
TOPIC 6: Q-LEARNING IN DECISION PROBLEMS

Jaroslav Borovička
Computational Dynamics (Spring 2023)

New York University



CONTENT

Economic problem

• A Bayesian learner uses available information to update beliefs about unobserved quantities.
• The learner must understand the probabilistic structure of the problem. What if it is not easily
available?

• Q-learning is an example of a so-called reinforcement learning algorithm in which agent learns
‘optimal’ actions by experimentation

Tools

• Monte Carlo methods
• Reinforcement learning

1/23



LITERATURE

Textbook

• Reinforcement learning: Sutton and Barto (2018)
• Non-Bayesian learning in economics: Sargent (1993), Sargent (1999), Evans and Honkapohja
(2001)

Applications and ideas in economics

• Hart and Mas-Colell (2001), Evans et al. (2005)

QuantEcon

• Quantitative Economics with Python: Topic 40 (Q-learning in worker search problem)

2/23

https://python.quantecon.org/


MONTE-CARLO METHODS AND Q-LEARNING



APPROXIMATING EXPECTATIONS

Consider a random variable X and its expectation E [X].

• we have seen a range of methods how to evaluate the expectation operator
• one method relied on creating a large sample of draws xi, i = 1, . . . ,N and approximating

E [X] ≈ 1

I

I∑
i=1

xi

• a law of large numbers states assumptions that guarantee convergence, and central limit
theorems characterize properties

This is an example of a Monte-Carlo algorithm

• methods that rely on repeated random sampling in numerical computation

3/23



APPROXIMATING PRESENT VALUES

The expectation can take the form of a present value conditoned on a state s0 ∈ S

V (s) = E
[

∞∑
t=0

βtyt|s0 = s
]
.

A Monte-Carlo algorithm would proceed analogously as in the static case

• draw long samples of paths yit, t = 0, 1, . . . , T, i = 1, . . . , I
• these paths replicate the potential temporal dependence of the data
• truncation at T justified due to discounting
• then evaluate

V (s) ≈
I∑

i=1

T∑
t=0

βtyit

4/23



BRINGING IN DYNAMIC PROGRAMMING

We know that this problem satisfies the Bellman equation

V (s) = E [y0 + βV (s1) |s0 = s] .

• this problem can be solved by backward induction
• in every step, we evaluate the expectations operator

What if we replace the expectation operator with simulation?

• imagine that we draw next period state s1 = s′

• if s′ is drawn from the correct conditional distribution of s1|s0, then y0 + βV (s′) is an unbiased
(albeit very noisy) estimate of E [y0 + βV (s1) |s0 = s]

5/23



REPLACING BACKWARD INDUCTION WITH SIMULATION

Take the Bellman equation
V (s) = E [y0 + βV (s1) |s0 = s] .

and form
y0 + βV

(
s′
)
− V (s)

• this quantity is known as temporal difference (difference between the simulated draw of the
continuation value and current value)

• the quantity has zero conditional expectation for the correct value function V

The temporal difference learning algorithm updates the value V (s) as follows

V (s)← V (s) + α
[
y0 + βV

(
s′
)
− V (s)

]
• α ∈ (0, 1) is the learning rate parameter
• idea: if the continuation policy draw indicates higher realization of the value than what the
current value V (s), then update current value upward, and vice versa

6/23



TEMPORAL DIFFERENCE LEARNING

Temporal difference learning algorithm

V (s)← V (s) + α
[
y0 + βV

(
s′
)
− V (s)

]︸ ︷︷ ︸
temporal difference

Idea of the algorithm: If the continuation policy draw indicates higher realization of the value that
what the current value indicates,

y0 + βV
(
s′
)
> V (s)

then, on average, V (s) is too low, and needs to be updated upward.

• How to choose the learning rate? It should vanish over time for convergence.
• Convergence properties? Hard to evaluate for complex environments.
• How to implement when s is a continuous state variable? Discretization.

7/23



BRINGING IN DECISION-MAKING

The algorithm finds the present value of a particular cash flow yt, t = 0, 1, . . .

• this cash flow can be interpreted as one obtained under a particular policy

How to implement optimal policy choice?

• a naive procedure could try to repeat the procedure for every alternative policy and then
choose the ‘best’ one

• this is not useful
• need to incorporate updating of choices into the recursive procedure =⇒ Q-learning

8/23



STATE-ACTION VALUE FUNCTION

Imagine that in every state s ∈ S , there is a set of available actions a ∈ A

• distribution of next period state s′ can now also depend on current action a

Define the state-action value function Q : S ×A → R as

Q (s, a) = y (a) + βE
[
max
a′∈A

Q
(
s′, a′

)
|s, a

]
(6.1)

The state-action value function is tightly related to the value function V (s)

V (s) = max
a∈A

Q (s, a)

9/23



Q-LEARNING ALGORITHM

We can now combine the temporal dependence algorithm with ‘optimal’ choice

• start from some initial guess of the function Q (s, a)
• for a given current state s and action a, draw next period state s′, and update using

Q (s, a)← Q (s, a) + α

[
y (a) + β max

a′∈A
Q
(
s′, a′

)
− Q (s, a)

]
︸ ︷︷ ︸

temporal difference

• the temporal difference has again conditional mean zero for the correct function Q
• the idea is that the algorithm should ‘stabilize’ in the neighborhood of the true Q

We can also write this as the weighted average

Q (s, a)← (1− α)Q (s, a) + α

[
y (a) + β max

a′∈A
Q
(
s′, a′

)]

10/23



IMPLEMENTATION

The algorithm

Q (s, a)← Q (s, a) + α

[
y (a) + β max

a′∈A
Q
(
s′, a′

)
− Q (s, a)

]
Experimentation

• the above algorithm can get ‘stuck’ in local maxima
• problem known from Markov chain Monte-Carlo methods in econometrics
• experimentation: occasionally replace maxa′∈A Q (s′, a′) with Q

(
s′, ã

)
with ã randomly drawn

Discretization

• algorithm cannot pointwise update continuous state spaces S and A
• discretization (tabular approach): replace S ×A with a grid
• deep Q-learning: integrate updating with a projection method that approximates the
continuous function, for example, using a neural netword (nonlinear regression)

11/23



OBSERVATIONS

Once algorithm converged, we can obtain optimal value and policy

a∗ (s) = arg max
a∈A

Q (s, a) V (s) = Q (s, a∗ (s))

The method is an example of reinforcement learning.

• actions that lead to high realized values (rewards) are ‘reinforced’ as good choices

The algorithm does not involve the formation of agent’s beliefs.

• the agent is presented with draws from the conditional distribution of the state and learns how
to take optimal action conditional on the state

• markedly different from forms of learning where agent uses information to update beliefs (in a
Bayesian or non-Bayesian way)

• advantageous when the description of the probability distribution is too complex or in
situations where uncertainty is not essential but actions are complex (strategic games)

12/23



WHY Q-LEARNING?

Why did we use the simulation approach in the first place? Two approaches.

Approach 1: A method for solving rational expectations problems

• We are interested in solving problem (6.1) but evaluation of the expectations operator is hard.
• Once the problem has converged, we obtain optimal policy under the data-generating process.

Approach 2: Approximation of actual behavior.

• humans are not Bayesian, and reinforcement learning approximates the way they act
• a complex structure that needs to be disciplined (learning rate, experimentation,…).
• what are the (unique) testable implications to compare such a theory with data?

Once we have solved this problem, we still have many steps ahead of us.

• How to incorporate interactions between agents and the formation of equilibria? (Hart and
Mas-Colell (2001))

13/23



Q-LEARNING IN THE WORKER SEARCH
PROBLEM



EMBEDDING Q-LEARNING IN THE WORKER SEARCH PROBLEM

We now revisit the McCall (1970) model of a worker who samples wage offers.

• in the McCall (1970) model, worker understands the probabilistic structure of the model
• worker is able to form a belief (objective or subjective) over the distribution of offers next
period

Instead assume that the worker does not have available the probability distribution.

• worker observes realized draws and is able to take accept/reject decisions
• uses the Q-learning algorithm to learn the value of actions, and deduce optimal action

Problem based on the QuantEcon lecture

https://python.quantecon.org/mccall_q.html

14/23

https://python.quantecon.org/mccall_q.html


THE ECONOMY

An infinite-horizon model of job search (McCall (1970))

• time is discrete and infinite, t = 0, 1, 2, . . .

• every period t, an iid wage offer w from distribution F (w) is drawn, with F (0) = 0, F (B) = 1 for
some B > 0

A worker decides to accept or reject the offer, at ∈ {accept, reject}

• when accepts, the worker receives income yt = w forever
• when rejects, the worker receives unemployment benefit yt = c and moves to next period
where a new offer is drawn

• time is discounted at rate β ∈ [0, 1)

15/23



WORKER’S PROBLEM

The worker solves the sequence problem

V∗0 = max
{at}∞t=0

E0

[
∞∑
t=0

βtyt

]
(6.2)

where at ∈ {accept, reject} if the worker has not yet accepted any earlier offer, and at ∈ {}
otherwise.

• V∗0 is the value function, assume V∗0 conditions on the initial offer w0

• every decision at is made conditional on the time-t information set, which contains the history
of all offers up to time t, wt = (w0, . . . ,wt)

• E [·] is the mathematical expectations operator

E [w] =
∫ B

0

wdF (w) =
∫ B

0

wf (w)dw.

16/23



RECURSIVE FORMULATION

We deduced that the problem of a worker with current offer w at hand can be formulated recursively

V (w) = max
{accept, reject}

{
Va (w) , c+ β

∫ B

0

V
(
w′)dF (w′)}

where Va (w) is the value of accepting the offer.

We assumed that once an offer w is accepted, the worker works at that wage forever

Va (w) = w
1− β

.

17/23



RECURSIVE FORMULATION (WITH A MODIFICATION)

Let us modify the problem formulation slightly.

• assume that after working for one period at w, the worker can decide to accept or reject the
same wage w

• if rejected, the worker becomes unemployed for the period and receives a new draw next
period

Va (w) = w+ β max
{accept, reject}

{
Va (w) , c+ β

∫ B

0

V
(
w′)dF (w′)}

• this is inconsequential for the solution since we know that an accepted offer in the stationary
environment would never be rejected later

18/23



STATE-ACTION VALUE FUNCTION

Rewrite the problem in the form of the state-action value function Q (w, a):

Q (w, accept) = w+ β max
{accept, reject}

{Q (w, accept) ,Q (w, reject)}

Q (w, reject) = c+ β

∫ B

0

max
{accept, reject}

{
Q
(
w′, accept

)
,Q

(
w′, reject

)}
dF

(
w′)

• notice the distinction between w and w′

We now have

Va (w) = Q (w, accept) V (w) = max
{accept, reject}

{Q (w, accept) ,Q (w, reject)} .

19/23



TEMPORAL DIFFERENCE STEP

We can now replace the expectations with sample draws and form temporal differences.

Start with an old iteration of the state-action value function Qold (w, a)

TD (w, accept) = w+ β max
a′∈A

Qold
(
w, a′

)
− Qold (w, accept)

TD (w, reject) = c+ β max
a′∈A

Qold
(
w′, a

)
− Qold (w, reject)

for A = {accept, reject} and w′ ∼ F (w′).

Then the new iteration of the state-action value function is

Qnew (w, a) = Qold (w, a) + αTD (w, a)

20/23



IMPLEMENTATION

Discretization

• action is already discrete, replace the state space [0,B] with a discrete grid wi, i = 1, . . . , I
• replace continuous distribution F (w) with a discrete counterpart f̂i of mass points on grid wi

• sample offers w′ from f̂i, i = 1, . . . , I
• alternatively, use a form of projection and a ‘deep Q-learning’ algorithm to update the
projection coefficients

Experimentation: modify the algorithm to incorporate deviations from currently ‘optimal’ choice

• in every step, with probability ε, replace maxa′∈A with mina′∈A

• allow exploration of alternatives that may be omitted if algorithm gets stuck in a local
maximum

21/23



SUMMARY



SUMMARY

Q-learning is a model-free (unstructured) learning algorithm that learns optimal actions using

• simulation (Monte-Carlo methods)
• implementation of the concept of dynamic programming

The method can be used for

• approximation of RE in problems with complicated structures
• modeling of non-Bayesian behavior

Challenges

• convergence properties of the decision problem
• embedding of the individual decision problem into models of strategic interaction and
equilibria

• how distinct is this form of learning from other non-Bayesian approaches?
• What do we learn from solving these problems? We do not only want to characterize optimal
decisions, we also want to understand them. Policy implications?

22/23



SUMMARY

(Macro)economic theory has long explored deviations from Bayesian learning

• interview with Tom Sargent (Evans et al. (2005))
• Sargent (1993) Bounded Rationality in Macroeconomics
• Sargent (1999) The Conquest of American Inflation
• Evans and Honkapohja (2001) Learning and Expectations in Macroeconomics

Start here!

23/23



APPENDIX



LITERATURE I

Evans, George W. and Seppo Honkapohja (2001) Learning and Expectations in Macroeconomics: Princeton
University Press, Princeton, NJ.

Evans, George W., Seppo Honkapohja, and Thomas J. Sargent (2005) “An Interview with Thomas J. Sargent,”
Macroeconomic Dynamics, 9 (4), 561–583.

Hart, Sergiu and Andreu Mas-Colell (2001) “A Reinforcement Procedure Leading to Correlated Equilibrium,” in
Debreu, Gérard, Wilhelm Neuefeind, and Walter Trockel eds. Economics Essays: A Festschrift for Werner
Hildenbrand, 181–200: Springer-Verlag, Berlin, Heidelberg.

McCall, John (1970) “Economics of Information and Job Search,” Quarterly Journal of Economics, 84 (1), 113–126.
Sargent, Thomas J. (1993) Bounded Rationality in Macroeconomics: Clarendon Press, Oxford.

(1999) The Conquest of American Inflation: Princeton University Press, Princeton, NJ.
Sutton, Richard S. and Andrew G. Barto (2018) Reinforcement Learning: An Introduction: MIT Press, Cambridge,
MA, 2nd edition.


	Monte-Carlo methods and Q-learning
	Q-learning in the worker search problem
	Summary
	Appendix
	Appendix


