i,j−1 = vi,j + (∆t)hi,j−1

We again apply the same principle. If we know the solution at nodes

(i, j) for all i ∈ {1, . . . , I− 1} [i.e., at time t = j∆t]

we can explicitly compute the solution at nodes

(i, j− 1) for all i ∈ {1, . . . , I− 1} [i.e., at time t = (j− 1)∆t].

• equation in each node (i, j− 1) now involves three unknowns vi−1,j−1, vi,j−1, vi+1,j−1
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IMPLICIT SCHEME

v0,0 · · · v0,j−1 v0,j · · · v0,J
...

...
...

...
vi−1,0 vi−1,j−1 vi−1,j vi−1,J

vi,0 vi,j−1 vi,j vi,J
vi+1,0 vi+1,j−1 vi+1,j vi+1,J

...
...

...
...

vI,0 · · · vI,j−1 vI,j · · · vI,J

t = Tt = 0

x = l

x = r

• equation at node (i, j− 1) involves a known value vi,j and three unknown known values
vi−1,j−1, vi,j−1, vi+1,j−1
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MATRIX FORM

In matrix form, we now have
Ajvint·,j−1 = vint·,j + h̃j

where, for the simple heat equation case,

Aj = A =


1 + ∆t

(∆x)2 σ
2 − ∆t

(∆x)2
σ2

2
0 0 · · ·

− ∆t
(∆x)2

σ2

2
1 + ∆t

(∆x)2 σ
2 − ∆t

(∆x)2
σ2

2
0 · · ·

− ∆t
(∆x)2

σ2

2
1 + ∆t

(∆x)2 σ
2 − ∆t

(∆x)2
σ2

2
. . .

. . . . . . . . .
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STABILITY OF THE IMPLICIT SCHEME

Iterating on the implicit scheme now requires a matrix inversion

vint·,j−1 = (Aj)−1
(
vint·,j + h̃j

)
• computationally cheap when Aj does not depend on j
• even in the general case, Aj is still only a tri-diagonal matrix

It can be shown that for the simple heat equation case, eigenvalues of A−1 lie in the unit circle.

• scheme is unconditionally stable
• this does not automatically generalize but intuition still holds
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UPWIND METHOD

Another concern is the stability of the difference scheme with respect to the behavior of the first
derivative vx.

• this is an issue well known in computational fluid dynamics
• (conditional) stability of the explicit scheme depends on the relationship between the sign of
µ (x, t) and the choice of forward or backward derivative in the approximation of vx

See notes for details.
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MORE QUESTIONS

1. How does the accuracy of the method depend on the grid choice?
• get insights from Taylor series approximation of v (x, t)
• more accurate schemes involve approximations using more than just the adjacent nodes

2. What if the PDE is nonlinear in vx or vxx?
• this often happens in optimization problems
• explicit scheme will still work, but the implicit scheme would involve inverting a nonlinear operator
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SUMMARY



SUMMARY

We have developed a model for the pricing of derivative securities.

• the argument is based on the combination of dynamic hedging and absence of arbitrage
• Black and Scholes (1973) provided a characterization in continuous time but the substance of
the problem carries over to other environments as well

In the continuous-time Brownian information setup, the characterization leads to a second-order
PDE for the price of the security.

• there is a variety of methods for solving such PDEs
• we analyzed a method based on the discretization of time and state space using finite
differences

• this is a versatile method, even though it suffers from the same curse of dimensionality as
other grid methods
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