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5.2 Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
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Introduction

These lecture notes cover the Computational Dynamics course taught in the Master of Sci-
ence in Quantitative Economics (MSQE) program at the Department of Economics at NYU.
The material covers a series of computational methods applied to economic problems in
macroeconomics and asset pricing.

Substantial parts of the theoretical material are covered in Ljungqvist and Sargent
(2018). A more in-depth coverage of dynamic optimization is provided in Stokey et al.
(1989). A range of related topics in asset pricing theory is discussed in Duffie (2001) and
Cochrane (2005). Elements of applied modeling of dynamic stochastic general equilibrium
economies can be found in Galı́ (2008).

Detailed analysis of numerical methods with applications to economics is provided in
Judd (1998). Numerical methods for the solution of differential equations can be found
in Holmes (2007). A variety of approaches in machine learning are contained in Bishop
(2006), Goodfellow et al. (2016), or Sutton and Barto (2018).

An excellent source of supporting material is the QuantEcon website developed by
John Stachurski, Tom Sargent and other helpful contributors:

https://quantecon.org/.

Specifically, we make use of the lectures that focus on Python implementation of numerical
algorithms and economic models.

• Python Programming for Economics and Finance covers instructions on how to install
the Python environment and make it operational with QuantEcon, together with
elementary Python programming:

https://python-programming.quantecon.org.

• Quantitative Economics with Python is a course that covers basic economic modeling:

https://python.quantecon.org.

• Advanced Quantitative Economics with Python discusses more advanced economic top-
ics:

https://python-advanced.quantecon.org.

https://quantecon.org/
https://python-programming.quantecon.org/
https://python.quantecon.org/
https://python-advanced.quantecon.org/intro.html
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Python and Matlab implementation of the computational methods discussed in these
lecture notes is also available on the associated GitHub website

https://github.com/jborovicka/nyu-computational-dynamics.

https://github.com/jborovicka/nyu-computational-dynamics


Chapter 1

Markov chains and asset valuation

Textbook: Ljungqvist and Sargent (2018), Chapters 2 (Sections 2.2–2.3, Markov chains),
Chapters 13 and 14 (asset pricing theory and empirics). Cochrane (2005), Chapters 10–13
(application of GMM in asset pricing)
Generalized method of moments: Hansen (1982), Hansen (2008).
Asset pricing applications: Lucas (1978), Hansen and Singleton (1982, 1983), Mehra and
Prescott (1985).
QuantEcon: Quantitative Economics with Python: Topic 3 (linear algebra), Topic 25 (fi-
nite Markov chains), Topics 74–76 (asset pricing applications in finite state models). Ad-
vanced Quantitative Economics with Python: Topics 34–35 (more advanced asset pricing
applications).

Asset pricing seeks to explain time-series and cross-sectional patterns in the valuation
of financial assets. Asset valuations are determined by three key factors—risk embedded in
cash flows the valued asset generate, investors’ attitudes to this risk, and investors’ ability
to insure these risks using available markets or self-insurance. These factors interact and
jointly determine the equilibrium in the macroeconomy.

In order to embed the study of asset prices in a tractable environment, we introduce
stochastic processes called Markov chains. A Markov chain is stochastic process that takes
values on a finite state space and satisfies the Markov property, which states that the condi-
tional distribution of future realizations of the process conditional on information available
up to a given time period is identical to the conditional distribution that conditions only
on the current value of the stochastic process in that period. This is a critical assump-
tion that will make the characterization of investors’ optimal decisions and computation
of expected values of cash flows tractable.

We starts by introducing the Markov chain model in Section 1.1. In Section 1.2, we in-
troduce a consumption-saving problem of a utility-maximizing investor. From this model,
we derive conditions for investors’ optimal investment behavior in the form of Euler equa-
tions. These Euler equations constitute testable restrictions for the joint behavior of cash
flows, asset prices, and investors’ marginal rate of substitution.

Since the testable restrictions from investors’ optimizing behavior come in the form of

https://python.quantecon.org/
https://python-advanced.quantecon.org/
https://python-advanced.quantecon.org/
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moment conditions, we can test them using the generalized method of moments (GMM).
We discuss the applications in Section 1.4.

The GMM tests do not require a full specification of the model environment nor the
stochastic structure imposed by a Markov chain. As a next step, we embed investors’
consumption-saving problem in a representative agent endowment economy in the spirit
of Lucas (1978). We impose Markov chain structure and fully solve for the equilibrium
asset prices in a replication of the model of Mehra and Prescott (1985).

Finally, in Section 1.6, we briefly connect the existence and structure of equilibrium
asset prices to the concept of absence of arbitrage opportunities.

Foundations of results from probability theory that encompass the Markov chain model
and that will also be useful in subsequent chapters can be found in Appendix A.

1.1 Markov chains

A special type of a Markov process is a Markov chain. The structure of transition proba-
bilities of a Markov chain allows to model arbitrary nonlinear dynamics, at the expense of
having to restrict the model to a relatively small number of discrete states to keep it com-
putationally tractable. We focus here on time-invariant, finite-state, discrete-time Markov
chains, constructed in the following way.

Definition 1.1. An n-state time-invariant Markov chain is defined by the following triplet of
objects:

• an n-dimensional state space consisting of vectors ei, i = 1, . . . , n, where ei is the coordinate
vector with a single 1 in i-th entry;

• an n × n transition matrix P (defining the transition probability) such that

Pij = P
(
xt+1 = ej | xt = ei

)
;

• an n × 1 vector π0 that determines the initial distribution of the state

π0i = P (x0 = ei) .

Each row i of the transition matrix P determines the distribution of the state next period
conditional on state ei today. In order for π0 and P to define a valid probability measure,
we require

n

∑
j=1

π0j = 1,
n

∑
j=1

Pij = 1 ∀i = 1, . . . , n.

Time-invariance in the context of the Markov chain means that P does not depend on t.
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1.1.1 Perron–Frobenius theorem

The following central result from linear algebra will play an important role in the charac-
terization of asymptotic dynamics on Markov chains.

Proposition 1.1 (Perron–Frobenius). Let A be an n × n matrix with strictly positive entries,
Aij > 0, ∀i, j. Then the following is true.

• There is a positive real number r, called the Perron root (or Perron–Frobenius eigenvalue)
such that r is an eigenvalue of A, and any other eigenvalue λ (possibly complex) is strictly
smaller than r in absolute value, |λ| < r. Thus the spectral radius is ρ (A) = r.

• The Perron–Frobenius eigenvalue is simple: r is a simple root of the characteristic poly-
nomial of A, the polynomial given by det (A − λI) as a function of λ. Consequently, the
eigenspace associated to r is one-dimensional, there exists (up to scale) only one nonzero
eigenvector v such that Av = rv.

• The eigenvector v can be normalized to have all elements strictly positive, vj > 0, ∀j =

1, . . . n. There are no other non-negative real eigenvectors associated with different eigenval-
ues.

The assumption of strict positivity of all elements of the matrix, imposed on the tran-
sition matrix P, implies that it is possible to transit from any state to any state in one
period with a strictly positive probability, a property known as a mixing condition, or
irreducibility.

1.1.2 Conditional, unconditional, and stationary distributions

The transition matrix P represents 1-period ahead conditional probabilities of individual
states. Conditional n-period ahead probabilities are given by the elements of the matrix
Pn:

(Pn)ij = P
(
xt+n = ej | xt = ei

)
.

The unconditional distribution of the initial state is π0 = P (x0). Using forward iteration
on the distribution using the transition matrix yields the unconditional distribution at time
t = 1

π′
1 = P (x1) = π′

0P.

To see this, notice that

π1j =
n

∑
i=1

π0iPij.

Iterating, we get the evolution of the unconditional distribution

π′
t = π′

t−1P = . . . = π′
0Pt. (1.1)

Definition 1.2. An unconditional distribution is called stationary if πt+1 = πt = π. We say
that (P, π) is a stationary Markov chain if the initial distribution is stationary, π0 = π.
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It follows from (1.1) that a stationary distribution satisfies

π′ = π′P =⇒ π = P′π

i.e., π is the left eigenvector of P (or the (right) eigenvector of P′) associated with eigen-
value equal to 1, (

I − P′)π = 0.

We want to study conditions for the existence and uniqueness of a stationary distribution.
Furthermore, we are interested in investigating the limits (if they exist) of the evolution of
unconditional distributions

lim
t→∞

πt
.
= π∞.

Observe that the limit, if it exists, is also a stationary distribution, π′
∞ = π′

∞P. Clearly, if
the same limit is reached from any initial π0, then the stationary distribution is also unique.

Definition 1.3. Let π∞ be a unique vector that satisfies (I − P′)π∞ = 0. If, for all initial dis-
tributions π0, we have limt→∞

(
Pt)′ π0 = π∞, we say that the Markov chain is asymptotically

stationary with a unique stationary distribution.

Trivially, if we initiate the Markov chain at the stationary distribution, π0 = π∞, then
the Markov chain (P, π∞) is stationary in the sense of Definition A.11.

Example 1.1. A Markov chain with the transition matrix given by

P =

 0.7 0.3 0
0 0.5 0.5
0 0.9 0.1

 .

has a unique stationary distribution π′ = [0, 0.6429, .3571] that can be reached as the asymptotic
distribution from any initial distribution, limt→∞

(
Pt)′ π0 = π. The Markov chain (P, π0) is

therefore asymptotically stationary with a unique stationary distribution. The set (e2, e3) is called
the absorbing subset—once a path reaches this subset, it can never leave it.

Example 1.2. While a stationary distribution of a Markov chain always exists, it may not be
unique. Consider a Markov chain with transition matrix

P =

 1 0 0
.2 .5 .3
0 0 1

 .

There are two absorbing states e1 and e3, associated with stationary distributions
(
π1)′ = [1, 0, 0]

and
(
π3)′ = [0, 0, 1]. Since P′π j = π j, j = 1, 3, then also P′π̃ = π̃ for

π̃ = λπ1 + (1 − λ)π3, λ ∈ [0, 1] ,

so the Markov chain has infinitely many stationary distributions. One of these stationary distribu-
tions is always reached as the asymptotic distribution but the particular limit depends on the initial
distribution π0.
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Example 1.3. Finally, consider a Markov chain with the transition matrix

P =

 0 0 1
.2 .5 .3
1 0 0

 .

This Markov chain has a unique stationary distribution π′ = [0.5, 0, 0.5] but this cannot be asymp-
totically reached from any initial distribution other than π0 = π.

Proposition 1.2. Let there be an m ≥ 1 such that (Pm)ij > 0, ∀i, j ∈ {1, . . . , n}. Then P has a
unique stationary distribution with strictly positive elements and is asymptotically stationary.

The proposition states that if there is enough ‘mixing’ (i.e., the ability to move from
each state to each state with a strictly positive probability in finite time, a property called
irreducibility), the process has a unique stationary distribution that is achieved asymptot-
ically from any initial distribution π0.

Proof. The result in the proposition is a consequence of the Perron–Frobenius theorem.
First observe that for any eigenvalue λ of P associated with an eigenvector v, we have
Pmv = λmv, and so λm is the eigenvalue of Pm. Next, since Pm is a transition matrix, we
have Pm1 = 1 where 1 = (1, . . . , 1)′, and therefore r = 1 is an eigenvalue associated with
the eigenvector 1.

The matrix Pm has strictly positive elements and r = 1 is associated with a strictly
positive eigenvector, so then, by the Perron–Frobenius theorem, r = 1 is also the unique
largest eigenvalue of Pm and the associated eigenvector is unique. This means that for any
other eigenvalue λm different from r, we have |λm| < 1, and hence also |λ| < 1. Therefore,
r = 1 is also the unique largest eigenvalue of P (even though P may not have all strictly
positive elements).

Since the eigenvalues and their geometric multiplicity (the number of associated lin-
early independent eigenvectors, see the second result from Theorem 1.1) of a matrix and
its transpose coincide, r = 1 is also the unique largest eigenvalue of P′, with a unique
eigenvector with strictly positive elements that sum up to one. This eigenvector yields the
unique stationary distribution.

The convergence to the stationary distribution follows from the fact that all eigenval-
ues of P′ other than r = 1 have magnitude smaller than one. To simplify the following
arguments, assume that P′ has n linearly independent eigenvectors v1, . . . , vn.1 The eigen-
vectors then form the so-called eigenvector base of the space of all vectors in Rn, and we
can therefore find projection coefficients c1, . . . , cn such that

π0 = c1v1 + . . . + cnvn.

Without loss of generality, assume that v1, . . . , vn are associated with eigenvalues in de-
scending order, i.e., v1 is associated with the Perron root λ1 = r = 1 and

∣∣λj
∣∣ < 1 for

1This is true, for example, when P′ has n distinct eigenvalues. The logic of all following arguments goes
through even in the case when n linearly independent eigenvectors do not exist, using generalized eigenvec-
tors instead.
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j = 2, . . . , n. Then

P′π0 = P′
(

c1v1 + . . . + cnvn

)
= c1P′v1 + . . . + cnP′vn

= c1λ1v1 + . . . + cnλnvn

and by iteration
πt =

(
P′)t

π0 = c1v1 + . . . + cn (λn)
t vn → c1v1 (1.2)

where, by construction, v1 has entries that sum to one and are strictly positive, because it is
an eigenvector of the strictly positive matrix (P′)m. Only the eigenvector associated with
r = 1 survives iteration on P, and therefore constitutes the stationary distribution. Also
notice that the stationary distribution assigns strictly positive probabilities to all states of
the Markov chain.

Equation (1.2) shows that, in fact, the projection component c1v1 = π. Necessarily,
c1 > 0, because the remaining components vanish to zero, and then πt could not be a
probability distribution. The remaining components (λi)

t civi, i ≥ 2 then represent transi-
tory deviations from the stationary distribution that vanish at geometric rates λi. In fact,
each of the vectors vi, i ≥ 2 must have elements that sum up to zero, so that πt remains a
probability distribution as t increases.

Returning back to Examples 1.1 to 1.3, neither of them satisfies the assumption of
Proposition 1.2 that there exists an m ≥ 1 such that Pm has all strictly positive elements.
This has different implications in the three examples.

In Example 1.1, the eigenvalue r = 1 has a unique associated eigenvector and all other
eigenvalues satisfy |λ| < 1, so there still exists a unique stationary distribution that can be
reached asymptotically from any initial π0 but the stationary distribution fails to have a
full support.

In Example 1.2, the eigenvalue r = 1 has two associated strictly positive eigenvectors,
so we get a multiplicity of stationary distributions.

In Example 1.3, the eigenvalue r = 1 does have a unique eigenvector so we get a
unique stationary distribution but there is another eigenvalue λ = −1, so the argument
in equation (1.2) fails and convergence to the stationary distribution is not guaranteed. To
see this, consider again equation (1.2):

πt =
(
P′)t

π0 = c1 (λ1)
t v1 + c2 (λ2)

t v2 + . . . + cn (λn)
t vn

Now assume that λ1 = 1, |λ2| = 1 but λ2 ̸= 1, and
∣∣λj
∣∣ < 1 for j ≥ 3. Then, as t → ∞,

πt ≈ c1v1 + c2 (λ2)
t v2.

Since (λ2)
t does not converge, then πt also does not converge, unless π0 is chosen in a way

that the projection coefficient c2 = 0. When c2 ̸= 0, πt will asymptotically contain a cycle.
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1.1.3 Forecasting and conditional expectations

We are interested in computing conditional expectations of random variables. Start with

E [xt+1 | xt = ei] =
n

∑
j=1

ejP
(
xt+1 = ej | xt = ei

)
=

n

∑
j=1

ejPij = (Pi·)
′ = P′ei.

Here, the state xt+1 realized in period t + 1 is random from the perspective of time t, and
the conditional expectation yields the vector of conditional probabilities of the state to-
morrow, conditional on xt = ei. Denote ȳ an n × 1 vector of numbers. Then yt = ȳ′xt is a
random variable, with realization ȳj if state xt = ej is realized. We then have

E [yt+1 | xt = ei] = ȳ′E [xt+1 | xt = ei] = ȳ′ (Pi·) = (Pȳ)i = ȳ′P′ei = e′iPȳ

Similarly

E [yt+k | xt = ei] = E
[
ȳ′xt+k | xt = ei

]
=
(

Pk
)

i·
ȳ =

(
Pkȳ
)

i
= e′iP

kȳ (1.3)

Hence, for a general state xt, we can write

E [yt+k | xt] = x′tP
kȳ

Remark 1.1. There is a simple heuristic for the left and right multiplication of P. Left multiplica-
tion implies rolling the Markov chain forward, while right multiplication implies rolling the chain
backward.

For instance, starting with a probability distribution π this period, π′P is the probability dis-
tribution next period. On the other hand, given the vector ȳ of realizations of a random variable
next period, Pȳ is the conditional expectation.

Hence the term x′tP
kȳ can be interpreted as follows. xtPk is the conditional distribution of the

Markov chain at t + k, given state t today. Then xtPkȳ is the conditional expectation of a random
variable yt+k = ȳ′xt+k, conditional on xt today.

In what follows, we will also be interested in the conditional expectation of a random
variable conditional on xt being in a particular set of states X =

{
ei1 , . . . , eik

}
. Following

Definition A.9, we construct the probability vector πX
t with elements

πX
t,i =

πt,i1 {ei ∈ X}
∑j:ej∈X πt,j

(1.4)

as the unconditional probability distribution of the Markov chain at time t, restricted to
the set X and normalized to assure that πX

t is a probability vector. Then

E [yt+k | xt ∈ X ] =
(

πX
t

)′
Pkȳ.

Two special cases are X = {ei}, in which case we recover conditional expectation (1.3),
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and X = {e1, . . . , en}, which yields the unconditional expectation

E [yt+k] = π′
tP

kȳ = π′
t+kȳ.

1.1.4 Invariant functions and ergodicity

In time series econometrics, we would like to associate unconditional distributions with
time-series averages. We therefore want to establish conditions under which the stationary
distribution is unique and the mean of a random variable under this stationary distribution
corresponds to the time-series average of a long sample of realizations of this random
variable on the Markov chain. This will lead to a so called ergodic theorem, which is a
generalization of the law of large numbers for stochastic processes.

The following example illustrates a situation that constitutes a problem for empirical
work.

Example 1.4. Consider the Markov chain given by

P =

[
1 0
0 1

]
π0 = π =

[
p

1 − p

]
, p ∈ [0, 1] .

Every path of the random variable yt = ȳ′xt is constant, with realization ȳi that depends on the
initial draw of the Markov chain. The cross-sectional distribution of yt under the stationary dis-
tribution has realizations ȳ1 and ȳ2, with distribution π. When ȳ1 ̸= ȳ2 and p ∈ (0, 1), then the
time series average along a single observed infinite path, equal to

lim
T→∞

1
T

T

∑
t=1

yt = ȳi,

differs from the cross-sectional prediction E [yt] = π′ȳ.

We define the concept of ergodicity using so-called invariant functions.

Definition 1.4. Let (P, π) be a stationary Markov chain. A random variable yt = ȳ′xt is said to
be invariant if yt = y0, t ≥ 0 for all realizations of xt, t ≥ 0 that occur with positive probability
under (P, π).

A random variable is therefore invariant if it remains constant along a set of paths
drawn from the Markov chain that has probability one. However, that does not mean that
ȳ must be a constant vector because y0 may differ depending on the initiation of x0. We
will equivalently refer to random variables yt = ȳ′xt satisfying Definition 1.4 as invariant
random variables, and to the associated vectors ȳ as invariant functions. For example, in
Example 1.4, any function ȳ = (ȳ1, ȳ2)

′ is invariant.

The following proposition illustrates the role of invariant functions.

Proposition 1.3. Let (P, π) be a stationary Markov chain. If

E [yt+1 | xt] = yt (1.5)
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then the random variable yt = ȳ′xt is invariant.

Proof. The Markov chain (P, π) implies an unconditional distribution over two subse-
quent states (xt+1, xt). Since yt is a deterministic function of xt, applying the Law of Iter-
ated Expectations yields

E
[
(yt+1 − yt)

2
]

= E
[
E
[
y2

t+1 − 2ytyt+1 + y2
t | xt

]]
= E

[
E
[
y2

t+1 | xt
]
− 2ytE [yt+1 | xt] + y2

t
]

= E
[
y2

t+1
]
− 2E

[
y2

t
]
+ E

[
y2

t
]
= 0.

Hence the set of paths for which yt+1 = yt has probability one.

A random variable satisfying (1.5) is called a martingale. Martingales are processes
that neither grow or decay on average, conditional on the state today. The statement of the
above proposition says that a martingale on a stationary Markov chain must have constant
paths. This is closely related to the so-called martingale convergence theorem.

Observe that (1.5) can also be written as

x′tPȳ = x′tȳ ∀xt

and hence
Pȳ = ȳ

Therefore, ȳ must be the right eigenvector of P associated with a unit eigenvalue. One
trivial solution is ȳ = 1 but we are interested in what happens when there are multiple
linearly independent solutions.

Definition 1.5. Let (P, π) be a stationary Markov chain. The chain is said to be ergodic if the only
invariant functions ȳ are constant with probability 1 under the stationary probability distribution
π, i.e., ȳi = ȳj for all i, j with πi, πj > 0.

Definition 1.6. A set X of states of a stationary Markov chain (P, π) is called invariant if it
cannot be entered from any state ei /∈ X that has a strictly positive probability under π:

{ei : P (xt+1 ∈ X | xt = ei)π (ei) > 0} ⊆ X .

Since an invariant set of a Markov chain cannot be entered, then, if it has a strictly posi-
tive measure under the stationary density π, it cannot be exited with a positive probability,
either. Invariant sets that are disjoint and have strictly positive measure under π therefore
divide the state space into components that do not communicate with each other. If such
disjoint invariant sets with strictly positive measure exist, then the Markov chain is not
ergodic.

Lemma 1.4. A stationary Markov chain (P, π) is ergodic if and only if it has no disjoint invariant
sets that have a strictly positive measure.

Proof. Let there be two disjoint invariant sets X1 and X2 of strictly positive measure under
π. Define yt = ȳ′xt with ȳi = 1 {ei ∈ X1}. Then ȳ is an invariant function, namely if
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x0 ∈ X1, then yt = 1, while if x0 ̸∈ X1, then yt = 0. We have an invariant function that is
not constant under the stationary distribution π, and (P, π) is not ergodic.

On the other hand, assume that (P, π) is not ergodic, and take the associated invariant
function ȳ that is not constant under π. Denote {ŷk} the set of distinct values of elements
of the vector ȳ and construct sets Xk = {ei : ȳi = ŷk, i = 1, . . . , n}. Since ȳ is not constant
under π, at least two such sets Xk have strictly positive measure under π. Moreover, these
two sets are invariant. To see this, assume it is possible to enter Xk from another Xl that has
a strictly positive probability. Then it implies a path yt that is not constant, a contradiction
to ȳ being an invariant function. Hence we have found two disjoint invariant sets of strictly
positive measure under π.

In order to verify ergodicity, it therefore suffices to characterize the invariant sets of the
Markov chain. With these results at hand, we can state the ergodic theorem for a stationary
Markov chain.

Proposition 1.5 (Birkhoff–Khinchin). Let (P, π) be a stationary Markov chain and yt = ȳ′xt.
Fix an initial state x0 and let X be the smallest invariant set to which x0 belongs, with πX being
the conditional probability distribution defined in (1.4). Then

lim
T→∞

1
T

T

∑
t=1

yt =
(

πX
)′

ȳ (1.6)

with probability one. Moreover, if the Markov chain is also ergodic, then the right-hand side is equal
to π′ȳ.

Proof. For a discussion and proof in a more general setting, for example, Billingsley (1979),
Chapter 24.

Proposition 1.5 states that in general, sample averages along paths may depend on
initial conditions. However, if we partition the state space into its smallest invariant set,
then paths initiated within each set share the same long-run statistical properties and hence
sample averages.

When the Markov chain is ergodic, then the smallest invariant set X to which x0 be-
longs has measure one under π, and hence πX = π. Then the time-series average along
every path converges to the unconditional expectation of yt under the stationary distribu-
tion. This is a manifestation of the so-called mixing condition, which states that depen-
dence on initial conditions vanishes if the states of the Markov chain communicate with
each other.

In Example 1.4, the Markov chain is not ergodic when p ∈ (0, 1), and there are two
non-trivial invariant sets X = {e1} and X = {e2}. For example, when x0 = e1, then πX

t in
equation (1.6) is equal to [1, 0]′, and the right-hand side is equal to ȳ1, and analogously for
x0 = e2. Observe that the Markov chain from Example 1.4 satisfies the ergodicity definition
when p ∈ {0, 1}.

Corollary 1.6. Let (P, π0) be an asymptotically stationary Markov chain with a unique stationary
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distribution π. Then

lim
T→∞

1
T

T

∑
t=1

yt = E
[

lim
t→∞

yt | x0

]
= lim

t→∞
E [yt] , (1.7)

where the first equality holds with probability one, and the second limit represents convergence in
distribution. Further, the stationary Markov chain (P, π) is ergodic.

Proof. Since the unique stationary distribution π is achieved from any initial condition,
the smallest invariant set has probability one and the Markov chain (P, π) is ergodic. The
distribution of xt converges to the unique π, so the limiting distribution of yt uniquely
exists, and hence

E
[

lim
t→∞

yt | x0

]
= lim

t→∞
(πt)

′ ȳ = π′ȳ.

Ergodicity is a property of the pair (P, π), where π is a stationary distribution. When
(P, π) is ergodic, it does not mean that π is the unique stationary distribution associated
with P. Example 1.2 for λ ∈ {0, 1} is such a case. However, if P has a unique stationary
distribution π, then (P, π) is ergodic. Equivalently, take (P, π) which is not ergodic, then π

is not a unique stationary distribution. This follows from Lemma 1.4. A stationary Markov
chain (P, π) that is not ergodic has two invariant sets X1 and X2 of a strictly positive mea-
sure under π, and hence conditional distributions πX1 and πX2 defined as restrictions of π

using (1.4) are also stationary.

Example 1.5. Consider a Markov chain with transition matrix

P =

[
0 1
1 0

]
.

This Markov chain has a unique stationary distribution π′ = [0.5, 0.5]. Then (P, π) is ergodic,
with the smallest non-empty invariant set X = {e1, e2}. Realizations of yt along paths cycle
deterministically between ȳ1 and ȳ2 and the limit of the time series average is equal to 1

2 ȳ1 +
1
2 ȳ2,

which is equal to
(
πX )′ ȳ, in line with the ergodic theorem.

However, the Markov chain is not asymptotically stationary with a unique stationary distribu-
tion, so Corollary 1.6 does not apply. Indeed, the limits limt→∞ yt and limt→∞ E [yt] in equation
(1.7) do not exist in this case when ȳ1 ̸= ȳ2.

Ergodicity and asymptotic behavior of Markov chains is closely related to the char-
acterization of eigenvalues associated with the transition matrix P, i.e., solutions to the
eigenvalue equation

Pv = λv

that lie on the unit circle, |λ| = 1.

Since P is a transition matrix, it has an eigenvalue equal to one, simply because P1 = 1.
Eigenvalues of a matrix and its transpose coincide, so there must exist a nonzero solution
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π with non-negative elements to the equation

P′π = π. (1.8)

The fact that the solution is non-negative is the consequence of an extension of the Perron–
Frobenius theorem to non-negative matrices. Hence there must exist a stationary distribu-
tion for the Markov chain. Another consequence of the extension of the Perron–Frobenius
theorem is that there are no eigenvalues of P that are larger than one in magnitude but
there are potentially some with magnitude equal to one.

To illustrate the implications of these results, we return to Examples 1.1–1.3.

The first and simplest case is the situation when the solution to (1.8) is unique (up
to a normalization), and there are no other eigenvalues on the unit circle. This is the case
from Example 1.1. In this case, the Markov chain (P, π0) is asymptotically stationary with a
unique stationary distribution π, as shown in the proof of Proposition 1.2. By Corollary 1.6,
the stationary Markov chain (P, π) is then ergodic. Indeed, the invariant set X = {e2, e3}
has measure one under π and cannot be further partitioned into invariant subsets.

A sufficient condition for this case is when P has all strictly positive elements (or, more
generally, there exists an m such that Pm has all strictly positive elements), as assumed
in Propositions 1.1 and 1.2. When this sufficient condition holds, then, in addition, the
stationary distribution will have strictly positive mass in all states.

The second case occurs when there are multiple linearly independent solutions to (1.8),
i.e., when the unit eigenvalue has geometric multiplicity higher than one. This is the case
from Example 1.2. Then there exist multiple (in fact, infinitely many) stationary distri-
butions π, and, if there are no other eigenvalues on the unit circle, one of them will be
reached as the limit limt→∞ π′

0Pt. This limit generally depends on π0. Whether the station-
ary Markov chain (P, π) is ergodic may differ across the alternative limiting distributions
π. For example, in Example 1.2, the Markov chain is ergodic for λ ∈ {0, 1} and is not
ergodic for λ ∈ (0, 1). In the latter case, we have invariant sets X1 = {e1} and X2 = {e3}
with strictly positive probability.

Finally, the third case is a situation when there is also another eigenvalue on the unit
circle that is different from one. Then the unconditional distribution πt may not gener-
ally converge to a stationary distribution. This is the case from Example 1.3, in which
there exists a unique stationary distribution π and the stationary chain (P, π), despite the
cyclical properties of the paths of xt, is ergodic because the invariant set X = {e1, e3} has
measure one under π and cannot be further partitioned into invariant subsets. However,
Corollary 1.6 does not apply.

1.1.5 Simulation and likelihood estimation

It is easy to construct simulated paths from a Markov chain. If the current draw is xt = ei,
then the row Pi· represents the conditional probability of xt+1. Then we need to draw a
random variable uniformly distributed on [0, 1] and assign xt+1 according to which bracket
of the cdf constructed from Pi· the random draw falls into.
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We may now ask the opposite question. If we observe a particular sample {x̂t}T
t=0,

what is the probability that this sample has been drawn from a particular Markov chain
(P, π0)? Let the particular sample of observed data be

x̂T = (x̂0, x̂1, . . . , x̂T) = (ei0 , ei1 , . . . , eiT ) .

and let us assume that there is a family of candidate Markov chains on the table, indexed
by a parameter vector θ ∈ Θ such that π0 = π0 (θ) and P = P (θ). Each pair (P (θ) , π0 (θ))
thus defines a probability measure P (θ).

The likelihood of the data x̂T for a given parameter vector is

L
(

θ|x̂T
)
= P (x̂0, x̂1, . . . , x̂T|θ) = π0,i0 (θ) Pi0,i1 (θ) Pi1,i2 (θ) . . . PiT−1,iT (θ) .

Denote nij the number of transitions from state ei to ej. Then the likelihood has a multino-
mial distribution

L
(

θ|x̂T
)
= π0,i0 (θ)

n

∏
i,j=1

(
Pi,j (θ)

)nij .

The inference problem of the econometrician is to deduce, from the observed sample
{x̂t}T

t=0, the probability measure P (θ0) that generated the data, where θ0 ∈ Θ is the ‘true’
parameter value.

One standard method is based on maximizing the likelihood function. The maximum
likelihood estimator corresponds to maximizing L

(
θ|x̂T) with respect to θ:

θ̂ML = arg max
θ∈Θ

L
(

θ|x̂T
)

.

Often, given the multiplicative structure of the likelihood, it is more sensible to maximize

log L
(

θ|x̂T
)
= log π0,i0 (θ) +

n

∑
i,j=1

nij log Pij (θ) . (1.9)

The maximum likelihood estimator has a range of desirable statistical properties because it
is based on the maximization of the likelihood function, which summarizes all information
about the underlying probability distribution contained in the data. On the other hand,
it requires a complete specification of this probability distribution and it can be hard to
compute in more complex models. Moreover, the econometrician may be concerned that
some parts of the model may be misspecified or trust certain distributional assumptions
less than others, and therefore would like to omit such information from the estimation.

1.1.6 Method of moments estimation

The method of moments is based on the idea that we can construct a vector of conditions,
called moments, that the distribution of the stochastic process satisfies only at the true
parameter value θ0. Solving the empirical counterpart of these moment conditions yields
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the method of moments estimator θ̂MOM.

Specifically, let there be a K × 1 vector g (x; θ) = (g1 (x; θ) , . . . , gK (xt; θ))′ of functions
that satisfy

E [g (xt; θ)] = 0

if and only if θ = θ0. To implement the estimator, we replace the theoretical expectation
under the stationary distribution with the sample average and solve the vector of moment
conditions for θ̂MOM:

1
T + 1

T

∑
t=0

g
(

x̂t; θ̂MOM
)
= 0.

There is generally no unique way how to pick the vector of moments. In practice, the choice
is motivated by the tradeoff between statistical efficiency, complexity of the construction
of the moment condition, and judgement of the econometrician concerning the correct
specification of different parts of the model. The generalized method of moments devised
by Hansen (1982) provides a formal way how to combine moment conditions efficiently
and how to assess the statistical properties of the moments estimator.

In Section 4.3.1, we revisit the estimation problem and contrast the above two methods
with a Bayesian approach to estimation.

Example 1.6. Consider a two-state Markov chain with the transition matrix

P =

[
1 − p p

q 1 − q

]
with p > 0, q > 0. Assume that q is known, and we are estimating the parameter θ = p from
a sample of data x̂T, which was generated from a Markov chain with the true parameter value p0,
hence θ0 = p0.

Using (1.9), the log-likelihood function for the data is given by

log L
(

p|x̂T
)
= log π0,i0 + n11 log (1 − p) + n12 log p + n21 log q + n22 log (1 − q) .

where nij counts the number of transitions from state ei to state ej in the sample x̂T. The first-order
condition with respect to p yields

0 = −n11
1

1 − p
+ n12

1
p

,

and hence the maximum likelihood estimator is given by

p̂ML =
n12

n11 + n12
.

Since the estimator p̂ML computes the share of cases when the chain that is currently in state e1

transited into state e2, the Law of Large Numbers implies that p̂ML → p0.

One example of a method of moments estimator can be constructed as follows. The stationary
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distribution of the Markov chain is given by

π′ =

(
q

p + q
,

p
p + q

)
.

Since the Markov chain is ergodic, we can rely on the result from the ergodic theorem, Theorem 1.6.
Construct the moment function

g (x; p) = 1 {x = e1} −
q

p + q
.

Observe that
E [g (x; p)] = π1 −

q
p + q

= 0,

and, if the moment π1 was generated using the true parameter, then there is indeed a unique value
p = p0 that solves this moment condition. The empirical counterpart to the moment condition is

1
T + 1

T

∑
t=0

1 {x̂t = e1} −
q

p + q
.
= π̂1 −

q
p + q

= 0.

By the ergodic theorem, π̂1 → π1 as T → ∞, and we can therefore construct the method of moments
estimator as

p̂MOM =
1 − π̂1

π̂1
q.

1.1.7 Hidden Markov models

We can use Markov chains to derive a version of a frequently used macroeconomic frame-
work, so-called Hidden Markov models.

Recall that
E [xt+1 | xt] = P′xt.

Then we can derive the mean-zero residual

vt+1
.
= xt+1 − E [xt+1 | xt] = xt+1 − P′xt.

Hence we get a ‘law of motion’ for the state xt

xt+1 = P′xt + vt+1.

Let us now assume that xt is ‘hidden’, i.e., not observable by the econometrician. In-
stead of xt, the econometrician observes a noisy signal about xt. Specifically, let yt be a
random realization of a coordinate vector f j from an m-dimensional space.

The observation matrix is

P
(
yt = f j | xt = ei

)
= Qij
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where Q is an n × m matrix, with row entries summing up to one. When Q has multiple
strictly positive entries in a given column, it means that the same signal realization can
occur in multiple different states, leading to information loss. This can happen when m <

n, and we have less signal realizations than states, or when the state is observed with noise,
and we have multiple strictly positive entries in a given row of Q.

We can calculate the expected value of the signal conditional on the true state as

E [yt | xt = ei] = (Qi·)
′ ,

and therefore
E [yt | xt] = Q′xt.

Again, we can define the mean-zero residual

ut = yt − E [yt | xt] .

Combining these equations, we obtain the system

xt+1 = P′xt + vt+1 (1.10)

yt = Q′xt + ut.

The first equation is the law of motion for the unobservable state xt. The second equation
is a ‘measurement equation’ for observed data yt. Our goal is to use the observed data
to figure out what the evolution of the hidden state is. Observe that due to the noise ut,
this inference will be imperfect. We will be solving a filtering problem, i.e., we will use
observations yt and attempt to separate noise ut from the best forecast of the evolution of
the state xt.

Nonlinear filtering

Imagine we observed the sequence yt = (y1, . . . , yt). What is the best forecast of xt, given
this sequence? Formally, denote

ρi (t) = P
(

xt = ei | yt
)
= P

(
xt = ei | y1, y2, . . . , yt

)
.

Stacking ρi (t), i = 1, . . . , n in a column vector ρ (t), we obtain

ρ (t) = P
(
xt | yt) .

We want to find a recursive representation for ρ (t). In particular, we want to show that
we can express ρ (t) by combining:

• ρ (t − 1) = P
(

xt−1 | yt−1), i.e., the best forecast of xt−1 given all data yt−1 up to time
t,

• the law of motion for the state, xt = P′xt−1 + vt, consisting of the best forecast of xt
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given xt−1, and the associated error vt,

• and incorporating the new observation yt whose conditional probability is P (yt | xt).

Let

P
(

xt | yt) =
P
(

xt, yt | yt−1)
P (yt | yt−1)

=
∑xt−1

P
(
xt, xt−1, yt | yt−1)

∑xt ∑xt−1
P (xt, xt−1, yt | yt−1)

=
∑xt−1

P
(
yt | xt, xt−1, yt−1) P

(
xt, xt−1 | yt−1)

∑xt ∑xt−1
P (yt | xt, xt−1, yt−1) P (xt, xt−1 | yt−1)

=
∑xt−1

P (yt | xt) P
(
xt | xt−1, yt−1) P

(
xt−1 | yt−1)

∑xt ∑xt−1
P (yt | xt) P (xt | xt−1, yt−1) P (xt−1 | yt−1)

=
∑xt−1

P (yt | xt) P (xt | xt−1) P
(
xt−1 | yt−1)

∑xt ∑xt−1
P (yt | xt) P (xt | xt−1) P (xt−1 | yt−1)

Here, ∑xt
denotes the sum over all realizations ei of the state vector xt. Observe that we

now have a recursive representation between P
(
xt | yt) and P

(
xt−1 | yt−1), given the dis-

tribution of observations conditional on state P (yt | xt), and distribution of state condi-
tional on the state previous period P (xt | xt−1).

Assume that xt = ei and yt = f j. Then the derivation above can be continued in matrix
form as

ρi (t) = P
(

xt = ei | yt−1, yt = f j

)
=

∑s QijPsiρs (t − 1)
∑i ∑s QijPsiρs (t − 1)

=

=
∑s PsiQijρs (t − 1)
∑s [PQ]sj ρs (t − 1)

=
(ρ (t − 1))′ P·iQij

(ρ (t − 1))′ [PQ]·j

where ρs (t − 1) in the last expression is the column vector with elements ρs (t − 1). This
can be written for an arbitrary yt = f j as

ρi (t) =
(ρ (t − 1))′ P·iQi·yt

(ρ (t − 1))′ PQyt

and the vector ρ (t), one element for each xt = ei,

ρ (t) =
veci

[
(ρ (t − 1))′ P·iQi·yt

]
(ρ (t − 1))′ PQyt

=
diag

[
Qyt (ρ (t − 1))′ P

]
(ρ (t − 1))′ PQyt

where the last line presents two alternative ways of writing the result, where veci [·] is the
column vector created by stacking elements indexed by i, while diag [·] is a column vector
created from diagonal elements of the argument. To see that the last expression is correct,
notice that the last expression can be written as

ρ (t) =
diag

[
Qyt (ρ (t − 1))′ P

]
tr
[
(ρ (t − 1))′ PQyt

] =
diag

[
Qyt (ρ (t − 1))′ P

]
tr
[
Qyt (ρ (t − 1))′ P

] (1.11)
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so that ρ (t) sum up to one, which is consistent with ρ (t) being a vector of probabilities.

We can now verify the recursivity of the formulation, and how ρ (t) combines

• the previous period best forecast ρ (t − 1),

• the law of motion for the state, through the transition matrix P,

• the new data point yt, through the observation matrix Q.

The Markov property

Notice that while the original system (1.10) was Markov in xt, the new system cannot
because we do not observe xt. However, we can establish the Markov property for the
joint process {ρ (t − 1) , yt} under a particular filtration.

In particular, let ρ (0) = P (x0), and denote
{
F̃t

}∞

t=0
the filtration generated by ρ (0)

and the history of random variables yt, t = 1, 2, . . .. Notice that this filtration is coarser
(less informative) than the filtration generated by histories of (xt, yt). The claim is that the

process {ρ (t − 1) , yt} is Markov under
{
F̃t

}∞

t=0
, i.e., that the probability distribution of(

ρ (t + j − 1) , yt+j
)

conditional on F̃t is the same as conditional on (ρ (t − 1) , yt).

This can be directly seen from the formulas that we derived. First notice that ρ (t) =

P
(
xt | yt) is a function of yt and ρ (t − 1) given by equation (1.11). Second, yt+1 is a func-

tion of xt+1 plus random noise, and xt+1 itself is a function of xt plus random noise. Since
all information about xt given data yt is summarized in ρ (t) and this is a function of yt

and ρ (t − 1), then indeed the conditional distribution of yt+1 under F̃t is completely char-
acterized by (ρ (t − 1) , yt). This establishes the Markov property.

Notice that this conclusion does not mean that the stochastic process {ρ (t − 1) , yt} is
Markov under the original filtration {Ft}∞

t=0. This filtration includes information from
observations of xt, and xt itself is more informative about yt+1 than the pair (ρ (t − 1) , yt).

Finally, it is important to observe what is the object for which we established the
Markov property. It combines the observed data yt with the evolution of the whole prob-
ability distribution ρ (t) = P

(
xt | yt). On the Markov chain, this probability distribution

is an n-dimensional vector, and so the problem remains tractable. However, in continuous
state spaces, keeping track of the evolution of the whole probability density will not be
tractable in most cases. A tractable example will be the case of linear Gaussian Markov
models where the filtering problem will reduce to a law of motion of a Markov process
representing the first two moments of the distribution. This will be the Kalman filter de-
scribed in Section 4.1.

1.1.8 Continuous-state Markov chain

The construction of Markov chains can be extended to continuous state spaces. Denote S
a set of states with typical element s ∈ S . Typically, S ⊆ Rn. Stochastic evolution of the
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state can be described by cumulative distribution functions

Π
(
s′ | s

)
= P

(
st+1 ≤ s′ | st = s

)
,

Π0 (s) = P (s0 ≤ s)

The transition density, if it exists, is given by

π
(
s′ | s

)
=

d
ds′

Π
(
s′ | s

)
π0 (s) =

d
ds

Π0 (s)

When the notation is not ambiguous, we also use the transition probability notation

Π (B | s) = P (st+1 ∈ B | s)

In line with the constructions of the discrete-state Markov chains, we define stationar-
ity, invariant functions and ergodicity.

Definition 1.7. A continuous-state Markov chain (π, π0) is stationary if π0 satisfies

π0
(
s′
)
=
∫

π
(
s′ | s

)
π0 (s) ds.

A function ϕ (s) is invariant if ∫
ϕ
(
s′
)

π
(
s′ | s

)
ds′ = ϕ (s) .

The Markov chain is ergodic if the only invariant functions ϕ (s) are constant with probability 1
under a given stationary distribution π∞.

Remark 1.2. If the density does not exist then the stationarity condition reads that for every mea-
surable B,

Π0 (B) =
∫

Π
(
s′ ∈ B | s

)
Π0 (ds)

where we abused the notation a bit and used Π for the probability measure as opposed to cdf.

Proposition 1.7. Let y (s) be a random variable, i.e., a measurable function of the state, and let
(π, π0) be a stationary and ergodic continuous-state Markov process (chain). Assume that E |y| <
+∞. Then

1
T

T

∑
t=1

yt → E [y] =
∫

y (s)π0 (s) ds

with probability 1 with respect to the distribution π0.

1.1.9 Example: Asset valuation

Let (P, π) be a stationary Markov chain with P that has strictly positive elements, and
denote xt the state at time t. We are interested in the valuation of a dividend process
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{Dt}∞
t=0. We assume that future cash flows are discounted by a constant discount rate

β ∈ (0, 1); as we will see later, such a model of discounting would be the outcome of
an optimal investment decision made by a risk-neutral agent. In Section 3.1.3, we discuss
discounting of risky cash flows in more generality.

The price Qt of the asset that represents the claim on the dividend process satisfies the
recursion

Qt = Et [β (Qt+1 + Dt+1)] . (1.12)

The goal is to find a stochastic process {Qt}∞
t=0 for the asset price that satisfies this equation.

We can roll the equation forward to obtain

Qt =
T−t

∑
j=1

Et

[
βjDt+j

]
+ Et

[
βT−tQT

]
,

and, under the assumption that

lim
T→∞

Et

[
βT−tQT

]
= 0, (1.13)

we obtain the fundamental solution

Qt =
∞

∑
j=1

Et

[
βjDt+j

]
. (1.14)

To make the model more specific, let us assume that the dividend Dt = d (xt) = d̄′xt is
a function of the Markov state, and that d̄ ≥ 0 and nonzero. In this case

Et

[
βjDt+j

]
= βjPjd̄.

Denote λi the eigenvalues of P in descending order. Since P is a transition matrix, λ1 =

1, and since P has strictly positive elements, the Perron–Frobenius theorem implies that
|λi| < 1 for i ≥ 2. Assume for simplicity that the remaining eigenvalues are distinct, so
that the associated eigenvectors vi form a basis of the n-dimensional vector space, and we
can write d̄ as

d̄ = c1v1 + c2v2 + . . . + cnvn

for some projection coefficients ci. The eigenvector v1 can be normalized to be strictly
positive, and since d̄ is positive, it must be that c1 > 0. Indeed, we know from the Perron–
Frobenius theorem that v2 has negative elements. Assume that c1 = 0. Then the contribu-
tion of the eigenvector v2 dominates for large j

Pjd̄
j→∞
≈ λ

j
2c2v2

and hence the conditional expectation of a positive random variable would turn negative,
a contradiction.
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This implies that

Et

[
βjDt+j

]
= βjPjd̄

j→∞
≈ βjλ

j
1c1v1 = βjc1v1,

so the value of positive long-horizon payoffs decays at the discount rate β.

We now want to turn to the characterization of solutions {Qt}∞
t=0. Assume first that we

are looking for a Markov solution of the form

Qt = q (xt) = q̄′xt.

Since the Markov solution is bounded, condition (1.13) is satisfied, and the Markov solu-
tion is the fundamental one. In fact, we can solve for it by plugging in the Markov form
into the recursive equation (1.12):

q̄ = βP
(
q̄ + d̄

)
.

Since βP has all eigenvalues strictly inside the unit circle, then I − βP is invertible, and we
obtain the solution

q̄ = (I − βP)−1 d̄.

However, can there be other solutions as well? Indeed there can but, as our previous
analysis implies, they cannot be functions of the Markov chain. To see this, consider the
solution to the following recursive equation

Qb
t = βEt

[
Qb

t+1

]
. (1.15)

Conjecture the existence of such a process and define

εt+1 = Qb
t+1 − Et

[
Qb

t+1

]
to be its one-period-ahead expectational error. Then

Qb
t = β

(
Qb

t+1 − εt+1

)
,

and hence
Qb

t+1 =
1
β

Qb
t + εt+1.

Any stochastic process that satisfies this stochastic difference equation is indeed a solution
to (1.15). Observe that from the perspective of valuation, equation (1.15) is a recursive
equation for the value of an asset that pays zero cash flows. A positive solution for the
price process is called a bubble.

Observe that this bubble grows on average at the rate β−1, and violates condition (1.13):

lim
T→∞

Et

[
βT−tQb

T

]
= Qb

t ̸= 0.
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Let us now combine the fundamental solution and the bubble to define the price pro-
cess

Qt = q̄′xt + Qb
t .

This price process {Qt}∞
t=0 satisfies the recursive valuation equation (1.12). It is, however,

not Markov. The fundamental component q̄′xt is stationary but the bubble component Qb
t

is not, and hence cannot be written as a function of the Markov state.

1.1.10 Example: Wages in a lake model

In this example, we study the distribution of workers’ wages in a version of the McCall
(1970) search model. We develop optimal decision-making in this model in Section 2.1. In
this example, all transitions between employment states are exogenous.

A worker in the economy can be either employed or unemployed. At the beginning of
each period, a previously unemployed worker receives a wage offer with probability λ and
accepts it. Also at the beginning of each period, a previously employed worker separates
from a job with probability δ.

Employment status distribution

Transitions in the employment status can be represented using a 2-state Markov chain
with states e1, e2 corresponding to unemployment and employment state s ∈ {u, e}, re-
spectively. The transition matrix is given by

P =

[
1 − λ λ

δ 1 − δ

]
.

Stationary distributions of the Markov chain are left eigenvectors of P associated with the
unit eigenvalue, normalized to a unit sum, i.e., normalized solutions to π′P = π. If at least
one of the values λ and δ is larger than zero, the unique solution is

π′ =

(
δ

λ + δ
,

λ

λ + δ

)
.

Then the stationary Markov chain (P, π) is ergodic. This means that the stationary cross-
sectional distribution of workers’ employment statuses can be replicated by drawing a
random worker with initial status arbitrarily drawn from π, and following the distribution
of her employment status over time. This is true even in the case when either λ or δ are
equal to zero.

When λ = δ = 0, the model replicates Example 1.4. Any π = (p, 1 − p)′ for p ∈ [0, 1]
constitutes a stationary distribution. Each individual history has a constant employment
status. This means that when p ∈ (0, 1), the stationary Markov chain (P, π) is not ergodic,
but it is ergodic when p ∈ {0, 1}.
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Wage distribution

Continuing with the above example, assume that λ, δ > 0. Further assume that the wage
offer for an unemployed worker is drawn from a distribution with cdf F (w) that has a
density f (w) with a full support on [0, 1]. Assume that every job offer is accepted by the
unemployed worker, even when this is not optimal. When the worker accepts, she stays
with the same wage w until she separates into unemployment. An unemployed worker
earns c ≥ 0.

While in this simple model, transitions depend only on employment status, we want
to establish the distribution of income. The state in this model is the pair x = (y, s) where
s ∈ {u, e} is the employment status, y = c when s = u, and y = w ∈ [0, 1] when s = e .

For the unemployed worker, the transition probability is completely characterized by

Π
(
s′ = u | s = u

)
= 1 − λ

π
(
y′ = w; s′ = e | s = u

)
= λ f (w) .

The conditional distribution of wage offers conditional on s′ = e and s = u therefore has
density f (w). On the other hand, when s = e, then

Π
(
s′ = u | y = w; s = e

)
= δ

Π
(
y′ = w; s′ = e | y = w; s = e

)
= 1 − δ.

Using the stationary distribution of the employment statuses, we can infer that the
unique stationary distribution Π0 of (y, s) is

(y, s) :
{

(c, u) with probability Π0 (c, u) = δ
λ+δ

(w, e) with density π0 (w, e) = λ
λ+δ f (w)

The unique stationary distribution of income y is analogous

y :
{

y = c (unemployed) with probability Π0 (0) = δ
λ+δ

y = w ≥ 0 (employed) with density π0 (w) = λ
λ+δ f (w)

Since λ, δ > 0, the Markov chain for (y, s) is ergodic. Any set of wages B that has
a positive probability under Π0 and any employment status can be reached with a posi-
tive probability from any current state (y, s), and hence any invariant function has to be
constant on the whole support of the stationary distribution.

When δ = 0, there are infinitely many stationary distributions of (y, s), all characterized
by Π0 (c, u) = 0, but with arbitrary distributions of wages π0 (w). Once a worker receives
an offer, she stays at the job with wage w forever, so any π0 (w) that integrates to one can be
supported as the stationary distribution. Under such a distribution, any function y (w) is
invariant, since w stays constant and hence y (w) also stays constant. Hence, when π0 (w)
is nondegenerate, the Markov chain is not ergodic. Only when π0 (w) is degenerate and
consists of a single mass point, the chain is ergodic.
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1.2 Investors’ consumption-saving decision problem

We now characterize the decision problem of an investor who can smooth consumption
by investing in a variety of assets with potentially stochastic returns. We want to carefully
derive the first-order conditions from the sequence problem, paying attention to the ap-
propriate measurability of the individual objects. In order to do so, it is instructive to be
explicit about encoding of states. To avoid technical difficulties, we follow the setup from
Section A.1 and assume that at every date, one of a finite number S of different states can be
realized. Recall that we denoted st = (s0, s1, . . . st) the history of realized states up to time
t, P

(
st) its unconditional probability, and P

(
st+j|st) the probability of st+j conditional on

a partial history st.

There are N available assets, with time-t payoffs Gn
t
(
st) and ex-dividend prices Qn

t
(
st),

n = 1, . . . , N. An investor can buy the asset at time t for Qn
t
(
st), collect payoff Gn

t+1

(
st+1)

at time t + 1, and subsequently resell the asset for Qn
t+1

(
st+1), hence earning the return

Rn
t+1

(
st+1

)
=

Qn
t+1

(
st+1)+ Gn

t+1

(
st+1)

Qn
t (st)

. (1.16)

We denote an
t
(
st) the quantity of asset n bought at time t with history st. Buying and

selling the assets is unconstrained.

The investor is endowed with expected utility preferences (von Neumann and Morgen-
stern (1947)) with period utility function u (c) and time-preference parameter β ∈ [0, 1).
Every period, the investor also receives an exogenous endowment yt

(
st).

In order to keep the problem disciplined, we impose, for the purposes of this section,
that Qn

t
(
st), Gn

t
(
st), and yt

(
st) are bounded stochastic processes. This allows a rigorous

characterization of the solution without the need to take into account specific pathological
cases with unbounded cash flows or endowments.

With this notation, we can write the consumption-savings problem as

max
{ct(st),an

t (st)}∞
t=0

∞

∑
t=0

∑
st

P
(
st|s0

)
βtu

(
ct
(
st)) (1.17)

subject to the sequence of budget constraints

ct
(
st)+ N

∑
n=1

an
t
(
st)Qn

t
(
st) = N

∑
n=1

an
t−1

(
st−1

) (
Qn

t
(
st)+ Gn

t
(
st))+ yt

(
st) , (1.18)

for t = 1, 2, . . ., with the initial state s0 and initial asset positions an
−1

(
s−1) = an

−1 given.
This set of budget constraints needs to be extended by including a constraint that prevents
the agent from running into ever-increasing debt (negative financial wealth), a so-called
no-Ponzi condition:

lim
t→∞

N

∑
n=1

an
t
(
st)Qn

t
(
st) ≥ −b, (1.19)
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where b is an arbitrarily large number called the debt limit. Along the optimal path, this
debt limit will never be reached, but without this constraint, the problem would not be
well posed. A more detailed discussion on the role of the no-Ponzi conditions is provided
in Section 1.2.2.

The right-hand side of the budget constraint (1.18) indicates the available resources
at time t, consisting of the cash flows from the asset positions, proceeds from asset sales,
and the exogenous endowment. The timing of the variables indicates that assets being
sold at time t have been purchased in quantities an

t−1

(
st−1) that have been determined in

period t − 1, i.e., conditional on information contained in the history st−1. Hence, these
asset positions are Ft−1-measurable. The left-hand side represents time-t expenditures,
consisting of consumption ct

(
st) and new asset purchases with quantities an

t
(
st). Both

these choices are Ft-measurable. Hence the whole constraint (1.18) is Ft-measurable.

The notation in (1.17)–(1.18) also reveals the notion how Debreu (1959) and Arrow
(1964) thought about the problem of state dependence. Consumption goods in different
states constitute distinct goods, hence, given the initial state s0, there are St distinct goods
at time t, one for each st. The expected utility operator in (1.17) constitutes a utility ag-
gregator over the consumption bundle

{
ct
(
st) : t ≥ 0, st ∈ S t, s0 given

}
with utility addi-

tively separable across states and time.

The setup incorporates a variety of asets. For example, a one-period risk-free bond
purchased at time t has Gn

t+1

(
st+1) = 1 and Qn

t+1

(
st+1) = 0, so that the one-period return,

called the risk-free rate, is

Rn
t+1

(
st+1

)
=

1
Qn

t (st)
.

Observe that this return only depends on time-t information, and is therefore Ft -measurable.

We can now form the Lagrangian. Notice that (1.18) says that we have one budget
constraint at time t for every history st. Therefore, we will also have a Lagrange multiplier
for every such history, which we denote µt

(
st). The Lagrange multiplier for the set of

constraints at time t is also Ft-measurable. Moreover, as we will see momentarily, it is
useful to choose instead as the Lagrange multiplier its scaled version P

(
st|s0

)
βtµt

(
st).

Then the Lagrangian is given by

L (s0) =
∞

∑
t=0

∑
st

P
(
st|s0

)
βtu

(
ct
(
st))

+
∞

∑
t=0

∑
st

P
(
st|s0

)
βtµt

(
st) [ N

∑
n=1

an
t−1

(
st−1

) (
Qn

t
(
st)+ Gn

t
(
st))+ yt

(
st)

−ct
(
st)− N

∑
n=1

an
t
(
st)Qn

t
(
st)]

Tha Lagrangian omits the no-Ponzi condition, already anticipating that it will be slack
along the optimal path. The first-order necessary conditions for optimal consumption and
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investment choice can be written as:[
ct
(
st)] : P

(
st|s0

)
βtu′ (ct

(
st)) = P

(
st|s0

)
βtµt

(
st)[

an
t
(
st)] : P

(
st|s0

)
βtµt

(
st)Qn

t
(
st) =

= ∑
st+1|st

P
(

st+1|s0

)
βt+1µt+1 (st+1)

(
Qn

t+1

(
st+1

)
+ Gn

t+1

(
st+1

))
.

Observe that the time-t choice of assets an
t
(
st) for a particular st determines the asset posi-

tions along all paths st+1 that are continuation paths of st, i.e., that can be reached from st.
We denote these paths st+1|st. There are S such paths, and the sum on the right-hand side
of the first-order conditions sums across them. Simplifying the expressions, we obtain[

ct
(
st)] : u′ (ct

(
st)) = µt

(
st) (1.20)[

bt+1
(
st)] : Qn

t
(
st) = βR ∑

st+1|st

P
(
st+1|s0

)
P (st|s0)

µt+1
(
st+1)

µt (st)

(
Qn

t+1

(
st+1

)
+ Gn

t+1

(
st+1

))
.

These first-order conditions, together with the sequence of budget constraints, are nec-
essary for an optimum but not sufficient. They assure that the sequence of consumption
choices ct

(
st) is optimal in a relative sense, namely that if ct

(
st) has been chosen optimally,

ct+1
(
st+1) will also be chosen optimally and so on. In order to also pin down the overall

level of the consumption path an additional condition, called the transversality condi-
tion, needs to be added that assures that asymptotically, the investor does not oversave
resources, in the sense that the value of accumulated financial assets does not explode:

lim
t→∞

βt ∑
st

P
(
st|s0

)
u′ (ct

(
st)) N

∑
n=1

an
t
(
st)Qn

t
(
st) = 0.

More discussion on the necessity and sufficiency of transversality conditions is provided
in Section 1.2.2, in Kamihigashi (2003, 2005), as well as in Stokey et al. (1989), Chapter 4.

Since the ratio of probabilities in (1.20) is the conditional probability

P
(
st+1|s0

)
P (st|s0)

= P
(

st+1|st
)

,

we can rewrite the par of optimality conditions (1.20) using the conditional expectations
operator, and dropping the notation for the histories st as

u′ (ct) = µt

Qn
t = E

[
β

µt+1

µt
(Qn

t+1 + Gn
t+1) | Ft

]
= Et

[
β

µt+1

µt
(Qn

t+1 + Gn
t+1)

]
.

Substituting out the Lagrange multipliers, we obtain the Euler equation

Qn
t = Et

[
β

u′ (ct+1)

u′ (ct)
(Qn

t+1 + Gn
t+1)

]
. (1.21)



1.2 Investors’ consumption-saving decision problem 29

Similarly, the transversality condition can be written as

lim
t→∞

βtE0

[
u′ (ct)

N

∑
n=1

an
t Qn

t

]
= 0. (1.22)

The Euler equations (1.21) can also be rewritten in returns form using the definition of
returns in (1.16) as

1 = Et

[
β

u′ (ct+1)

u′ (ct)
Rn

t+1

]
, n = 1, . . . , N. (1.23)

The Euler equations thus constitute restrictions on the joint dynamics of investors’ con-
sumption on asset returns in the form of moment conditions. We can therefore use them
to estimate preference parameters and test their validity using the generalized method of
moments, an approach we take up in Section 1.4.

The Euler equations indicate that from the perspective of an optimizing investor, the
price of the asset must be equal to the expected next-period payoff and resale value, ad-
justed by the marginal rate of substitution. The marginal rate of substitution in this model
is commonly called the stochastic discount factor process St, with one-period increment

St+1

St
= β

u′ (ct+1)

u′ (ct)
.

The Euler equations then read

1 = Et

[
St+1

St
Rn

t+1

]
, n = 1, . . . , N. (1.24)

This form of asset pricing restrictions emerges in many dynamic environments, including
ones in which asset prices are not determined by individual investors maximizing utility
from consumption. As we discuss in Section 1.6, absence of arbitrage in finance markets
is equivalent to the existence of a strictly positive stochastic discount factor that satisfies
restrictions (1.24).

1.2.1 Subjective beliefs

In the consumption-saving problem discussed in the previous section, the investor was
endowed with separable preferences over consumption and correct beliefs about the dis-
tribution of future states. Such preferences satisfy the von Neumann and Morgenstern
(1947) expected utility axioms.

In principle, the investor could be endowed with subjective expected utility axioma-
tized by Savage (1954), with a probability measure PI (st) replacing P

(
st) throughout the

derivation, concluding with Euler equations

1 = EI
t

[
β

u′ (ct+1)

u′ (ct)
Rn

t+1

]
, n = 1, . . . , N. (1.25)
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where EI
t [·] is the expectations operator under the subjective probability measure PI . This

implies that the restrictions on asset returns are not only determined by investors’ marginal
rate of substitution but also by their beliefs. This will have profound implications for
empirical testability of these restrictions using GMM in Section 1.4.

1.2.2 Transversality conditions vs No-Ponzi conditions

The characterization of the optimal trajectory in the consumption-saving problem involved
two types of asymptotic conditions: transversality conditions, and no-Ponzi conditions.
While they both involve statements about the asymptotic behavior of dynamic paths, they
are completely distinct.

Transversality conditions (TVC) of the type (1.22) are optimality conditions, i.e., con-
ditions that the optimal path must satisfy. In finite-horizon problems, they describe how
the optimal path must behave as we ‘transverse’ beyond the planning horizon. In infinite-
horizon problems, they describe the asymptotic behavior of the optimal path. The model
analyzed in this section involves a free terminal boundary that does not specifically con-
strain the asymptotic behavior of the optimal path but specific modifications of the transver-
sality conditions can accomodate such additional constraints as well.

In the context of economic models, they assure that the agent does not overaccumulate
a resource asymptotically in a way that would leave a strictly positive value of the reward
flow on the table in the long run. This is exactly what condition (1.22) expresses—the in-
vestor should not overaccumulate financial wealth. This discounted total value, expressed
in utils, should converge to zero, otherwise the agent could increase the value function by
consuming some of the financial wealth at a finite date t. In fact, condition (1.22) can in
some cases be replaced with an inequality (≤) constraint. Stokey et al. (1989), Chapter 4,
provide a pedagogical treatment.

No-Ponzi conditions (NPC) of the type (1.19), on the other hand, are institutional re-
strictions on the set of feasible paths for the optimization problem to be well-defined. They
rule out paths that would imply improvement of agent’s objective but would lead to patho-
logical, economically uninteresting solutions, like ever accelerating debt accumulation in
an infinite horizon problem. Condition (1.19) explicitly provides a fixed lower bound on
negative value of financial assets. Since the stock of financial assets constitutes a valuable
resource, the agent should not be allowed to deplete its stock to −∞, even asymptotically.
Otherwise, it would be optimal to do so, a result that is not economically interesting. The
no-Ponzi condition is thus an institutional restriction on the choice set of the agent. No-
tice that in the case of a variable that represents a negative resource, like the stock of debt
in the example below, the appropriate no-Ponzi condition would restrict the variable from
above.

In many applications, a sufficient no-Ponzi condition can be represented by bounding
the discounted value of the valuable resource from below by zero, while the transversality
condition bounds the discounted value of the resources from above by zero. Hence an
equality restriction that equates this discounted value with zero would seem to subsume
both the TVC and the NPC. But this would be a misinterpretation of their distinct roles.
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First, the NPC is imposed on the problem as one of the exogenous institutional constraints,
and then, such an appropriately restricted problem implies necessary and sufficient opti-
mality conditions that include the TVC.

We can illustrate these conditions and their roles with a simple deterministic version
of the consumption-saving model. Consider an investor who has access to only a single
asset, a one-period risk-free bond with a constant interest rate R, or price Q = R−1. We
denote bt the amount of borrowing (i.e., a negative investment in the bond) that must be
repayed at the beginning of period t. The investor maximizes present discounted utility
from consumption

max
{bt+1}∞

t=0

∞

∑
t=0

βtu (ct)

subject to the set of constraints:

ct + bt = R−1bt+1 + y, ∀t ≥ 0 (1.26)

ct ≥ 0, ∀t ≥ 0

lim
t→∞

bt

Rt ≤ 0. (1.27)

Restriction (1.26) is the budget constraint. The left-hand side denotes time-t expenditures
and the right-hand side captures sources of financing, consisting of a fixed endowment y
and new borrowing that needs to be repayed at time t + 1. Consumption is restricted to be
nonnegative.

Restriction (1.27) is the no-Ponzi condition. First observe that debt is an adverse state
for the household (more debt is worse), and hence the no-Ponzi condition restricts debt
accumulation from above. Second, notice that the bound is not fixed, it merely prevents
debt from growing too quickly (at a faster rate than the rate of interest). This is looser than
condition (1.19) but still sufficient to exclude pathological paths.

The Euler equations and the transversality condition for this problem are given by

u′ (ct) = βRu′ (ct+1)

lim
t→∞

−βtu′ (ct) bt = 0.

For an exact derivation of the transversality condition, see Stokey et al. (1989), Chapter 4.
The transversality condition can then be rewritten using the Euler equations as

0 = lim
t→∞

−βtu′ (ct) bt = lim
t→∞

−βt u′ (c0)

(βR)t bt = −u′ (c0) lim
t→∞

bt

Rt .

Hence the transversality condition has a structure analogous to the no-Ponzi condition,
and it would seem that the no-Ponzi condition is not needed, since the optimal path sat-
isfying the transversality condition already satisfies the no-Ponzi condition (1.27). This
intuition is false.

To explain why, consider a candidate optimal path
{

b∗t+1
}∞

t=0 and the associate con-
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sumption path {c∗t }
∞
t=0 that satisfy the Euler equation and transversality condition. Now

consider a perturbation of the optimal path. Pick a period s, and define c̃s = c∗s + 1. For
every other period t ̸= s, keep c̃t = c∗t . Notice that this corresponds to borrowing one extra
unit of debt in period t, consuming it and rolling it over forever.

Without loss of generality, pick s = 0. Notice that under the optimal and modified
policy, we have

c∗0 + b∗0 = R−1b∗1 + y

c̃0 + b∗0 = R−1b̃1 + y

subtracting and reorganizing, we get

b̃1 = b∗1 + R.

But rolling over the debt further, we have

b̃t = b∗t + Rt. (1.28)

Dividing this expression by Rt and taking the limit, we must have

lim
t→∞

b̃t

Rt = lim
t→∞

b∗t
Rt + 1 = 1.

Hence the alternative path violates the no-Ponzi scheme condition but at the same time
also the transversality condition. But clearly, the policy {c̃t}∞

t=0 delivers a higher value
than {c∗t }

∞
t=0, so the latter cannot be optimal. What argument invalidates the use of the

transversality condition?

We have argued above that in order for the Euler equations and transversality condi-
tion to be sufficient for optimum, some lower bound must be imposed on variables that
represent a valuable resource. Since debt bt is the negative of a valuable resource, it corre-
sponds to an upper bound on bt, which, in this particular problem, is given by the no-Ponzi
condition (1.27). If we restrict feasible paths to those that also satisfy the no-Ponzi condi-
tion, then the transversality condition is sufficient and indeed recovers the optimal path.

1.3 Equilibrium in endowment economies

In Section 1.2, we studied the individual decision problem of an investor who takes asset
prices as given. We now describe how equilibrium asset prices are determined. We utilize
the endowment economy framework analyzed by Lucas (1978).

Time is discrete and infinite, indexed by t = 0, 1, 2, . . .. In every period t, one of
finitely many states st ∈ S is realized, with a history of states up to time t denoted
st = (s0, s1, . . . , st). The evolution of the states is determined by the data-generating prob-
ability measure P, with probabilities over histories P

(
st). The conditional probability of

history st conditional on partial history st−j is denoted P
(
st|st−j). Aggregate endowment



1.3 Equilibrium in endowment economies 33

in the economy is given by an exogenous process Yt = Y
(
st).

The representative investor receives individual endowment yt = y
(
st) and trades a set

of trades a set of N assets with prices Qn
t = Qn (xt) and promised cash flows Gn

t = Gn (xt),
n = 1, . . . , N. The preferences of the investor are described by a separable utility function
u (c) with usual properties, a time-preference parameter β ∈ [0, 1) and a subjective proba-
bility measure PI over the states of the economy. Such subjective expected utility satisfies,
for example, the Savage (1954) axioms. The representative investor trades in a competitive
market, taking asset prices as given. The decision problem is characterized by the objective
function given in (1.17), with optimal behavior analyzed in Section 1.2.

The assets are in fixed supply, given by the vector θ = (θ1, . . . , θN).

Definition 1.8. A competitive equilibrium in this endowment economy consists of the endowment
process Y

(
st), aggregate consumption C

(
st), cash flows Gn (st), the price processes Qn(st), and

individual allocations c
(
st), an (st), n = 1, . . . , N, such that:

1. given prices Qn(st), cash flows Gn (st), n = 1, . . . , n, and individual endowment y
(
st), the

investor chooses consumption c
(
st) and portfolio allocation an (st), n = 1, . . . , n, that solve

the utility maximization problem (1.17)–(1.19),

2. the individual investor is representative, so that individual and aggregate variables

c(st) = C(st) y
(
st) = Y(st),

3. markets clear

C(st) =
N

∑
n=1

θnGn (st)+ Y(st)

bn(st) = θn n = 1, . . . , N.

The equilibrium is a rational expectations equilibrium if investor’s subjective probability mea-
sure PI coincides with the data-generating probability measure P.

In the equilibrium in the endowment economy, cash flows Gn
t and endowment Yt are

exogenous, while asset prices Qn
t are endogenously determined.

The representative investor assumption builds on the idea that the given investor is
a representative member of a class of investors who share the same preferences and en-
vironment. As a consequence, individual and aggregate variables (consumption and en-
dowment) coincide. This is analogous to the “little k, big K” argument in Ljungqvist and
Sargent (2018), Chapters 7 and 12.

This also implies that we can also replace the stochastic discount factor in Euler equa-
tions (1.23), or in their subjective belief version (1.25), respectively, with

1 = EI
t

[
β

u′ (Ct+1)

u′ (Ct)
Rn

t+1

]
, n = 1, . . . , N (1.29)
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where the stochastic discount factor now depends on the aggregate consumption process:

st+1 =
St+1

St
= β

u′ (Ct+1)

u′ (Ct)
.

The definition of the equilibrium also clarifies the distinct roles the data-generating mea-
sure P and investor’s beliefs PI play in the determination of the equilibrium. The data-
generating measure P describes the evolution of the state st over time. On the other hand,
given a particular state with history st, the equilibrium asset prices Qn (st) are determined
by investor’s optimality conditions (1.29) that involves the subjective belief PI . The map-
ping from a particular history st to asset prices Qn (st) therefore depends only on the sub-
jective belief PI , not on the data-generating measure. The return on the asset

Rn
t+1 =

Qn (st+1)+ Gn (st+1)
Qn (st)

then depends on both measures in the following sense. The values Qn (st) and Qn (st+1)
as functions of the histories are determined by the subjective belief PI . On the other hand,
the distribution of st+1 conditional on st is determined by the data-generating measure,
P
(
st+1|st).
Under the rational expectations assumption (Muth (1961), Lucas (1972)), the subjective

belief PI and the data-generating probability measure P coincide. From now on, we impose
the rational expectations assumptions unless explicitly noted otherwise.

1.3.1 Equilibrium asset prices

The endowment economy setup allows for assets with flexibly specified cash flows. For
example, in the case of a stock, the payoff Gt is the dividend stream, and Qt the ex-dividend
price. The asset return then is

Rt+1 =
Qt+1 + Gt+1

Qt

with conditional expected return Et [Rt+1].

In the case of a risk-free bond with maturity T with time-t price Q[T]
t , the cash flow

stream Gt consists of a sequence of coupons in periods t + 1, . . . , t + T, and a principal
which we can normalize to 1. We can therefore set the price right before the principal is
paid off to Q[0]

t+T = 1, and then the bond prices satisfy the recursion

Q[T−j]
t+j = Et+j

[
St+j+1

St+j

(
Q[T−j−1]

t+j+1 + Gt+j+1

)]
.

In the case of zero-coupon bonds, the coupons Gt = 0 and the payoffs consist only of the
principal at maturity. The yield to maturity is the average return the bond earns between
today and its maturity

y[T]t = − 1
T

log Q[T]
t .
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In the case of the one-period zero-coupon risk-free bond, the price is

Q[1]
t = Et

[
St+1

St

]
and the return, called the risk-free rate, is the reciprocal of the expected value in the incre-
ment of the SDF:

R f
t+1 =

Q[0]
t+1

Q[1]
t

=
(

Q[1]
t

)−1
=

(
Et

[
St+1

St

])−1

.

Observe that this return is known at time t, i.e., is in the time-t information set.

An excess return is the difference between two returns, often between a risky and a
risk-free one

Re
t+1 = Rt+1 − R f

t+1.

Substracting the two Euler equations for returns Rt+1 and R f
t+1 implies that excess returns

satify

0 = Et

[
St+1

St
Re

t+1

]
. (1.30)

The risk premium is the expected excess return between two assets, Et
[
Re

t+1

]
.

The Euler equations (1.21) define asset prices recursively. and so we can iterate the
recursive equation forward:

Qt = Et

[
St+1

St
Gt+1

]
+ Et

[
St+1

St
Qt+1

]
= Et

[
St+1

St
Gt+1 +

St+2

St
Gt+1

]
+ Et

[
St+2

St
Qt+2

]
=

T

∑
j=1

Et

[
St+j

St
Gt+j

]
+ Et

[
St+T

St
Qt+T

]
.

Taking the limit of this iteration as T → ∞ yields

Qt = lim
T→∞

T

∑
j=1

Et

[
St+j

St
Gt+j

]
︸ ︷︷ ︸

fundamental value

+ lim
T→∞

Et

[
St+T

St
Qt+T

]
︸ ︷︷ ︸

rational bubble

. (1.31)

The first term on the right-hand side, representing the present discounted value of future
cash flows, is called the fundamental value of the asset. The second term, the asymptotic
discounted value of the asset, is called a rational bubble. When rational bubble exist, the
current asset value Qt can be strictly positive even when the asset does not pay any cash
flows, Gt+j = 0, j > 0.

Optimal behavior of individual investors described in the consumption-saving model
in Section 1.2 does not preclude the existence of rational bubbles. Investors are willing to
buy an asset whose price satisfies equation (1.31) at a positive price Qt because they believe
they will be able to resell this asset in the future at a positive price Qt+T.
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Whether bubbles can emerge in a model will therefore depend on the structure of the
model. Rational bubbles can emerge in specific models with market structure in which as-
sets can have specific role in providing liquidity, insuring idiosyncratic risk (Bewley (1980))
or facilitating integenerational trade (as in the overlapping generations economy in Tirole
(1985)). Money is an example of such an asset that is a bubble. However, rational expec-
tations equilibria put strong discipline on when bubble can emerge (Santos and Woodford
(1997)), since equilibrium restrictions often imply transversality conditions or no-bubble
conditions in the form

lim
T→∞

Et

[
St+T

St
Qt+T

]
= 0.

In the representative agent economy outlined in this section, bubbles indeed cannot emerge
in equilibrium.

1.3.2 Risk premia as compensation for risk

Differences in expected returns between assets express differential compensation for risk
associated with returns on these assets. Recall the expression for the covariance between
two random variables X and Y

Cov (X, Y) = E [X] E [Y]− E [XY] . (1.32)

Take two returns, for example, a risky return Rn
t+1 on asset n and the risk-free rate R f

t+1.
Since both these returns must satisfy the pricing Euler equation, the excess return Rn,e

t+1 =

Rn
t+1 − R f

t+1 satisfies

0 = Et

[
St+1

St

(
Rn

t+1 − R f
t+1

)]
.

Using the covariance formula with time-t conditioning, we can rewrite this restriction as

0 = Et

[
St+1

St

]
Et

[
Rn

t+1 − R f
t+1

]
+ Covt

(
St+1

St
, Rn

t+1 − R f
t+1

)
.

Reorganizing this expression, and noticing that(
Et

[
St+1

St

])−1

= R f
t+1

we obtain the relationship between expected excess returns and covariances of these re-
turns with the stochastic discount factor

Et

[
Rn

t+1 − R f
t+1

]
= −R f

t+1Covt

(
St+1

St
, Rn

t+1 − R f
t+1

)
. (1.33)

These expected excess returns are called risk premia, since they represent required com-
pensation for holding risky assets. In order to interpret the covariance, assume the case of
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the CRRA preference SDF
St+1

St
= β

(
Ct+1

Ct

)−γ

.

In bad state realizations at time t + 1, consumption Ct+1 is low, which implies a high
marginal rate of substitution, i.e., a high realization of the SDF. The situation is reversed in
good states of the economy. Then an asset that delivers low access returns Rn

t+1 − R f
t+1 in

bad states of the economy and high returns in good states will have a negative covariance
with the SDF. Such an asset is risky, since it delivers high returns in states of the world in
which consumption is not valuable, and vice versa. Investors are then compensated for
holding such a risky asset with a higher expected return. Observe that what matters is the
covarince with the SDF—an asset with volatile returns should earn a zero risk premium if
these returns are uncorrelated with the SDF.

Equation (1.33) lends itself to cross-sectional and time-series tests. In the cross-section,
assets with returns that covary more negatively with the stochastic discount factor should
earn higher risk premia. In the time series, periods of time in which the conditional covari-
ance is more negative should be associated with higher conditional risk premia.

1.4 Testing Euler equations using generalized method moments

In order to fully specify and solve the endowment economy in Section 1.3, we need to pa-
rameterize the data-generating probability measure, the mapping between the states and
aggregate endowment, the full set of traded assets and their cash flows, and the prefer-
ences of the representative agent. The model then predicts the dynamics of asset prices
that can be compared to the data using formal empirical tests. From a practical stand-
point, the structure of these assumptions would need to be sufficiently tractable to keep
the computation of the model feasible.

Specifying all these features can be a daunting task. In order to test the model or to
identify a specific subset of parameters that are of our interest, we can perhaps resort to
a more modest goal, and, in the words of Lars Peter Hansen, “do something without doing
everything” (Hansen (2014)). Optimality conditions in the form of Euler equations

0 = Et

[
St+1

St
Rn

t+1 − 1
]

(1.34)

are moment conditions that can be tested using the generalized method of moments (GMM),
developed by Hansen (1982), initially implemented in the asset pricing context by Hansen
and Singleton (1982). If we specify a model of the stochastic discount factor that can be
empirically implemented using observable quantities, then the dynamics of data on the
stochastic discount factor and asset returns are jointly restricted by the Euler equations,
which can be used to estimate paramaters of the stochastic discount factor and to expose
the model to a formal test. The asset pricing literature has widely used GMM to estimate
models of preferences as well as rejecting large classes of preferences as empirically im-
plausible.
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A second reason why GMM estimation may be advantageous is the ability to avoid
misspecifications emerging from parts of the model that we may have less confidence in. If
the full model is correctly specified, then utilizing only the moment conditions may neglect
information relative to using the full likelihood function of the model, and GMM may be
less efficient. However, there may be good reasons to trust specific Euler equations more
relative to some other details of the model incorporated in the likelihood, and so more
substantial concerns that estimation based on likelihood maximization is misspecified.

Since the Euler equations constitute only a subset of the predictions from the original
model, the estimation and testing procedure will not be able to determine all parameters
of the model. This approach is called partial identification of the model.

As mentioned above, the idea underlying the moment condition test is to take uncon-
ditional expectations of equation (1.34) to obtain

0 = E
[

St+1

St
Rn

t+1 − 1
]

(1.35)

and then use time series data for the SDF and returns to replace the theoretical moment
with its empirical counterpart

0 =
1
T

T−1

∑
t=0

St+1

St
Rn

t+1 − 1.

A law of large numbers implies that the empirical moment converges to the theoretical one
as T → ∞ if the model is correctly specified.

The unconditional moment restrictions (1.35) are weaker than they conditional coun-
terparts (1.34), they only test whether the Euler equation holds on average, and will not be
able to uncover conditional violations. However, what if we are concerned that the condi-
tional equation does not hold? In that case, we should be able to predict when it does not
hold. We denote such predictor varibles, or instruments, zk

t , k = 1, . . . , K. Instruments are
stochastic processes that are suspected to vary systematically with potential violations of
the conditional Euler equation. For example, zt can be a cyclical variable that can be used
to test for systematic violations of the conditional Euler equation over the business cycle.
In this way, instruments incorporate conditioning information in the moment conditions.

Multiplying the conditional Euler equation (1.34) with the instrument zk
t and taking

unconditional expectations, we obtain

0 = E
[

zk
t Et

[
St+1

St
Rn

t+1 − 1
]]

= E
[

zk
t

(
St+1

St
Rn

t+1 − 1
)]

.

Again, this is an unconditional moment that can be replaced with a time series average.
With zk

t = 1, we obtain the original unconditional moment as a special case.

From the perspective of the cross-sectional and time-series interpretation of equation
(1.33), including unconditional equations of the form (1.35) for additional assets n increases
the cross-sectional dimension of the restrictions, while including instruments zk

t for a given
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return strenghtens the information content of the time-series dimension.

To make the problem more concrete, let us assume that the representative investor is
endowed with constant relative risk aversion (CRRA) preferences

u (c) =
c1−γ − 1

1 − γ
, 1 ̸= γ > 0 (1.36)

u (c) = log (c) , γ = 1.

Then the SDF is given by

St+1

St
= β

u′ (ct+1)

u′ (ct)
= β

(
ct+1

ct

)−γ

= β

(
Ct+1

Ct

)−γ

where the last equality that equates individual and aggregate consumption follows from
the representative agent assumption. We then have Euler equations

0 = Et

[
β

(
Ct+1

Ct

)−γ

Rn
t+1 − 1

]

for a range of asset returns n = 1, . . . , N. Further moments can be obtained by including
instruments zk

t . We then have available data

Xt+1 =
(

Ct+1/Ct, R1
t+1, . . . , RN

t+1, z1
t , . . . , zK

t

)
for t = 0, . . . , T − 1, and want to estimate the vector of unknown parameters θ = (β, γ)
which provides the best fit to the Euler equations, and subsequently test whether the re-
strictions in the form of Euler equations at the estimated parameter values are consistent
with the data. We have in total M moment conditions for various combinations of returns
and instruments that can be written by defining moment functions

fm (Xt+1; θ) = zk
t

(
β

(
Ct+1

Ct

)−γ

Rn
t+1 − 1

)
, m = 1, . . . , M.

These moment functions can be stacked into a vector

f (Xt+1; θ) = ( f1 (Xt+1; θ) , . . . , fM (Xt+1; θ))′

and the theoretical moment conditions can be written as an M × 1 vector condition

0 = E [ f (Xt+1; θ)] . (1.37)

These Euler equation restrictions make asset pricing applications a particularly fruitful
area for the application of the GMM estimation technique. A seminal implementation of
this procedure is provided in Hansen and Singleton (1982).
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1.4.1 Role of rational expectations in testing Euler equations

As mentioned above, the idea underlying the moment condition test relies on replacing
unconditional moments with their time-series counterparts. This was possible because in
the Euler equation (1.35), the rational expectations assumption imposed that the investor
has correct beliefs that coincide with the data-generating measure.

However, if the investor is endowed with subjective beliefs PI , the relevant Euler equa-
tion implied by the consumption-saving problem is

1 = EI
t

[
St+1

St
Rn

t+1

]
,

involving expectations under PI . The time-series average using data drawn from the data-
generating measure will not approximate this moment. More specifically, the conditional
Euler equation is

1 = ∑
st+1|st

PI
(

st+1|st
) S

(
st+1)

S (st)
Rn
(

st+1
)

= ∑
st+1|st

P
(

st+1|st
) PI (st+1|st)

P (st+1|st)

S
(
st+1)

S (st)
Rn
(

st+1
)

Denoting

mt+1 = m
(

st+1|st
)
=

PI (st+1|st)
P (st+1|st)

we have the Euler equation with involving an expectation under the data-generating mea-
sure

1 = Et

[
mt+1

St+1

St
Rn

t+1

]
.

The quantity mt+1 is called the Radon–Nikodým derivative, or the belief ratio, and repre-
sents deviations of the subjective belief from the data-generating measure. Hence, in order
to expose the Euler equation to a GMM test in the subjective belief environment, we also
need to find an empirical counterpart or model for the belief ratio mt+1.

1.4.2 Generalized method of moments

The generalized method of moments characterizes the statistical uncertainty associated
with the estimation of an r-dimensional parameter vector θ using an M-dimensional vector
of moment conditions

0 = E [ f (Xt+1; θ)] . (1.38)

Specifically, we want to ask how to find the parameter vector θ that yields the best fit to the
moment conditions, and how to conduct inference using sample data about the validity of
these theoretical restrictions. For the latter, question, we need to establish a distribution
theory of how errors in the moment conditions should behave under the null hypothesis
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that the moment conditions are correct.

The method was formally derived in Hansen (1982), and an accessible summary with a
special attention to time-series applications is provided in Hansen (2001, 2008). The whole
Number 4 of Volume 20 of the Journal of Business and Economic Statistics is devoted to a
symposium on various areas of application of GMM.

Denote θ0 the true parameter value, in the sense that it is the unique solution to 0 =

E [ f (Xt+1; θ)]. This assumption on a unique solution is called the identification assump-
tion. The solution to the vector equation (1.38) can be equivalently found by solving

θ0 = min
θ

E [ f (Xt+1; θ)]′ WE [ f (Xt+1; θ)] (1.39)

where W is a an arbitrary positive definite weighting matrix. The positive definiteness of
W implies that the right-hand side of (1.39) is strictly positive if and only if E [ f (Xt+1; θ)]
is nonzero.

In a finite data sample, we replace the theoretical moment E [ f (Xt+1; θ)] with its sample
average

gT (θ) =
1
T

T−1

∑
t=0

f (Xt+1; θ)

and solve
θ̂T = min

θ
gT (θ)′ WgT (θ) . (1.40)

A law of large numbers implies that under appropriate conditions, gT (θ0) → f (xt+1; θ0),
and hence θ̂T → θ0.

In principle, any positive definite matrix W is theoretically sufficient for identification.
However, specific choices of W have appealing properties. Consider the long-run covari-
ance matrix

V =
∞

∑
j=−∞

E
[

f (Xt+1; θ0) f
(
Xt+1+j; θ0

)′] . (1.41)

This covariance matrix takes into account not only contemporaneous comovement be-
tween the components of the moment function but also intertemporal dependence of the
data across all horizons. The reason why this expression is a covariance is that at the true
parameter value, E [ f (Xt+1; θ0)] = 0, so that the last term in the covariance formula (1.32)
is zero.

Hansen (1982) shows that when we have more moment conditions than estimated pa-
rameters, we can construct an overidentification test based on the statistic

TgT (θ0)
′ V−1gT (θ0) → χ2 (M − r) (1.42)

where M is the number of moment conditions and r is the number of estimated param-
eters. Choosing W = V−1, which is asymptotically efficient, intuitively downweighs the
contribution of the components of the moment function that have a lot of variability, and
are therefore less informative. Expression (1.42) provides a formal econometric test of the
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hypothesis θ̂T = θ0.

Computation of the weighting matrix

There is a range of issues that need to be considered when computing the long-run covari-
ance matrix V.

First, expression (1.41) involves an infinite sum of autocovariances that accounts for
temporal dependence of the data. With a finite data sample for periods t = 0, . . . , T − 1,
we can approximate each term as

E
[

f (Xt+1; θ0) f
(
Xt+1+j; θ0

)′] ≈ 1
T − |j|

T−1−max(0,j)

∑
i=max(0,−j)

f (Xt+1+i; θ0) f
(
Xt+1+j+i; θ0

)′ .

which indicates that j is bounded by available data. Without imposing additional structure
on the temporal dependence, we need to truncate the sum in (1.41) to obtain

V =
L

∑
j=−L

E
[

f (Xt+1; θ0) f
(
Xt+1+j; θ0

)′]
which is equivalent to assuming that the data are not dependent if they are more than
L periods apart. For iid data draws, we can then choose L = 0. An alternative is to
impose a particular theoretical structure on the temporal dependence and then derive a
theoretical adjustment for the estimator of V, like in the frequently used autocorrelation-
and heteroskedasticty-consistent estimator of Newey and West (1987).

Fortunately, the fact that the moment function was generated from conditional moment
restrictions helps simplify the autocovariance significantly. Notice that for j ≥ 1, we have

E
[

f (Xt+1; θ0) f
(
Xt+1+j; θ0

)′]
= E

[
f (Xt+1; θ0) Et+j

[
f
(
Xt+1+j; θ0

)′]]
= 0

where the first equality uses the law of iterated expectations, and the second equality uses
the fact that Et+j

[
f
(
Xt+1+j; θ0

)′]
= 0 is implied by the conditional Euler equation. In

order words, while the data Xt+1 can, and in fact in most cases will be temporally depen-
dent, the Euler equation errors f (Xt+1; θ0) will not. It is also worth remembering that this
conclusion is based on the assumption that all data Xt+1 are in the investor’s time-t + 1 in-
formation set, in order to be able to apply the law of iterated expectations in the equation
above. The covariance matrix then simplifies to

V = E
[

f (Xt+1; θ0) f (Xt+1; θ0)
′] ≈ 1

T

T−1

∑
t=0

f (Xt+1; θ0) f (Xt+1; θ0)
′ .

Second, the theoretical V is a function of the true parameter θ0, which is a priori un-
known. Hansen et al. (1996) propose to deal with this issue using the so-called continu-
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ously updated GMM estimator

θ̂T = min
θ

gT (θ)′ VT (θ)−1 gT (θ)

where

VT (θ) =
1
T

T−1

∑
t=0

f (Xt+1; θ) f (Xt+1; θ)′ (1.43)

In this procedure, we search across the parameter space while simultaneously adjusting
the weighting matrix. Hansen et al. (1996) report advantageous properties of this proce-
dure in practical situations.

However, a two-step procedure is also asymptotically valid because V in (1.42) can
be replaced by a consistent estimator. So we can proceed as follows. First, compute the
first-stage estimate θ̂T by minimizing (1.40) for some positive definite weighting matrix
W. Then compute an estimate of the covariance matrix V

(
θ̂T
)

using (1.43). This estimator
evaluates the Euler equation errors f

(
Xt+1; θ̂T

)
at the parameter value from the first stage.

Finally, we can evaluate the left-hand-side of (1.42) using θ0 ≈ θ̂T and V ≈ V
(
θ̂T
)
.

In principle, we could also use the estimated V
(
θ̂T
)

as a new weighting matrix W in the
minimization (1.40) and obtain a new estimate θ̂T, and perhaps iterate on this procedure.
These alternative strategies should be evaluated carefully based on the properties of the
application and available data.

Finally, there are additional considerations that need to be taken into account, despite
the fact that using V = V (θ0) as the weighting matrix is asymptotically efficient in a cor-
rectly specified model. First, since θ0 must be estimated using a finite sample of data, we
can at best use V

(
θ̂T
)
. Second, the Euler equation errors across moment conditions can be

strongly cross-correlated in a way that makes the calculation of V
(
θ̂T
)−1

fragile, putting
excessive emphasis on a small number of moments. This issue is further magnified when
potential misspecifications are present. From an empirical standpoint, asset pricing appli-
cations are often prone to such fragility, and the literature employed a range of approaches
how to modify the weighting matrix to deal with these issues, trading off theoretical effi-
ciency for robustness.

1.5 Valuation in finite-state Markov chain economies

We now provide a tractable implementation of the Lucas (1978) endowment economy in-
troduced in Section 1.3. A specific application of this framework involves one of the semi-
nal papers on the so-called equity premium puzzle by Mehra and Prescott (1985).

Fully solving the model will allow us to completely characterize its predictions, sum-
marized in the likelihood function associated with the model. This is a notably different
approach from the GMM-based estimation outlined in Section 1.4. The GMM-based esti-
mation based on the test of Euler equations required very little structure, beyond regularity
conditions that guaranteed that the estimator is well-behaved. The application only re-
quired data on consumption and returns, and an assumption on the form of the stochastic
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discount factor. The Euler equation restrictions then allowed the estimation of the model
parameters and an overidentification test of the restrictions. At the same time, much of the
structure of the model, such as the parametric specification of the probability distributions,
has been put aside.

Here, we take an opposite approach and fully specify the structure of the economy
that will endogenize asset prices and yield predictions for the distribution of asset returns.
Hansen and Singleton (1983) use an intermediate approach, in which they rely only on Eu-
ler equation tests but prespecify exogenous parametric distributions for the joint behavior
of consumption and returns.

As in Section 1.3, time is discrete and infinite, t = 0, 1, 2, . . .. To impose a tractable
structure on the uncertainty, we assume that the probability measure P is characterized by
a time-invariant n-state Markov state xt with transition matrix P and initial distribution π0.
For simplicity, we assume that all elements of P are strictly positive, which implies that the
Markov chain has a unique stationary distribution and is ergodic, with details provided in
Section 1.3.

With this structure, the abstract state st from Section 1.3 with histories st is replaced by
the Markov state xt. The Markov structure implies that

P
(

xt+1|xt
)
= P (xt+1|xt)

with P
(

xt+1 = ej|xt = ei
)
= Pij. The probability of a particular history is then given by

chaining the transition probabilities

P
(
xt|x0

)
= P (xt|xt−1) P (xt−1|xt−1) . . . P (x1|x0)

while the probability of being in a particular state xt conditional on x0, irrespective of the
particular history that lead to xt, is

P
(
xt = ej|x0 = ei

)
= [P]ij .

Observe that P
(

xt|x0
)

and P (xt|x0) are distinct objects, where the latter integrates across
all possible intermediate histories (x1, . . . xt−1) that lead to xt.

One possibility how to proceed is to specify aggregate endowment and priced cash
flows to be functions of the Markov state. This imposes a stationarity property on the
economy because the endowment and cash flows can only take finitely many values and
are thus bounded. This is rather restrictive from the perspective of plausible asset pricing
models, since empirically, consumption and dividends grow stochastically over time. We
therefore allow ourselves more generality, and assume a model with stationary growth rates
of consumption and cash flows.

In particular, we assume that the growth rate of aggregate endowment Ct is stationary
and given by

log Ct+1 − log Ct = gC (xt, xt+1) .

This allows for a more general specification than assuming that the consumption level is
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stationary, Ct = C (xt), since in this case, we can also write

log Ct+1 − log Ct = log C (xt+1)− log C (xt) = gC (xt, xt+1) .

Since xt is an n-state Markov chain, the function gC (xt, xt+1) can be expressed using an
n × n matrix. Specifically, we construct an n × n matrix ΓC with elements

[ΓC]ij = exp
(

gC
(
xt = ei, xt+1 = ej

))
where we first exponentiated the growth rates for subsequent convenience. For example,
in the case of stationary consumption Ct = C (xt), we have

[ΓC]ij =
C
(
xt+1 = ej

)
C (xt = ei)

.

We impose the same structure on the stochastic discount factor. In particular, we restrict
ourselves to models of the SDF St that satisfy

log St+1 − log St = gS (xt, xt+1) .

This stationary specification of the growth rate of the SDF encompasses a very wide class
of asset pricing models from the literature. As with consumption growth, we denote ΓS
the n × n matrix with elements

[ΓS]ij = exp
(

gS
(
xt = ei, xt+1 = ej

))
.

Under the assumption that the representative investor is endowed with CRRA preferences
(1.36), we have

St+1

St
= β

(
Ct+1

Ct

)−γ

and hence
log St+1 − log St = gS (xt, xt+1) = log β − γgC (xt, xt+1) .

We also impose that the agent is endowed with correct beliefs, so that investor’s subjective
probability measure coincides with the data-generating measure.

1.5.1 Asset pricing formulas

Finally, priced cash flows can be stationary, Gt = G (xt), have stationary growth rates

log Gt+1 − log Gt = gG (xt, xt+1) ,

or have a different structure like in the case of finite-maturity bonds. We cover the specific
implementation of the valuation of these cash flows separately.

The central observation is that asset prices inherit the Markov structure of cash flows
and the SDF.



46 Markov chains and asset valuation

Consider first an asset that pays Gt+T = G (xt+T) at a single given time t + T, and
denote Q[T]

t its time-t price, the T standing for time to maturity. An example of such an
asset is a zero-coupon bond with Gt+T = 1. Then for T = 1, the price is given by

Q[1]
t = Q[1] (xt) = Et [exp (gS (xt, xt+1)) G (xt+1)] ,

where Et [·] = E [·|xt]. The fact that the price is only a function of the Markov state, Q[1]
t =

Q[1] (xt), follows from the observation that the quantity in the expectation on the right-
hand side is only a function of xt and xt+1, and the expectation integrates over xt+1.

Prices of longer-horizon asset can then be computed iteratively as

Q[T+1] (xt) = Et

[
exp (gS (xt, xt+1)) Q[T] (xt+1)

]
, T = 1, 2, . . . . (1.44)

Since the prices only depend on the current realization of the n-state Markov chain, they
can be encoded as n × 1 vectors. In particular, denote q[T] the state-dependent price of the
maturity-T asset, with elements [

q[T]
]

i
= Q[T] (xt = ei) .

Using matrix algebra, the recursive equation (1.44) can be expressed as[
q[T+1]

]
i
= Q[T+1] (xt = ei) =

n

∑
j=1

[P]ij [ΓS]ij

[
q[T]

]
j

which can be written in compact vector form as

q[T+1] = (P ∗ ΓS) q[T]

where P ∗ ΓS is the element-wise multiplication of the two matrices. If the investor was en-
dowed with subjective beliefs represented by a transition matrix PI , then PI would replace
P in the above formula.

Let us now instead consider the price of an infinite-horizon asset that pays a stationary
cash flow Gt = G (xt) in every period. Then we can value this asset recursively as

Qt = Et

[
St+1

St
(Gt+1 + Qt+1)

]
. (1.45)

In the matrix formulation, the stationary cash flow can be represented by a vector g with
elements

gi = G (xt = ei)

and the price Qt again as a vector q. We then have the valuation formula

qi = Q (xt = ei) =
n

∑
j=1

[P]ij [ΓS]ij
(
gj + qj

)
,
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or, in matrix form
q = (P ∗ ΓS) (g + q) .

This is a linear system that can be solved for q to obtain

[I− (P ∗ ΓS)] q = (P ∗ ΓS) g

q = [I− (P ∗ ΓS)]
−1 (P ∗ ΓS) g

This formula is a matrix generalization of the geometric sum formula and is valid when
the matrix P ∗ ΓS is stable, in the sense that it has all eigenvalues strictly inside the unit
circle. Alternatively, the solution could be obtain as a limit of iterations on the vector q(n)

q(n+1) = (P ∗ ΓS)
(

g + q(n)
)

, (1.46)

starting from any initial vector q(0). The scheme will again converge to the limit limn→∞ q(n) =

q when the matrix is stable. This iterative scheme shows that stability of the matrix P ∗ ΓS
assures that the SDF in the valuation formula leads to sufficient discounting of future val-
ues, so that the valuation operator is sufficiently contractive. Borovička and Stachurski
(2021) provide an exhaustive treatement of this problem.

Finally, we consider the case that allows cash flows to be non-stationary, with stationary
growth rates

log Gt+1 − log Gt = gG (xt, xt+1)

represented by a matrix ΓG, with elements

[ΓG]ij = exp
(

gG
(
xt = ei, xt+1 = ej

))
.

In this case, we need to rewrite the valuation formula (1.45) in price-dividend ratios by
dividing it by Gt and manipulating the right-hand side to obtain

Qt

Gt
= Et

[
St+1

St

(
Qt+1

Gt+1
+ 1
)

Gt+1

Gt

]
. (1.47)

We conjecture that the price dividend ratio is stationary, and we can hence write

Qt

Gt
= q (xt) .

With the above-stated assumptions, the valuation formula then can be written as

q (xt) = Et [exp (gS (xt, xt+1)) (q (xt+1) + 1) exp (gG (xt, xt+1))] . (1.48)

The argument in the expectation on the right-hand side is a function of of xt and xt+1

only, and the expectation integrates over xt+1, which verifies that the left-hand side can be
written only as a function of xt, confirming the Markov structure for the price-dividend
ratio.

The matrix implementation is analogous to the case with stationary cash flows. Denote
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the q the vector of state-dependent price-dividend ratios

[q]i = q (xt = ei) .

Using the matrix structure, the recursive equation (1.47) can be expressed as

[q]i = q (xt = ei) =
n

∑
j=1

[P]ij [ΓS]ij [ΓG]ij [q]j

This expression can be written in compact form as

q = (P ∗ ΓS ∗ ΓG) (q + 1) .

The equation has the solution

q = [I − P ∗ ΓS ∗ ΓG]
−1 (P ∗ ΓS ∗ ΓG) 1 (1.49)

provided that the matrix P ∗ ΓS ∗ ΓG is stable. The stability assumption requires that dis-
counting in the stochastic discount factor ΓS is sufficiently strong to overcome cash flow
growth ΓG. Alternatively, we could find the solution by iterating on the equation, analo-
gously to (1.46).

1.5.2 Equity premium puzzle in the Mehra–Prescott economy

Mehra and Prescott (1985) construct an endowment economy with a 2-state Markov chain
for the growth rate of aggregate endowment, which they equalize with aggregate con-
sumption. They assume that investors have correct beliefs, P = PI , with

P =

[
ϕ 1 − ϕ

1 − ϕ ϕ

]
(1.50)

and the growth rate of aggregate endowment is given by

ΓC =

[
1 + µ + δ 1 + µ − δ

1 + µ + δ 1 + µ − δ

]
.

The parameters of the two matrices are chosen to mimic, in a simple form, the dynamics
of aggregate consumption in the U.S. economy, and they choose parameter values for an
annual calibration of the model µ = 0.018, δ = 0.036, ϕ = 0.43. The state e1 is thus one
with a high growth realization, while e2 is the state with a low growth realization.

The investor is endowed with CRRA utility function with time preference β and risk
aversion parameter γ. Mehra and Prescott (1985) explore asset pricing implications of
this economy for a range of parameter values that, in their view, comfortably covers all
plausible parametrizations, focusing on β ∈ (0, 1) and γ ∈ (0, 10).

Specifically, the analyze the equilibrium risk-free rate and risk premium on an asset
that pays the aggregate consumption stream as its cash flow, Gt = Ct. The price of this
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asset, Qt, corresponds to the value all future consumption, which can be interpreted as
total aggregate wealth. The price-dividend ratio Qt/Gt = Qt/Ct, which corresponds to
the wealth-consumption ratio, is a function of the Markov state, Qt/Ct = q (xt), as in
expression (1.48), and represented as a vector q computed using formula (1.49).

The risk-free rate is the return on the one-period risk-free bond

R f
t+1 =

(
Et

[
St+1

St

])−1

which can be expressed in matrix form as a matrix R f with elements

R f
ij = ([P ∗ ΓS]i· 1)−1 .

The fact that the return is safe is reflected in the fact that it only depends on the current
state xt = ei, indicating that the return is known at time t.

To compute the average risk free rate, we average it across the stationary distribution
π of the Markov chain. The stationary distribution is the eigenvector (normalized to make
its elements sum up to one) of matrix P′ associated with the eigenvalue equal to one. Since
P defined in (1.50) is symmetric, we necessarily have π = (0.5, 0.5)′. We then have

E
[

R f
t+1

]
=

2

∑
i=1

πi ([P ∗ ΓS]i· 1)−1 .

The ‘equity’ return, or return on the claim on aggregate endowment, is given by

Rc
t+1 =

Qt+1 + Ct+1

Qt
=

q (xt+1) + 1
q (xt)

Ct+1

Ct
.

In matrix notation,

Rc
ij =

qj + 1
qi

[ΓC]ij .

The conditional equity premium is the difference between expectations of the two returns,
conditional on a particular state today:

Et

[
Rc

t+1 − R f
t+1|xt = ei

]
=

2

∑
j=1

(
Rc

ij − R f
ij

)
Pij

and the unconditional premium, under the unconditional distribution π,

E
[

Rc
t+1 − R f

t+1|xt = ei

]
=

2

∑
i=1

πi

2

∑
j=1

(
Rc

ij − R f
ij

)
Pij.

Mehra and Prescott (1985) then compute the average risk premium and average risk-free
rate for a range of economies with preference parameters varied in the interval β ∈ (0, 1),
γ ∈ (0, 10). The results are produced in Figure 1.1.
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Figure 1.1: Combinations of the average risk-free rate and average risk premium obtained for a
range of plausible preference parameters. Replication of Figure 4 in Mehra and Prescott (1985).
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Figure 1.2: Replication of Figure 4 in Mehra and Prescott (1985) for a wider parameter range.

The blue region in the graph represents combinations of the average risk premium and
average risk-free rate that can be obtained in such a range of economies. These are far away
from empirical data, which put the avearge risk-free rate to about 1% and the average
risk premium to about 6–7% annually. For Mehra and Prescott (1985), this is an equity
premium puzzle, the apparent inability of a plausibly specified economy to replicate the
low risk-free rate and high risk premium. Same conclusions have been reached under less
restrictive modeling assumptions by Hansen and Singleton (1983).
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Figure 1.3: Risk premium and risk-free rate achieved for alternative parameterizations of the Mehra
and Prescott (1985) economy. The white region in the left panel indicates parameter combinations
for which the value of the claim on aggregate endowment is infinite.

One question is whether the model would fit empirical evidence if preferences param-
eters were allowed to be chosen in a broader range. Figure 1.2 replicates the exercise for
the parameter range β ∈ (0, 1.2) and γ ∈ (0, 50). In this expanded parameter range, we
can find an economy that does fit the two empirical moments.

Figure 1.3 indicates that an empirically sensible combination of the risk premium and
risk-free rate is achieved for γ ≈ 20 and β ≈ 1.12. However, these parameters, with β > 1
and a very high risk aversion, would be considered outside the plausible range by essen-
tially all researchers. More importantly, however, this economy at these preference param-
eter values will exhibit other features strongly at odds with data, like an extremely volatile
risk-free rate. The conclusion from this exercise is that we need to resort to other models
of preferences, sources of risk, or market arrangements, and the asset pricing literature has
indeed made substantial progress in these directions.

1.6 Absence of arbitrage and equilibrium asset prices

In the endowment economy, we derived valuation formulas in the form of expected dis-
counted values of cash flows for which the stochastic discount factor was associated with
investors’ marginal rate of substitution. However, the existence of valuation formulas

Qt = Et

[
St+1

St
(Gt+1 + Qt+1)

]
or, in returns form

1 = Et

[
St+1

St
Rt+1

]
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is not restricted to economies with markets populated by utility-maximizing investors.
The existence of a strictly positive process St that satisfies these valuation restrictions is
tightly related to absence of arbitrage in the given economy, without specifying an eco-
nomic model that would imply the particular SDF.

In the endowment economy, we postulated a model of the SDF which, together with
equilibrium restrictions, implied the behavior of asset prices. We now invert the problem.
Imagine that we are given a set of asset price processes. What restrictions do these asset
prices processes need to satisfy so that they are arbitrage-free, in the sense that they do
not permit investment strategies that would allow to generate positive profits out of a
zero investment? It turns out that the existence of a strictly positive SDF is equivalent to
absence of arbitrages. The existence of an SDF in the equilibrium economy is consistent
with this result because arbitrages in such an economy would make the consumption-
saving problem of the investor ill-posed.

The foundations of the link between the existence of a strictly positive stochastic dis-
count factor and absence of arbitrage were developed in various setups by Harrison and
Kreps (1979), Harrison and Pliska (1981), or Kreps (1981). We provide only a simple illus-
tration of the results.

We restrict attention to a two-period market with K traded securities. There is a single
state at time t and n possible states xt+1 at time t + 1. The probability distribution over
states xt+1 is given by an 1 × n vector p = (p1, . . . , pn). The securities k = 1, . . . , K pay
cash flows Gk

t+1 = Gk (xt+1) at time t + 1, given by 1 × n vectors. We stack these K row
vectors into a K × n matrix G. The element Gkj of this matrix represents the time-t + 1
payoff of asset k in state j. The time-t prices of these cash flows are denoted Qk

t , stacked
into a K × 1 vector Q.

At time t, the investor can choose a portfolio θ of the securities, represented by a 1 × K
vector, in which the element θk represents the number of units of asset k purchased. The
time-t cost of such a portfolio is

K

∑
k=1

θkQk
t =

K

∑
k=1

θkQk = θQ,

and the payoff that this portfolio generates at time t + 1 is

K

∑
k=1

θkGk (xt+1) = θG.

We now formalize the notion of an arbitrage and a stochastic discount factor.

Definition 1.9. An arbitrage is a portfolio θ such that either

1. θG ∈ Rn
+ \ {0} and θQ ≤ 0; or

2. θG ∈ Rn
+ and θQ < 0.

In words, an arbitrage is a portfolio that allows to generate a nonnegative payoff θG
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with strictly positive payoffs in some states out of a nonpositive investment θQ (condition
1), or a nonnegative payoff out of a strictly negative investment (condition 2).

Definition 1.10. A stochastic discount factor st+1 = s (xt+1), represented by an 1 × n vector s,
is a strictly positive random variable such that

Qk =
n

∑
j=1

pjsjGkj k = 1, . . . , K. (1.51)

The stochastic discount factor is thus a random variable which serves as a vector of
state prices, such that the prices of all assets can be expressed as expected discounted
payoffs, discounted by this SDF. In other words, an SDF can be interpreted as representing
marginal valuations of payoffs in alternative states j = 1, . . . , N, without specific reference
to a model that generates such marginal valuations.

Theorem 1.8 (Fundamental theorem of asset pricing). A stochastic discount factor exists if
and only if there is no arbitrage.

The proof of this theorem is based on the so-called separating hyperplane theorem and
can be found, for example, in Duffie (2001), Chapter 1.

The valuation formulas (1.51) are consistency conditions that state that prices of more
complicated payoffs Gk

t+1 can be represented as linear aggregates of prices of payoffs in in-
dividual states, given by the SDF sj. When there is no arbitrage, prices Q must be mutually
consistent in the sense that they allow such representation.

The theorem does not state whether such an SDF that supports prices of assets in a
no-arbitrage market is unique. Uniqueness of the SDF is related to market completeness.
When markets are complete, in the sense that any time t + 1 payoff can be replicated as a
linear combination of payoffs of traded assets, then the SDF is unique. In the equilibrium
economy studied in Section 1.3, we derived an SDF that is equalized with the marginal rate
of substitution of the representative agent, and at least one such SDF must exist, otherwise
the economy would exhibit arbitrages and hence could not be in equilibrium. However,
there may be other stochastic processes that can constitute a valid SDF that delivers the
same pricing implications of traded assets when markets are incomplete.
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Chapter 2

Value function iteration in search
problems

Textbook: Ljungqvist and Sargent (2018), Chapter 6.1–6.3 (p. 159–174).
Applications: McCall (1970).
QuantEcon: Quantitative Economics with Python, lectures 22–25.

Search theory is a fruitful area for applying the dynamic programming tools we study
in this course. In this chapter, we formulate a simple model of dynamic choice, origi-
nally developed by McCall (1970), and illustrate how to approach the problem recursively.
This model is the foundation of a large literature on the so-called Diamond–Mortensen–
Pissarides search-and-matching theory of the labor market. We want to understand the
following.

• How to approach the problem in a smart, tractable way?

• What can we say about the existence of solutions to this problem? Under what con-
ditions?

• Can we characterize the behavior of this model on theoretical grounds?

• What are useful computational methods to attack this problem?

In this chapter, we focus on providing economic intuition, before delving into a formal
analysis of dynamic programming in following chapters.

2.1 A simple model of intertemporal search

In the McCall (1970) model, an unemployed worker is searching for a job. Every period
t = 0, 1, 2, . . ., she receives a job offer, for which a wage is drawn from a distribution with
cdf F (w), with F (0) = 0, F (B) = 1 for some B > 0. These offers are independently

https://python.quantecon.org
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and identically distributed (iid) over time. If the distribution has a density, we denote it
f (w) = F′ (w) but the existence of a density is not required for most of the results.

When the worker accepts an offer, she stays at the job forever at the constant wage w.
When the worker rejects, she continues to search next period, when a new offer is drawn.
The worker maximizes the present discounted value of future income

E

[
∞

∑
t=0

βtyt

]
, β ∈ (0, 1)

where yt = w when employed, and yt = c ≥ 0 when unemployed. The parameter c can
be interpreted as a flow of unemployment benefits. The parameter β represents the rate of
geometric discounting.

The expectations operator E [·] represents the mathematical expectation of a random
variable. In particular, the expected value of the wage w before it is drawn is

E [w] =
∫ B

0
wdF (w) =

∫ B

0
w f (w) dw.

The goal is to devise the optimal strategy for which offers to accept and when. More
formally, we are solving the sequence problem

V∗
0 = max

{at}∞
t=0

E

[
∞

∑
t=0

βtyt

]
(2.1)

where at ∈ {accept, reject} if the worker has not yet accepted any other offer before time
t, and at ∈ {} otherwise. V∗

0 is the value function associated with the worker’s problem,
i.e., the present discounted value of wages attained if the worker behaves optimally. Here,
we will make the timing assumption that V∗

0 is evaluated after the worker learned the first
wage offer w0 but before she made the decision whether to accept or reject it. V∗

0 hence
depends on w0.

2.1.1 Information sets, beliefs, and strategies

Notice that the structure of the problem is complex. For every realized sequence of wage
offers, there can be at most one offer that is accepted, since after the offer is accepted, the
worker stays in the job forever. Now consider a worker who is still unemployed at time t
and who receives an offer wt. Her decision whether to accept or not (acceptance decision)
can now depend on anything she observed so far:

• the current wage offer wt,

• the history of previously rejected offers (w0, w1, . . . , wt−1)
.
= wt−1,

• time t,

• potentially other observed information.



2.1 A simple model of intertemporal search 57

These pieces of information constitute the worker’s information set at time t. Notice
that as time passes, the worker adds more and more information into this information
set. We will make the (strong) assumption that the worker has perfect memory and never
forgets any of the information.

The acceptance decision also depends on worker’s beliefs about future offers. Above,
we have decribed the offers as iid draws from a distribution F (w). In this problem, we can
think about these offers as being drawn by nature. The sequence of these offers then forms
a stochastic process called the data-generating process with a probability distribution de-
termined by nature.

By specifying the value function (2.1) using the mathematical expectation E [·], we
implicitly assumed that the worker has correct beliefs that are aligned with the data-
generating process. This means that F (w̄) represents both the objective probability that the
drawn wage offer will satisfy w ≤ w̄, as well as the worker’s belief that w ≤ w̄. Imposing
that the two probability measures are the same is a potentially strong (but often convenient
and informative) assumption that lies at the heart of rational expectations models.

The period-t income yt depends on which offer has been accepted and when. The
acceptance decision is the only relevant decision to be made in this problem. A complete
description of worker’s decisions in every contingency is called a strategy.

2.1.2 Recursive formulation

We now show how to simplify the problem by first deciding which information is really
relevant for the worker’s decision, and then relying on a recursive formulation. The recur-
sive approach splits the problem into a decision today and a continuation problem for the
next period.

Denote Et [·] the expectations operator that conditions on all information the worker
has available at time t. Intuitively,

V∗
0 = max

{at}∞
t=0

{
y0 + βE0

[
∞

∑
t=1

βt−1yt

]}
= max

a0

{
y0 + β max

{at}∞
t=1

E0

[
∞

∑
t=1

βt−1yt

]}
(2.2)

= max
a0

{
y0 + βE0

[
max
{at}∞

t=1

{
y1 + βE1

[
∞

∑
t=2

βt−2yt

]}]}
= max

a0
{y0 + βE0 [V∗

1 ]} .

Observe that V∗
0 conditions on information available at time 0, while V∗

1 conditions on
all information available up to time t. In order to make this problem recursive, we need
to make sure that we find representation in which the information that the worker uses to
make a decision has the same structure each period.

First consider the relevant information for the worker’s decision. We conjecture that
when an unemployed worker receives an offer w in period t, the only relevant information
for whether to accept or reject this offer is w. In other words, w summarizes everything
that describes worker’s current situation, and that is why we call w the state (or state
variable). Finding the state is an art, and judicious choice of the state can dramatically
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simplify many interesting problems.

Is this guess justified? Consider what other information could the decision depend on:

• Past offers wt−1. These would be relevant in two cases. First, if the agent could
revisit and accept those old offers at time t. That would be a model with offer recall.
Second, if those old offers helped the agent predict the distribution of future offers.
That would be a model with learning. In both cases, we would need to devise a way
how to encode these past offers wt−1 as a part of the state at time t.

• Time t. That would be relevant, for instance, in a situation when the agent faces
a finite-horizon problem, e.g., in the case of a finite lifetime. Another example is a
model with seasonality, where the distribution of offers depends on the calendar
index of the month or quarter. However, our problem is time-invariant and hence
time does not show up as a relevant state.

With this conjecture for the state, we can denote V (w) the present discounted value of
income for an unemployed worker who currently has an offer w and decides whether to
accept or reject.

If the worker with wage offer w accepts, she becomes employed and receives w forever.
We denote Va (w) the present discounted value of these wages:

Va (w) =
∞

∑
t=0

βtw =
w

1 − β
.

When the worker rejects, she receives c, and the next period she draws a new random offer
w′. The value next period from this random offer is V (w′). Hence in the current period,
the value of rejecting the current offer w is

c + β
∫ B

0
V
(
w′) dF

(
w′) .

The worker can choose between accepting and rejecting, and hence

V (w) = max
{accept, reject}

{
Va (w) , c + β

∫ B

0
V
(
w′) dF

(
w′)} . (2.3)

Observe that the structure of the decision problem satisfies our conjecture that all that
matters for the current decision is the current wage offer w. Hence indeed w is the state for
the problem.

Further notice that the problem is now written recursively. Optimal strategy that gen-
erates the value V (w) consists of a decision today and a continuation problem next pe-
riod. The decision problem simplified significantly because it now consists of a single
accept/reject decision. The additional complication comes now from the fact that we have
the unknown function V (w) both on the left and the right of equation (2.3). This func-
tional equation is called the Bellman equation. It is a functional equation because its
solution is the whole function V (w). Associated with the solution is the optimal decision
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rule (or policy function) — a function a (w) ∈ {accept, reject} that states whether to ac-
cept or reject the wage offer, for every feasible offer w. This is in contrast to the sequence
problem (2.2) where the solution {V∗

t }
∞
t=0 and optimal decisions {a∗t }

∞
t=0 are stochastic pro-

cesses that depend on the history of wage draws wt.

Equation (2.3) can be rewritten by defining an operator T that takes as input a function
v (w) defined on [0, B] and produces a new function Tv defined as:

(Tv) (w) = max
{accept, reject}

{
w

1 − β
, c + β

∫ B

0
v
(
w′) dF

(
w′)} .

This operator is called the Bellman operator, and solving (2.3) corresponds to finding the
fixed point that satisfies

V = TV.

Notice that our ultimate goal is to find the value function V∗
0 in (2.2) for every given w0.

So we will need to show that the problem (2.3) is equivalent to (2.2), and that V (w0) = V∗
0

when the time-0 offer is w0. Similarly, we want to show that the policy function a (w0) is
the same as the time-0 decision a∗0 when the offer is w0.

2.1.3 Principle of optimality

The recursive representation (2.3) is the foundation of the dynamic programming method
and the validity of this approach is based on the principle of optimality. This principle,
due to Richard Bellman, breaks down the infinite-dimensional problem (2.1) into smaller
subproblems:

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with re-
gard to the state resulting from the first decision. (Bellman (1957), Chapter III.3)

In (2.3), the value V (w′) on the right-hand side is the value of the optimal policy con-
ditional on drawing w′ next period, where optimal decisions are followed in the next and
all subsequent periods. This means that in order to determine the optimal decision in the
current period, one needs to determine its consequences for the state next period and then
work with next period value V (w′) computed under an optimized subsequent path, given
the next period state w′. In this example, the state w′ is independent of the current period
action but this is not necessarily true in general.

This is a massive computational simplification but it does not come for free. First, the
recursive formulation crucially relies on the ability to determine the state variable. Sec-
ond, equation (2.3) may still not be easy to solve because it involves computing a function
that is a fixed point of that equation. Finally, as discussed in the previous section, we will
need to verify that this fixed point V (w) indeed corresponds to the value function V∗

0 .
Theoretical results that establish existence and uniqueness of such fixed points and ver-
ification theorems that show equvalence between the fixed point and the value function
often require imposing assumptions that are quite restrictive for economic applications.
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w̄

Q

w

V(w)

accept
reject
V(w)

Figure 2.1: Acceptance decision in the McCall (1970) model.

2.1.4 Characterizing optimal policy

In order to determine the acceptance decision, consider Figure 2.1. The solid black line
plots the value of accepting the offer Va (w) = w/ (1 − β) as a function of w. This is the
first term on the right-hand side of (2.3). The dashed line plots the value of rejecting the
offer w. This is the second term on the right-hand side of (2.3), which we denote

Q = c + β
∫ B

0
V
(
w′) dF

(
w′) . (2.4)

Notice that at this point, Q is unknown but we know it is independent of w.

The value V (w) is then represented by the maximum of the two functions, depicted in
red. Since Va (w) is linear and increasing while Q is constant, the decision rule take the
form of a reservation wage w̄ such that the agent accepts the offer if w > w̄ and rejects it if
w < w̄. When w = w̄, the agent is indifferent between rejecting and accepting.

The function V (w) is therefore given by

V (w) =


c + β

∫ B

0
V
(
w′) dF

(
w′) = w̄

1 − β
if w ≤ w̄

w
1 − β

if w ≥ w̄
(2.5)

where w̄ is unknown.

While the form of the decision rule is clear, it could in principle be the case that there
are two different value functions V1 and V2 consistent with alternative reservation wages
w̄1 and w̄2 that solve the functional equation (2.5). To prove uniqueness of the solution,
we convert the functional equation for V (w) into a simple equation for w̄. The first line in
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w̄ B

−c

β
1−β E[w′]

w − c

h(w)

w

Figure 2.2: Characterizing the reservation wage in the McCall (1970) model.

(2.5) implies

w̄
1 − β

= c + β
∫ w̄

0

w̄
1 − β

dF
(
w′)+ β

∫ B

w̄

w′

1 − β
dF
(
w′)

= c + β
∫ B

0

w̄
1 − β

dF
(
w′)+ β

1 − β

∫ B

w̄

(
w′ − w̄

)
dF
(
w′)

and hence

w̄ − c =
β

1 − β

∫ B

w̄

(
w′ − w̄

)
dF
(
w′) . (2.6)

The only unknown in this equation is the reservation wage w̄. Observe that the left-hand
side represents the cost of searching one more time when the current wage offer is w̄. It
consists of sacrificing w̄ net of the unemployment benefit c received when rejecting the
offer. The right-hand side is the net benefit from searching one more time, consisting of
the present discounted value of potential wages in excess of w̄. Equality between costs and
benefits is the usual optimality condition on the choice of w̄.

We plot the two sides of equation (2.6) in Figure 2.2. The left-hand side is the linear
increasing function w − c, while the right-hand side is given by

h (w) =
β

1 − β

∫ B

w

(
w′ − w

)
dF
(
w′) . (2.7)

The reservation w̄ is the value of w where these two functions intersect. Obviously, h (0) =
β

1−β E [w′] and h (B) = 0, and applying the Leibniz rule, we get

h′ (w) = − β

1 − β

∫ B

w
dF
(
w′) = − β

1 − β
[1 − F (w)] < 0

h′′ (w) =
β

1 − β
F′ (w) > 0
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hence the function h (w) is decreasing and convex. Therefore, as long as 0 < c < B and
the distribution of w has full support on [0, B], there is a unique interior reservation wage
w̄. The potential existence of mass points in the distribution F (w) does not alter this result
but if the solution of equation (2.6) lies in an interval [wl , wh] on which F (w) has zero mass,
then any w ∈ [wl , wh] is a valid reservation wage.

Introspection of equation (2.6) also yields the following associated results:

• w̄ > c as long as F (c) < 1. This means that there is option value of waiting and the
worker rejects some offers higher than c in order to wait for better future offers.

• Equation (2.6) implies that w̄ does not depend on the shape of F (w) on [0, w̄) because
the right-hand side is not integrating over that interval. Economically, the cutoff does
not depend on offers that get rejected anyway.

• dw̄/dc > 0. Observe that only the increasing curve w − c is a function of c. An
increase in c shifts the curve down, which shifts w̄ to the right. A higher unem-
ployment benefit makes workers pickier (and consequently also increases length of
unemployment).

• dw̄/dβ > 0. An increase in β rescales the decreasing function h (w), making in
steeper. Consequently, w̄ shifts to the right. Higher patience increases the option
value of waiting.

2.1.5 Mean-preserving spreads

Recall that the draw of an offer in the McCall (1970) model is a random variable w with
distribution F (w) defined as P (w ≤ w̃) = F (w̃), with support on [0, B]. The mean is
defined as E [w] =

∫ B
0 wdF (w). Integration by parts then yields

E [w] =
∫ B

0
wdF (w) = wF (w)

∣∣∣∣B
0
−
∫ B

0
F (w) dw =

= B −
∫ B

0
F (w) dw =

∫ B

0
[1 − F (w)] dw. (2.8)

Consider now two independent draws w1, w2. Then

P (max (w1, w2) ≤ w) = P ((w1 ≤ w) ∩ (w2 ≤ w)) =

= P (w1 ≤ w) P (w2 ≤ w) = F (w)2 .

Consequently, (2.8) implies that

E [max (w1, w2)] = B −
∫ B

0
F (w)2 dw (2.9)
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or, more generally, the expected value of the maximum of n draws,

Mn
.
= E [max (w1, . . . , wn)] = B −

∫ B

0
F (w)n dw.

Rothschild and Stiglitz (1970) introduced the concept of a mean-preserving spread as
a way of describing whether one random variable is more ‘variable’ than another. Con-
sider two random variables X and Y. Rothschild and Stiglitz (1970) have shown that the
following concepts are equivalent:

a) E [u (X)] ≥ E [u (Y)] for all concave u, i.e., all risk averters prefer X to Y.

b) Y = X + Z where E [Z | X] = 0.

c) If X and Y have a compact support [a, b] and distribution functions FX and FY, re-
spectively, then

T (z̃) =
∫ z̃

a
[FY (z)− FX (z)] dz

satisfies T (z) ≥ 0, ∀z ∈ [a, b] and T (b) = 0, i.e., Y has more weight in tails than X
but the same mean as X.

In this case, we say that Y was constructed from X by means of a mean-preserving
spread. Intuitively, a mean-preserving spread makes the distribution of the random vari-
able more uncertain, while preserving its mean. In the definitions above, property b) states
that Y can be constructed from X by peturbing X with a random noise Z whose mean can-
not be predicted by X (but higher moments potentially can). Property a) states that all risk
averse agents dislike Y relative to X.

In particular, the concept of a mean preserving is broader than a pure comparison of
variances of X and Y. We now utilize this concept, in particular property c) above, to study
implications of an increase in uncertainty in the wage-offer distributions in the context of
the McCall (1970) model.

Consider random variables w1 and w2 with distribution functions F1 and F2. First,
observe that (2.8) implies that w1 and w2 having the same mean is equivalent to

0 = E [w1]− E [w2] =
∫ B

0
[F2 (w)− F1 (w)] dw, (2.10)

so indeed T (B) = 0. Second, the two distributions F1 and F2 are said to satisfy the single-
crossing property if there exists ŵ such that

F2 (w)− F1 (w)

{
≥ 0 when w ≤ ŵ
≤ 0 when w ≥ ŵ

(2.11)

(or vice versa). Graphically, the single-crossing property is depicted in Figure 2.3. Since a
high slope of the distribution function indicates parts of the support that have high density
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ŵ B

1

F2(w)

F1(w)

w

F(w)

Figure 2.3: Two distributions F1 and F2 satisfying the single-crossing property.

of the probability distribution, the graph shows that w2 indeed has ‘more weight in tails’
as property c) indicates.

The two conditions (2.10) and (2.11) imply that∫ w̃

0
[F2 (w)− F1 (w)] dw ≥ 0 0 ≤ w̃ ≤ B. (2.12)

Observe that condition (2.11) implies that the integral in (2.12) has to first increase and then
decrease. Condition (2.10) states that the integral has to keep decreasing until it reaches
zero at w̃ = B. Rothschild and Stiglitz (1970) then use conditions (2.10) and (2.12) to define
the mean-preserving spread: w2 has been obtained from w1 by a mean preserving spread
if the two distributions satisfy (2.10) and (2.12).1

Diamond and Stiglitz (1974) derive a differential measure of the mean-preserving spread.
In order to do so, consider a family of distributions F (w; r) indexed by r. Assume that for
r2 > r1, the two distributions satisfy conditions (2.10) and (2.12), i.e.,∫ B

0
[F (w; r2)− F (w; r1)] dw = 0∫ w̃

0
[F (w; r2)− F (w; r1)] dw ≥ 0 0 ≤ w̃ ≤ B.

1The preference for using conditions (2.10) and (2.12) rather than (2.10) and (2.11) lies in the fact that (2.10)
and (2.12) satisfy transitivity. Specifically, if w2 was obtained from w1 by a mean-preserving spread, and
w3 from w2 by another mean-preserving spread, then w3 and w1 do not need to satisfy the single-crossing
property but they will satisfy (2.10) and (2.12), so these properties can be used to order distributions.
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Then a differential version of these conditions reads∫ B

0
Fr (w; r) dw = 0∫ w̃

0
Fr (w; r) dw ≥ 0 0 ≤ w̃ ≤ B.

2.1.6 Effects of mean-preserving spread in the McCall (1970) model

Let us return to equation (2.6) representing the optimal choice of the reservation wage w̄:

w̄ − c =
β

1 − β

∫ B

w̄

(
w′ − w̄

)
dF
(
w′) ,

and rewrite the right-hand side using integration by parts as

w̄ − c =
β

1 − β

(
E
[
w′]− w̄

)
− β

1 − β

∫ w̄

0

(
w′ − w̄

)
dF
(
w′)

=
β

1 − β

(
E
[
w′]− w̄

)
− β

1 − β

(
w′ − w̄

)
F
(
w′) ∣∣∣∣w̄

0︸ ︷︷ ︸
=0

+
β

1 − β

∫ w̄

0
F
(
w′) dw′

or
w̄ − c = β

(
E
[
w′]− c

)
+ β

∫ w̄

0
F
(
w′) dw′. (2.13)

Defining

g (w) = β
(
E
[
w′]− c

)
+ β

∫ w

0
F
(
w′) dw′

we plot in Figure 2.4 the two sides of equation (2.13), w − c and g (w). Notice that g (0) =
β (E [w′]− c) could be negative or positive but certainly higher than −c. We know that
these two curves cross exactly once since we already determined there is a unique solution
w̄.

A mean-preserving spread from F (w) to F̃ (w) increases the last term in g (w). The
new curve is depicted as g̃ (w) in Figure 2.4. Clearly, g (0) = g̃ (0) and, from the definition
of the mean-preserving spread, g (B) = g̃ (B). As a result, the reservation wage shifts to
the right to w̃.

Economically, a more dispersed distribution of wage offers increases the option value
of waiting for a better offer to arrive. The fact that bad offers got worse than before is
irrelevant because those offers would have been rejected anyway. It is the upside from the
improvement in the good offers that matters for the decision.

2.1.7 Welfare

A natural question is to ask what are the implications of the changes in the model for the
welfare of the worker. Here, V (w) measures the present discounted value of wages and
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w̄ w̃ B

−c

β(E[w′]− c)

w − c

g(w)
g̃(w)

w

Figure 2.4: Characterizing the role of mean-preserving spread in the McCall (1970) model. A mean-
preserving spread in the distribution of wage offers increases the reservation wage.

unemployment benefits under the optimal choice of the worker, for a worker with offer w
at hand. When these wages and benefits are measured in units of real consumption, it is
an appropriate measure of welfare for a risk-neutral worker.

Clearly, an increase in unemployment benefits c increases welfare of the worker. The
present discounted value of consumption increases with an increase in c even if the worker
leaves her policy rule unchanged. A reoptimization of the acceptance decision can then
increase welfare even further.

What about an increase in mean-preserving spread? Recall that the value function is
written down in (2.5):

V (w) =


c + β

∫ B

0
V
(
w′) dF

(
w′) = w̄

1 − β
if w ≤ w̄

w
1 − β

if w ≥ w̄

Since w̄ increased under the mean-preserving spread, V (w) must (nonstrictly) increase as
well. Again, this is the effect of the improved option value of waiting.

However, notice that under the mean-preserving spread, the distribution of wage offers
also changed. Hence it is relevant to ask whether agent’s welfare increases even before she
knows the wage offer in the given period. The relevant object to study therefore is∫ B

0
V (w) dF (w)
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Manipulating this expression, we yield∫ B

0
V (w) dF (w) =

∫ w̄

0

w̄
1 − β

dF (w) +
∫ B

w̄

w
1 − β

dF (w) =

=
w̄

1 − β
F (w̄) +

w
1 − β

F (w)

∣∣∣∣B
w̄
− 1

1 − β

∫ B

w̄
F (w) dw

=
B

1 − β
− 1

1 − β

∫ B

0
F (w) dw +

1
1 − β

∫ w̄

0
F (w) dw

where the first equality uses the fact that V (w) is a piecewise linear function, the second
equality uses integration by parts, and the third rewrites the last integral from the second
line.

Now recall from (2.10) and (2.12) that a mean preserving spread leaves the second term
on the last line unchanged and, holding the upper bound w̄ fixed, increases the last term.
At the same time, the fact that the reservation wage w̄ also increases under the optimal
policy, further increases the last term. So even ex ante, before the worker receives the offer
in the given period, her welfare increases.

In fact, there is also a very simple answer to this question. Since we have established
that the reservation wage w̄ increases after the mean reserving spread, and, from (2.5),

c + β
∫ B

0
V
(
w′) dF

(
w′) = w̄

1 − β

it must be that
∫ B

0 V (w′) dF (w′) also increases.

2.2 Extensions

Here, we consider some extensions that document the power of the recursive approach,
and, at the same time, highlight some challenges.

2.2.1 Option to quit

Consider the same problem as before but now the worker has the option to quit the existing
job at the end of each period, stay unemployed for one period and then start searching
again as an unemployed worker at the beginning of the subsequent period. Once she
decides to quit, she has no option to come back to her old job.

Recall that we have established that the optimal reservation wage w̄ satisfies

V (w̄) =
w̄

1 − β
= c + β

∫ B

0
V
(
w′) dF

(
w′) .

It is clear that with this new option, the optimal policy still has the form of a reservation
wage w̄ (potentially different than before). Given a wage offfer w, the agent has now three
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options:

• Accept the wage and keep the job forever, yielding

w
1 − β

• Reject the wage, yielding

c + β
∫ B

0
V
(
w′) dF

(
w′) = w̄

1 − β

• Accept the wage but quit after t periods, then follow the optimal policy. This yields

1 − βt

1 − β
w + βt

(
c + β

∫ B

0
V
(
w′) dF

(
w′)) =

1 − βt

1 − β
w + βt w̄

1 − β

=
w

1 − β
− βt w − w̄

1 − β

Observe that due to time-invariance, the value of having an offer w is V (w) irrespec-
tive in which period the offer is made.

Hence quitting is never optimal because the value of accepting and quitting later is
either lower than the value of accepting and never quitting (in the case when w > w̄) or
lower than rejecting and waiting (w < w̄). The only point of indifference is w = w̄ in which
case all three policies yield the same value. Consequently, the option value of quitting is
zero and the option will never be exercised.

The experiment we conducted is closely related to the principle of optimality we dis-
cussed in Section 2.1.3. We conjectured an optimal policy (accepting when w ≥ w̄ and
never quitting) and then constructed deviations from this policy to confirm that these de-
viations do not lead to improvements.

2.2.2 Firing

Consider now the case when the worker can be fired. In particular, at the end of every
period when the worked was employed, she can be fired with probability α, in which case
he enters the next period as unemployed, collects unemployment benefits for one period,
and then starts receiving offers from the following period onward. Denote V̂ (w) the value
for an unemployed worker with offer w at hand. We have the Bellman equation

V̂ (w) = max
{accept, reject}

{
w + β

[
(1 − α) V̂ (w) + α

(
c + βE

[
V̂
(
w′)])] , c + βE

[
V̂
(
w′)]}

(2.14)
where E

[
V̂ (w′)

]
=
∫ B

0 V̂ (w′) dF (w′). The fact that we can insert V̂ (w) at the right-hand
side is based on the observation that an offer w that is accepted this period would have
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been accepted next period as well, so as long as the worker stays at the job, her value
continues to be V̂ (w).

Remark 2.1. Sometimes, it may be more transparent to split the Bellman equation (2.14) into
components. Define V̂e (w) the value of an employed worker who did not get fired at the beginning
of the current period and hence will continue working at wage w. Then (2.14) can be rewritten as a
pair of equations

V̂ (w) = max
{accept, reject}

{
V̂e (w) , c + βE

[
V̂
(
w′)]}

V̂e (w) = w + β
[
(1 − α) V̂e (w) + α

(
c + βE

[
V̂
(
w′)])] .

This is particularly useful in situations when the state of the economy changes from period to period,
and hence offers that are accepted this period may not be accepted in the next period.

Remark 2.2. If the fired worker did not have to go through one period of unemployment but could
receive an offer right away, the Bellman equation (2.14) would be given by

V̂ (w) = max
{accept, reject}

{
w + β

[
(1 − α) V̂ (w) + αE

[
V̂
(
w′)]] , c + βE

[
V̂
(
w′)]} .

Again, the optimal policy is a reservation wage w̄. This implies

V̂ (w) =


w + βα

(
c + βE

[
V̂ (w′)

])
1 − β (1 − α)

if w ≥ w̄

c + βE
[
V̂
(
w′)] if w ≤ w̄

and the reservation wage must solve

w̄ + βα
(
c + βE

[
V̂ (w′)

])
1 − β (1 − α)

= c + βE
[
V̂
(
w′)]

or, after rearranging,
w̄

1 − β
= c + βE

[
V̂
(
w′)] (2.15)

This expression has a form that is identical to the reservation wage condition from the first
line of (2.5) from the model without firing. However, since V̂ (w) and V (w) differ, so does
the reservation wage. In particular, V̂ (w) ≤ V (w). This is easy to see, since we have
shown that it is not optimal to quit — hence firing must be undesirable to the worker. In
general, this inequality is strict (except pathological cases), and this is true even for wage
offers w that get rejected, since the possibility of firing reduces the option value of future
acceptable offers.

Since V̂ (w) ≤ V (w), then also the reservation wage w̄ is lower when firing is possible.
This follows directly from (2.15). The benefit of accepting a job offer comes from the sur-
plus on top of staying unemployed. Probability of firing decreases the most the surplus
for the jobs with highest wages. Hence if the best jobs are less attractive, there is less of a
reason to wait for those jobs, and the worker is willing to settle for a worse wage offer.
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2.2.3 Finite horizon

The previous examples assumed that the time horizon is infinite, which lead to time-
invariant optimal policy and associated function V (w). However, many problems, for
example life-cycle problems, are problems with finite horizons. Consider a problem of a
worker who lives and works in periods t = 0, . . . T and retires after T. Then the state is
(w, t) and optimal policy is an explicit function of time. In particular,

Vt (w) = max
{accept, reject}

{
1 − βT−t+1

1 − β
w, c + β

∫ B

0
Vt+1

(
w′) dF

(
w′)} t = 0, . . . , T(2.16)

VT+1 (w) = 0

Given the structure of the problem, the optimal policy is given by a sequence of reservation
wages w̄t and associated values Vt (w), t = 0, . . . , T. The reservation wage w̄t at time t must
satisfy

1 − βT−t+1

1 − β
w̄t = c + β

∫ B

0
Vt+1

(
w′) dF

(
w′) .

Multiplying by 1 − β and subtracting
(
1 − βT−t+1) c, we get(

1 − βT−t+1
)
(w̄t − c) = (1 − β) c −

(
1 − βT−t+1

)
c + β (1 − β)

∫ B

0
Vt+1

(
w′) dF

(
w′)

= −β
(

1 − βT−t
)

c + β (1 − β)
∫ w̄t+1

0

1 − βT−t

1 − β
w̄t+1dF

(
w′)

+β (1 − β)
∫ B

w̄t+1

1 − βT−t

1 − β
w′dF

(
w′)

= β
(

1 − βT−t
)(

E
[
w′]− c −

∫ w̄t+1

0

(
w′ − w̄t+1

)
dF
(
w′)) .

Applying integration by parts to the integral and dividing by 1 − βT−t+1, we obtain

w̄t − c = β
1 − βT−t

1 − βT−t+1

(
E
[
w′]− c +

∫ w̄t+1

0
F
(
w′) dw′

)
. (2.17)

We can now compare this expression to the infinite-horizon formula (2.13). These expres-
sions are almost identical, except the term

1 − βT−t

1 − βT−t+1 < 1.

We can now characterize w̄t.

• Obviously, w̄T = c. Any offer better than the unemployment benefit will be accepted
in the last period, since there is no option value of waiting.

• Next, as T → ∞, we have w̄t → w̄ for every fixed t. This follows from taking the
limit in (2.17). When the terminal period is far in the future, the reservation wage
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approaches the time-invariant solution.

• Finally, the reservation wage is decreasing in time t (i.e., decreasing at the worker
approaches the terminal period). To show this, we proceed as follows. Denote

β̃t = β
1 − βT−t

1 − βT−t+1

For every t, equation (2.17) has a unique fixed point w̃t that satisfies

w̃t − c = β̃t

(
E
[
w′]− c +

∫ w̃t

0
F
(
w′) dw′

)
.

This is easy to see since it corresponds to equation (2.13) with an augmented time-
preference coefficient β̃t. In particular, this fixed point is always larger than c. Next,
denote the right-hand side of (2.17) plus c as

gt (w̄t+1) = c + β̃t

(
E
[
w′]− c +

∫ w̄t+1

0
F
(
w′) dw′

)
Clearly, gt (0) > 0 and

∂w̄t

∂w̄t+1
= g′t (w̄t+1) = β̃tF (w̄t+1) ∈ [0, 1).

The function gt (w̄t+1) is therefore increasing in w̄t+1, and also convex because the
slope is increasing. Also, since β̃t is decreasing in t, we have that gt (0) is decreasing
in t and the slope g′t (w̄t+1) is decreasing in t for every w̄t+1.

We can now proceed backwards, establishing that given an optimal w̄t+1, we show
w̄t > w̄t+1. The proof is constructed using Figure 2.5. The reservation wage in the
terminal period is equal to w̄T = c. Now set t = T − 1. The black solid line shows
that the reservation wage w̄T−1 in period T − 1 must satisfy w̄T < w̄T−1 < w̃T−1.

Now take s = T − 2. The red dashed line then implies that since w̄T−1 < w̃T−1, it
must be that w̄T−1 < w̄T−2 < w̃T−2.

Iterating this argument, we establish w̄s > w̄t for s < t. Further, as t → −∞, we
obtain w̄t → w̄. This completes the proof.

2.2.4 Backward induction

The preceding discussion illustrates an algorithm called the backward induction. The
principle is to determine the decision rule in the terminal period T, which is easy, and then
iterate backward on the recursion (2.16), obtaining the pairs of decision rules and values
(w̄t, Vt (w)) for t = T − 1, T − 2, . . . , 0.

Observe that since the solution converges to the time-invariant problem when T is
large, we can also use the backward inducation algorithm to find the fixed point of the
infinite-horizon problem (2.3).
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Figure 2.5: Optimal decision rules in the McCall (1970) model with a finite horizon. The graph
plots decision rules for the current period reservation wage w̄t (w̄s) as a function of the next period
reservation wage w̄t+1 (w̄s+1) for two periods s < t.

Is solving the finite-horizon problem easier or harder than the infinite horizon prob-
lem? On the one hand, it is easier since the backward induction algorithm is straight-
forward and does not require calculating the fixed point. At the same time, we obtain a
time-dependent decision rule which may become more memory intensive if all these rules
need to be stored.

2.2.5 Welfare in a model with exogenous transitions

We now modify the setup, and work with the example of the lake model introduced in
Section 1.1.10. A worker in the economy can be either employed or unemployed. At the
beginning of each period, a previously unemployed worker receives a wage offer with
probability λ > 0 and accepts it, even if it is not optimal. he wage offer for an unemployed
worker is drawn from a distribution with cdf F (w) that has a density f (w) with a full
support on [0, 1]. Also at the beginning of each period, a previously employed worker
separates from a job with probability δ > 0.

Are all employed workers better off than the unemployed worker? To see whether this
is the case, we need to compare the value functions for both types. In order to do so, we
assume, in line with the previous setup, that workers are risk-neutral and discount future
at rate β ∈ (0, 1).

Denote Vu the value of an unemployed worker who has not received an offer at the
beginning of the period, and Ve (w) the value of an employed worker working at wage w.
The Bellman equation for the unemployed worker is

Vu = c + β

[
(1 − λ)Vu + λ

∫ 1

0
Ve (w′) dF

(
w′)]
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and for the employed worker,

Ve (w) = w + β [(1 − δ)Ve (w) + δVu] .

The second equation can be used to express Ve (w)

Ve (w) =
w + βδVu

1 − β (1 − δ)
. (2.18)

This can be substituted into the Bellman equation for Vu:

Vu = c + β

[
(1 − λ)Vu + λ

∫ 1

0

w′ + βδVu

1 − β (1 − δ)
dF
(
w′)]

= c +
β (1 − λ) + β2λδ − β2 (1 − λ) (1 − δ)

1 − β (1 − δ)
Vu +

βλ

1 − β (1 − δ)
E
[
w′]

which can be solved for Vu:

Vu =
(1 − β (1 − δ)) c + βλE [w′]

1 + β (1 − β) (λ + δ) + β2

Consequently, Ve (w) can be expressed from (2.18) as

Ve (w) =
w

1 − β (1 − δ)
+

βδc
1 + β (1 − β) (λ + δ) + β2

+
βδ

1 − β (1 − δ)

βλE [w′]

1 + β (1 − β) (λ + δ) + β2 .

We now need to compare Vu and Ve (w). We are asking what are the levels of wages w
such that Ve (w) < Vu. Substituting in, we obtain

w <
(1 − β) [(1 − β (1 − δ)) c + βλE [w′]]

1 + β (1 − β) (λ + δ) + β2 . (2.19)

Observe that the right-hand side is strictly positive even in a situation when c = 0, when
the unemployed worker receives no unemployment benefits. Hence some employed work-
ers working at low wages are worse off than unemployed workers.

Why is a worker employed at a positive wage below the threshold given by (2.19)
worse off than an unemployed worker with zero unemployment benefits? The unem-
ployed worker receives no benefits but only waits to receive an offer from distribution
F (w). A currently employed worker with a very low w currently works at a very low
wage until she is separated, after which she receives no unemployment benefits, and only
then receives a typical wage offer from F (w). This can be a worse path than starting from
the unemployment state.

The reason is that separation is exogenous, the worker cannot choose to leave a job
with a low wage, and she is stuck with it until the separation shock arrives. Workers with
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these low wages exist under the stationary distribution because workers cannot choose to
reject a low offer.

2.2.6 Further extensions

One can envision a whole variety of further extensions of this problem (see exercises in
Ljungqvist and Sargent (2018), Chapter 6).

1. Allow the worker to search on the job. What does it imply for the reservation wage?
How does the answer depend on whether wage offer distributions for the unem-
ployed and currently employed differ? Could the worker potentially accept offers
lower than c?

2. Allow seasonality where the wage offer distribution may depend on the time period
(for instance, over the business cycle). Is the value of the quit option still zero in such
a case?

3. Assume that the worker does not know the wage offer distribution and must learn
about it by sampling offers over time. See Ljungqvist and Sargent (2018), Section 6.6.

4. Worker can receive multiple offers per period, offers arrive probabilistically, or work-
ers can choose how many costly offers to accept.

2.3 Equilibrium wage distribution

In this whole section, we assumed that the wage offer distribution is determined by na-
ture. In reality, the offers are made by firms that have strategic considerations. We will
later consider environments where workers receive offers and strategically accept or reject
them, while firms compete for these workers and make these offers strategically in order
to maximize profits.

One important and challenging question in this environment is why would firms want
to make wage offers higher than the reservation wage w̄ when the worker would accept
w̄ and any offer above w̄ reduces profits. The is the essence of the Diamond paradox
(Diamond (1971)). Assume firms post wages with distribution F (w) and the reservation
wage is w̄. But then firms have no incentives to post wages above w̄ and truncate F (w)
from above. This consequently reduces the reservation wage w̄. This process continues
until all firms post just the monopsony wage c which also becomes the reservation wage.

The key aspect of one way how to resolve this paradox is an element of imperfect in-
formation where the firm is uncertain how many or which workers it may attract, and
offering a higher wage increases its chance to hire a worker. Burdett and Judd (1983) de-
veloped this idea in the context of a consumer goods market with non-sequential search
where workers differ in terms of how many offers they receive in a given period. Since the
firm does not know whether it faces a worker with less or more offers, it can aim at offering
a higher wage, which increases chances of hiring but reduces profits conditional on hiring,
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or, alternatively, at offering a low wage, reducing the chances of hiring but increasing prof-
its conditional on hiring. The equilibrium outcome will then be a randomization strategy
where some firms post high wages while others post low wages.

Burdett and Mortensen (1998)2 offer a resolution in the context of the labor market with
on-the-job search where firms can meet either unemployed or employed workers. These
two groups differ in terms of their reservation wages. A similar randomization strategy
then emerges. Albrecht (2011) provides a pedagogical treatment of this problem.

2.4 Numerical implementation

Solving the baseline McCall (1970) model is straightforward. Given parameters c, β, B and
a distribution function F (w), we can solve the algebraic equation (2.6) for w̄:

w̄ − c =
β

1 − β

∫ B

w̄

(
w′ − w̄

)
dF
(
w′) .

Given the analysis from Section 2.1.4, the difference between the left-hand side and right-
hand side is monotone and crosses zero exactly once. The value of w̄ can therefore be
found by interval bisection or a similar method.

2.4.1 Iteration on the reservation wage

Rather than using interval bisection, we can utilize the power of dynamic programming to
find w̄. As in equation (2.4), define

Q = c + β
∫ B

0
V
(
w′) dF

(
w′) = w̄

1 − β

to be the value of obtaining an offer equal to the reservation wage. Then (2.3) can be
written as

V (w) = max
{accept, reject}

{
w

1 − β
, Q
}

,

and plugging this expression into the previous equation yields

Q = c + β
∫ B

0
max

{accept, reject}

{
w

1 − β
, Q
}

dF
(
w′) . (2.20)

This is again a type of a Bellman equation but now we are looking for a fixed point in the
form of a scalar value Q ∈

[
0, (1 − β)−1 B

]
. It can be shown that sufficient conditions for

the application of the Banach fixed point theorem hold, and hence the following scheme
will uncover a unique solution Q. Start with a guess Q0 ∈

[
0, (1 − β)−1 B

]
and then iterate

2Despite the publication date, the ideas in this paper existed already in the 1980s.
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on

Qn+1 = c + β
∫ B

0
max

{accept, reject}

{
w

1 − β
, Qn

}
dF
(
w′) .

The fixed point theorem implies that Qn → Q, and hence the reservation wage can be
obtained as w̄ = limn→∞ (1 − β) Qn.

2.4.2 Value function iteration

However, there is also a more general approach that utilizes the method of successive
approximation or value function iteration. Consider again equation (2.3) and write it as
follows:

Vn+1 (w) = max
{accept, reject}

{
w

1 − β
, c + β

∫ B

0
Vn
(
w′) dF

(
w′)} (2.21)

That is, given a function Vn (w), it is conceptually straightforward to compute the function
Vn+1 (w). We can start with an initial guess, say V0 (w) = 0, and see whether the algorithm
converges numerically: Vn (w) → V∞ (w) = V (w) as n → ∞. In the subsequent chapters,
we will formally establish conditions under which this approach is valid. The reservation
wage w̄ is then determined as

w̄
1 − β

= c + β
∫ B

0
V∞
(
w′) dF

(
w′) .

Notice that successive approximations in (2.21) mimic the idea of backward induction.
With V0 (w) = 0, Vn (w) corresponds to the value of the finite-horizon problem with n
periods remaining. The limit n → ∞ corresponds to the idea that the value in a finite-
horizon problem with an increasing horizon converges to the fixed point in the infinite-
horizon problem.

The second aspect of the numerical solution concerns encoding the value function on
a computer. Equation (2.21) involves a function of the wage w, and an integral over F (w).
When the wage distribution F (w) only has a finite number of mass points with probabil-
ities f i at wages wi, i = 0, . . . I such that w0 < w1 < . . . < wI , then we only need to store
I + 1 values Vi = V

(
wi), and integration is replaced by a sum. We can then replace the

functional equation (2.21) with the algebraic system

Vi
n+1 = max

{accept, reject}

{
wi

1 − β
, c + β

I

∑
j=0

V j
n f j

}
i = 0, . . . , I

We are then looking for a vector V =
(
V0, . . . , V I) that is the fixed point of this discrete

problem, i.e., a V that solves

Vi = max
{accept, reject}

{
wi

1 − β
, c + β

I

∑
j=0

V j f j

}
i = 0, . . . , I.

When β ∈ (0, 1), the conditions of the Banach fixed point theorem hold for this problem.
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Hence a unique fixed point V exists and limn→∞ Vn = V regardless of the choice of the
initial guess V0.

Notice that in the case of this discrete wage distribution, the assumption of a full sup-
port on [0, B] that we made in Section 2.1.4 does not hold. The solution to equation (2.6)
will typically lie in the interior of an interval

(
wi, wi+1) for some i, and then any wage

in this interval can be interpreted as the reservation wage. However, this nonuniqueness
does not have substantial consequences because the optimal policy (accept, reject, or be in-
different) for any wage offer that can be drawn with a strictly positive probability remains
unique.

On the other hand, how should we proceed if the distribution of wage offers is con-
tinuous? One numerical approach is to discretize the problem on a grid, and replace the
function V (w) with a vector V̂. Let us choose a grid of nodes wi, i = 0, . . . I, such that
0 = w0 < w1 < . . . < wI = B. One frequent choice is to split the grid equidistantly in I
subintervals of length B/I, such that wi = Bi/I. We then replace the distribution of wage
offers F (w) on [0, B] with a discrete distribution f̂ i .

= f̂
(
wi) on nodes wi that approximates

F (w), for example,

f̂ i =



F
(

1
2

(
w1 + w0

))
i = 0

F
(

1
2

(
wi+1 + wi

))
− F

(
1
2

(
wi + wi−1

))
0 < i < I

1 − F
(

1
2

(
wI + wI−1

))
i = I

We now replaced the continuous wage offer distribution with a discretized counterpart
and can further proceed as in the case of a discrete distribution. We replace the functional
equation (2.21) with the algebraic system

V̂i
n+1 = max

{accept, reject}

{
wi

1 − β
, c + β

I

∑
j=0

V̂ j
n f̂ j

}
i = 0, . . . , I

where V̂n =
(
V̂0

n , . . . , V̂ I
n
)′ is a vector with I + 1 elements. Given that the integral in (2.21)

is approximated as ∫ B

0
Vn
(
w′) dF

(
w′) ≈ I

∑
i=0

Vn

(
wi
)

f̂ i,

we can also expect that V̂i
n ≈ Vn

(
wi). As before, we are then looking for a vector V̂ that is

the fixed point of the discrete problem, i.e., a V̂ that solves

V̂i = max
{accept, reject}

{
wi

1 − β
, c + β

I

∑
j=0

V̂ j f̂ j

}
i = 0, . . . , I.

Once the fixed point is found, we associate the values V
(
wi) on the grid with V̂i. The

values V (w) outside the gridpoints wi then can be approximated using a desired interpo-
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lation method.

There are two important considerations underlying this discretization. First, the dis-
cretized problem may have a unique solution even though the original problem may have
zero or more than one solutions. This issue is primarily caused by the fact that fixed point
results that establish existence of unique fixed points crucially rely on compactness prop-
erties of the underlying state space and the space of functions on which we look for solu-
tions. Discretizing functions from a continuous state space to finite grid can change these
compactness properties in profound ways. More details can be found in Borovička and
Stachurski (2021).

Second, even if both the original and discretized problem have a unique solution, we
would like to establish how ‘close’ the function V (w) and the vector V̂ are. We do not
establish a formal approximation result here but a large area in numerical mathematics
studies these problems. Judd (1998) is a good starting point for a treatment aimed at
economists.

2.4.3 Evaluating the expectations operator

The numerical implementation in Section 2.4.2 involves the approximation of the integral

∫ B

0
V
(
w′) dF

(
w′) ≈ I

∑
i=0

V
(

wi
)

f̂ i. (2.22)

Such a discrete-state approximation is called a quadrature rule. In this approximation, we
utilized the same grid

{
wi}I

i=0 that we used to construct the approximation of the value
function. The method therefore only requires the initial construction of the probability

mass distribution
{

f̂ i
}I

i=0
, and does not involve any interpolation during the iteration

steps.

Interpolation

On the other hand, there may good reasons why the evaluation of the integral may rely on
a different grid than the one on which we approximated the value function. For example,
it may be desirable to keep the grid for V̂ sparse, while at the same time constructing a
more accurate approximation of the integral on a finer or differently spaced grid. Gaussian
quadrature, described in Section 2.4.4, is one such example.

Specifically, we are now designing a set of nodes
{

w̃j}J
j=1 and associated weights

{
f̃ j}J

j=1
to evaluate ∫ B

0
V
(
w′) dF

(
w′) ≈ J

∑
j=1

V
(

w̃j
)

f̃ j. (2.23)

When the function V (w) is known, then we can proceed as in Section 2.4.2. However,
when the function is approximated using the vector of values V̂ on the set of nodes

{
wi}I

i=0,
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then an additional step is required. Since the grid
{

w̃j}J
j=1 will typically not align with the

the grid
{

wi}I
i=0 on which the discretization of the value function is constructed, the val-

ues V
(
w̃j) must be interpolated using a particular interpolation method using the known

values V̂i = V̂
(
wi). In the case of the value function iteration from Section 2.4.2, since V

changes with every iteration, this interpolation has to be conducted in each iteration step.

The simplest form of interpolation is linear interpolation, which assumes that the func-
tion V (w) is piecewise linear. Imagine node w̃j lies in the interval

[
wi, wi+1] for a particular

value of i = 0, . . . , I = 1. Then V
(
w̃j) can be approximated as

V
(

w̃j
)
= V̂

(
wi
)
+
(

w̃j − wi
) V̂

(
wi+1)− V̂

(
wi)

wi+1 − wi .

Software packages provide powerful interpolation methods that extend beyond linear in-
terpolation.

Monte Carlo approach

An alternative to quadrature is to approximate the expectations operator using a simple
Monte Carlo simulation. This approach is based on the Central Limit Theorem, which
states that the empirical distribution of a large sample of independent draws from a par-
ticular random variable converges to the theoretical distribution.

Therefore, draw a large number of draws
{

w̃d}D
d=1 from F (w) and approximate

∫ B

0
V
(
w′) dF

(
w′) = E [w] ≈ 1

D

D

∑
d=1

V
(

w̃d
)

.

Notice the absence of the density function in the sum on the right-hand side. Here, the
random number generator already accounts for the proper weighting of the draws, since
values w̃d in the parts of the state space that have a higher density will be drawn more
frequently. Again, since w̃d will typically not lie on the grid, values V

(
w̃d) need to be

interpolated using a suitable algorithm.

2.4.4 Gaussian quadrature

Gaussian quadrature designs the choice of nodes
{

w̃j}J
j=1 and associated weights

{
f̃ j}J

j=1
in the rule (2.23) in a particular way to yield a good approximation for a particular class of
functions. Specifically, a J node approximation is constructed to provide an exact formula
for the evaluation of the expectation of all polynomial functions up to degree 2J − 1. This
also means that such quadrature will provide a good approximation to function V (w) if
the function can be well approximated using such polynomials. Naturally, the choice of
nodes and weights depends on the particular distribution F (w) as well on the integration
range.

We first introduce general theory and then provide specific formulas for concrete cases.
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Additional information can be found in Gil et al. (2007), Section 5.3, or in the Wikipedia
article on Gaussian quadrature..

We generalize problem (2.23) and consider the approximation of the integral of func-
tions V (w)

∫ w

w
V (w) f (w) dw ≈

J

∑
j=1

V
(

w̃j
)

f̃ j

on interval (w, w) under a weighting function f (w) which may not be a density. The idea
is to construct an orthogonal basis of polynomials Pn (w), n = 0, 1, . . . , J of the space of all
polynomials of degree up to J. The polynomials in the basis are orthogonal to each other
under the inner product implied by the weighting function f (w):

⟨Pm, Pn⟩
.
=
∫ w

w
Pm (w) Pn (w) f (w) dw = 0 m ̸= n. (2.24)

We normalize the zero-th degree polynomial to P0 (w) = 1. The orthogonality restriction
(2.24) for m = 0 also means that

⟨1, Pn⟩ =
∫ w

w
Pn (w) f (w) dw = 0 n ≥ 1.

Since the polynomials Pn (w) form a basis of the space of polynomials of degree up to J,
any polynomial h (w) of degree up to J can be written as a linear combination of Pn (w),
n = 0, . . . , J.

The idea of the J-node Gaussian quadrature approximation is to choose the nodes w̃j,
j = 1, . . . , J to be the zeros of polynomial PJ (w). The following theorem formalizes the
sense in which this is a good choice. The resulting set of nodes and associated weights is
such that the quadrature rule exactly evaluates the integral of any polynomial of degree
up to 2J − 1, so it will approximate a given function well as long as such function can be
well approximated using such a polynomial.

Theorem 2.1. Let Pn (w), n = 0, 1, . . . , J be the orthogonal basis of the space of polynomials of
degree up to J on [w, w] under a weighting function f (w), and w̃j, j = 1, . . . , J the roots of PJ (w).
Then there exist weights f̃ j, j = 1, . . . J such that the quadrature rule

∫ w

w
h (w) f (w) dw =

J

∑
j=1

h
(

w̃j
)

f̃ j

is exact for all polynomials of degree up to 2J − 1. Moreover, all the nodes w̃j lie in the open interval
(w, w).

Proof. Let h (w) be a polynomial of degree up to 2J − 1. Dividing this polynomial by PJ (w)
yields the decomposition

h (w) = q (w) PJ (w) + r (w)

https://en.wikipedia.org/wiki/Gaussian_quadrature
https://en.wikipedia.org/wiki/Gaussian_quadrature


2.4 Numerical implementation 81

where the quotient q (w) and the remainder r (w) are polynomials of degree at most J − 1.
This also means that q (w) and r (w) can be written as linear combinations of Pn (w), n =

0, . . . , J − 1, and are therefore orthogonal to PJ (w). Therefore also∫ w

w
h (w) f (w) dw =

∫ w

w
q (w) PJ (w) f (w) dw +

∫ w

w
r (w) f (w) dw (2.25)

=
∫ w

w
r (w) f (w) dw.

Now take the nodes w̃j, j = 1, . . . , J and construct the basis of Lagrange polynomials

lj (w) =
J

∏
i=1
i ̸=j

w − w̃i

w̃j − w̃i . (2.26)

Notice that the Lagrange polynomial lj (w) satisfies lj
(
w̃j) = 1 and lj

(
w̃i) = 0 for i ̸= j.

Then we can write the function r (w) as

r (w) =
J

∑
j=1

r
(

w̃j
)

lj (w) .

To see, this, notice that the left-hand and right-hand sides certainly coincide at the nodes
w̃j, j = 1, . . . , J. Since both sides are polynomials of degree at most J − 1 that coincide at J
points, they must be identical everywhere. The right-hand side is the Langrange interpo-
lating polynomial, the unique polynomial of the lowest degree that interpolates the given
data

(
w̃j, r

(
w̃j)), j = 1, . . . , J.

We can then write∫ w

w
r (w) f (w) dw =

J

∑
j=1

r
(

w̃j
) ∫ w

w
lj (w) f (w) dw︸ ︷︷ ︸

= f̃ j

(2.27)

where the weights f̃ j are defined as the integrals of Lagrange polynomials, and they are
independent of the choice of the function h (w).

Further, notice that the functions h (w) and r (w) coincide at the nodes w̃j because
PJ
(
w̃j) = 0:

h
(

w̃j
)
= q

(
w̃j
)

PJ

(
w̃j
)
+ r

(
w̃j
)
= r

(
w̃j
)

.

Consequently, we can combine (2.25) and (2.27), and write

∫ w

w
h (w) f (w) dw =

∫ w

w
r (w) f (w) dw =

J

∑
j=1

r
(

w̃j
)

f̃ j =
J

∑
j=1

h
(

w̃j
)

f̃ j.
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So indeed, the quadrature formula

∫ w

w
h (w) f (w) dw =

J

∑
j=1

h
(

w̃j
)

f̃ j

with nodes w̃j given by the zeros of the polynomial PJ (w) and weights given by

f̃ j =
∫ w

w
lj (w) f (w) dw (2.28)

is indeed exact for all polynomials of degree up to 2J − 1.

It remains to be shown that the nodes w̃j corresponding to the zeros of PJ (w) lie in
the open interval (w, w). Let us consider the consequences that alternative roots have on
the sign of PJ (w) on (w, w) by decomposing PJ (w) into the product of its factors. The
factors associated with complex roots, roots outside the interval (w, w), and roots with
even multiplicity do not change the sign of PJ (w) on (w, w). What remains are roots on
(w, w) with odd multiplicity. Denote those roots wi and multiply PJ (w) by

(
w − wi) for

each occurrence of such a root to form

PJ (w)∏
i

(
w − wi

)
,

where the product is over all the roots wi with odd multiplicity on (w, w). This resulting
polynomial does not change sign on (w, w), so that∫ w

w
PJ (w)∏

i

(
w − wi

)
f (w) dw ̸= 0

because the weighting function is nonnegative as well. But since PJ (w) is orthogonal to
all polynomials of order up to J − 1, it must be that ∏i

(
w − wi) is a polynomial of order

at least J, hence PJ (w) has exactly J distinct roots on the interval (w, w).

There are many alternative methods how to find the roots of the polynomial PJ (w),
some of them extremely efficient even for very large values of J. We discuss one easily
implementable method using specific cases of Gaussian quadrature associated with par-
ticular weighting functions and integration intervals (w, w).

Quadrature weights

Before we do so, we discuss in more detail the construction of the associated weights f̃ j in
(2.28). Write the polynomials Pn (w) as

Pn (x) = an,0 + an,1x + . . . + an,nxn.
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Consider the numerators of Lagrange polynomials lj (w) in (2.26)

J

∏
i=1
i ̸=j

(
w − w̃i

)
=

∏J
i=1

(
w − w̃i)

w − w̃j =
PJ (w)

aJ,J
(
w − w̃j

) .

Taking the limit as w → w̃j, applying the L’Hospital rule to the right-hand side, yields

J

∏
i=1
i ̸=j

(
w̃j − w̃i

)
=

P′
J
(
w̃j)

aJ,J
,

which is the denominator of the Lagrange polynomial lj (w) in (2.26). We can thus combine
the last two expressions to write the weight (2.28) as

f̃ j =
∫ w

w
lj (w) f (w) dw =

1
P′

J
(
w̃j
) ∫ w

w

PJ (w)

w − w̃j f (w) dw. (2.29)

Since (
w̃j)k

w − w̃j =

(
w̃j)k − wk

w − w̃j +
wk

w − w̃j ,

we have, for k ≤ J,

∫ w

w

PJ (w)wk

w − w̃j f (w) dw =
∫ w

w

PJ (w)
(
w̃j)k

w − w̃j f (w) dw −
∫ w

w
PJ (w)

(
w̃j)k − wk

w − w̃j f (w) dw

=
(

w̃j
)k ∫ w

w

PJ (w)

w − w̃j f (w) dw

because the last expression on the first line is the inner product of PJ (w) with a polyno-
mial of degree less than J, which is orthogonal to PJ (w) by construction, and hence the
inner product is zero. Since this expression holds for any wk, k ≤ J, it also holds for any
polynomial q (w) of degree at most J:∫ w

w

PJ (w) q (w)

w − w̃j f (w) dw = q
(

w̃j
) ∫ w

w

PJ (w)

w − w̃j f (w) dw.

Notice that we can write
PJ (w)

w − w̃j = aJ,JwJ−1 + s (w) ,

where s (w) is a polynomial of degree at most J − 2. Now choose q (w) = PJ−1 (w). Then

∫ w

w

PJ (w)

w − w̃j f (w) dw =
1

PJ−1
(
w̃j
) ∫ w

w

PJ (w) PJ−1 (w)

w − w̃j f (w) dw

=
aJ,J

PJ−1
(
w̃j
) ∫ w

w
wJ−1PJ−1 (w) f (w) dw
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where we used the decomposition of PJ (w) /
(
w − w̃j), noticing that s (w) is orthogonal to

PJ−1 (w). Using a similar argument, write

wJ−1 =

(
wJ−1 − PJ−1 (w)

aJ−1,J−1

)
+

PJ−1 (w)

aJ−1,J−1

where the term in parenthesis is a polynomial of degree at most J − 2, and hence orthogo-
nal to PJ−1 (w), which allows us to write the previous expression as

∫ w

w

PJ (w)

w − w̃j f (w) dw =
aJ,J

PJ−1
(
w̃j
) ∫ w

w

PJ−1 (w)

aJ−1,J−1
PJ−1 (w) f (w) dw

=
aJ,J

aJ−1,J−1PJ−1
(
w̃j
) ∫ w

w
PJ−1 (w)2 f (w) dw

The weight f̃ i in (2.29) can therefore be written as

f̃ j =
∫ w

w
lj (w) f (w) dw =

aJ,J

aJ−1,J−1

∫ w
w PJ−1 (w)2 f (w) dw

P′
J
(
w̃j
)

PJ−1
(
w̃j
)

The weights f̃ j are strictly positive. To see this, construct the polynomial

gj (w) = lj (w)2 =
J

∏
i=1
i ̸=j

(
w − w̃i)2(
w̃j − w̃i

)2 .

Notice that gj
(
w̃i) = δij = 1{i=j}. Since gj (w) is a polynomial of degree less than 2J − 1,

the quadrature formula evaluates its integral under weight f (w) exactly

0 <
∫ w

w
gi (w) f (w) dw =

J

∑
j=1

gi

(
w̃j
)

f̃ j =
J

∑
j=1

δij f̃ j = f̃ i, i = 1, . . . , J.

Construction of orthogonal polynomial base

The orthogonal polynomial base defined using the scalar product ⟨·, ·⟩ in (2.24) with poly-
nomials Pn (w) normalized to be monic, i.e., with leading coefficient an,n = 1, satisfies the
recurrence relation

Pr+1 (w) = (w − ar,r) Pr (w)− ar,r−1Pr−1 (w)− . . . − ar,0P0 (w) . (2.30)

The coefficients are given by

ar,s =
⟨wPr, Ps⟩
⟨Ps, Ps⟩

. (2.31)
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This relation, known as the Gram–Schmidt orthogonalization process, can be proven by
induction. Start with P0 (w) = 1. For r = 0, expression (2.30) yields

P1 (w) = (w − a0,0) P0 (w)

where

a0,0 =
⟨wP0, P0⟩
⟨P0, P0⟩

=

∫ w
w w f (w) dw∫ w

w f (w) dw

Then we have

⟨P1, P0⟩ = ⟨(w − a0,0) P0, P0⟩ = ⟨wP0, P0⟩ − a0,0 ⟨P0, P0⟩
= a0,0 ⟨P0, P0⟩ − a0,0 ⟨P0, P0⟩ = 0.

Now, for r ≥ 1, assume that polynomials P0 (w) , . . . , Pr (w) are orthogonal. Then for s ≤ r,

⟨Pr+1, Ps⟩ = ⟨wPr, Ps⟩ − ar,r ⟨Pr, Ps⟩ − ar,r−1 ⟨Pr−1, Ps⟩ − . . . − ar,0 ⟨P0, Ps⟩
= ⟨wPr, Ps⟩ − ar,s ⟨Ps, Ps⟩

= ⟨wPr, Ps⟩ −
⟨wPr, Ps⟩
⟨Ps, Ps⟩

⟨Ps, Ps⟩ = 0,

where the second equality follows from the fact that ⟨Pm, Ps⟩ = 0 for m ̸= s.

The recurrence relation can be reduced to just three adjacent terms because the scalar
product satisfies ⟨w f , g⟩ for any two functions f (w), g (w). For s < r − 1, the polynomial
wPs (w) is of order less than r, and hence orthogonal to Pr. This implies

ar,s =
⟨wPr, Ps⟩
⟨Ps, Ps⟩

=
⟨Pr, wPs⟩
⟨Ps, Ps⟩

= 0.

Then the recurrence relation (2.30) reduces to

Pr+1 (w) = (w − ar,r) Pr (w)− ar,r−1Pr−1 (w) (2.32)

with the convention P−1 (w) = 0. Finally, notice that

ar,r−1 =
⟨wPr, Pr−1⟩
⟨Pr−1, Pr−1⟩

=
⟨Pr, wPr−1⟩
⟨Pr−1, Pr−1⟩

=
⟨Pr, Pr⟩

⟨Pr−1, Pr−1⟩

because
⟨Pr, wPr−1⟩ = ⟨Pr, Pr⟩+ ⟨Pr, wPr−1 − Pr⟩ = ⟨Pr, Pr⟩

because the polynomial wPr−1 − Pr is of order at most r − 1, and hence orthogonal to Pr.

Normalization of the polynomial base

In what follows, it will be useful to work with an orthonormal polynomial base in which
all base polynomials are normalized to have unit norm. This normalization can be con-
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structed in a simple way by defining λr =
√
⟨Pr, Pr⟩, and constructing normalized polyno-

mials
P̂r (w) = λ−1

r Pr (w)

which satisfy
∥∥P̂r
∥∥ =

√〈
P̂r, P̂r

〉
= 1. The we can rewrite (2.32) as

λr+1P̂r+1 (w) = (w − ar,r) λr P̂r (w)− ar,r−1λr−1P̂r−1 (w) .

Using the definitions of ar,r and ar,r−1,

ar,r =
⟨wPr, Pr⟩
⟨Pr, Pr⟩

ar,r−1 =
⟨Pr, Pr⟩

⟨Pr−1, Pr−1⟩

allows us to rewrite the recurrence relation as

√
ar+1,r P̂r+1 (w) = (w − ar,r) P̂r (w)−√

ar,r−1P̂r−1 (w) . (2.33)

Given that Pr (w) is monic, the leading coefficient in P̂r (w) is equal to âr,r = ⟨Pr, Pr⟩−1/2.
The coefficients can be rewritten in terms of the normalized polynomials as

ar,r =
〈
wP̂r, P̂r

〉 √
ar,r−1 =

âr−1,r−1

âr,r

Initial terms in the series of polynomials are defined as P̂−1 (w) = 0 and

P̂0 (w) =
P0 (w)√
⟨P0, P0⟩

=

(∫ w

w
f (w) dw

)−1/2

=
1

√
µ0

.

The coefficients of the normed polynomials can be obtained by renormalizing the monic
coefficients obtained from recursion (2.32).

Golub–Welsch algorithm

The Golub–Welsch algorithm transforms the problem of finding the roots of the polyno-
mial PJ (w) into a problem of finding the eigenvalues of a particular tridiagonal matrix.
Denote

πJ−1 (w) = (P0 (w) , . . . , PJ−1 (w))′

the column vector of polynomials, eJ the coordinate vector eJ = (0, . . . , 0, 1)′, and

Λ =



a0,0 1 0 . . . . . . . . .
a1,0 a1,1 1 0 . . . . . .
0 a2,1 a2,2 1 0 . . .
0 . . . . . . . . . . . . 0

. . . . . . 0 aJ−2,J−3 aJ−2,J−2 1

. . . . . . . . . 0 aJ−1,J−2 aJ−1,J−1
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the tridiagonal matrix called the Jacobi matrix. Then the three-term recurrence equation
(2.32) can be written in the form

ΛπJ−1 (w) = wπJ−1 (w)− PJ (w) eJ . (2.34)

This implies that the roots of the polynomial PJ (w) are identical to the eigenvalues of the
Jacobi matrix Λ. To see this, observe that the column vector PJ (w) eJ is equal to zero if
and only if w is one of the roots of PJ (w). For these roots w̃j, j = 1, . . . , J, the recurrence
equation (2.34) reduces to

ΛπJ−1

(
w̃j
)
= w̃jπJ−1

(
w̃j
)

,

which is the eigenvector equation for the matrix Λ, with eigenvalues w̃j and eigenvectors
πJ−1

(
w̃j), j = 1, . . . , J. Recall that the vector πJ−1

(
w̃j) is the vector of the values of poly-

nomials Pn (w), n = 0, . . . , J − 1 evaluated at the value w̃j, which is a root of polynomial
PJ (w).

Instead of solving the eigenvalue problem for Λ, it is advantageous to solve for the
eigenvalues of the symmetric matrix Λ̂ defined using the recurrence relation on the or-
thonormal polynomial base (2.33). Defining

π̂J−1 (w) =
(

P̂0 (w) , . . . , P̂J−1 (w)
)′

and

Λ̂ =



a0,0
√

a1,0 0 . . . . . . . . .√
a1,0 a1,1

√
a2,1 0 . . . . . .

0
√

a2,1 a2,2
√

a3,2 0 . . .
0 . . . . . . . . . . . . 0

. . . . . . 0 √aJ−2,J−3 aJ−2,J−2
√aJ−1,J−2

. . . . . . . . . 0 √aJ−1,J−2 aJ−1,J−1


(2.35)

the recurrence relation for the orthonormal polynomial base can be written as

Λ̂π̂J−1 (w) = wπ̂J−1 (w)−√
aJ,J−1P̂J (w) eJ .

The polynomial P̂J (w) has the same roots w̃j as the monic polynomial PJ (w), and for these
roots, we have

Λ̂π̂J−1

(
w̃j
)
= w̃jπ̂J−1

(
w̃j
)

,

so w̃j and π̂J−1
(
w̃j) are eigenvalues and eigenvectors of the Jacobi matrix Λ̂. The matrices

Λ and Λ̂ have identical eigenvalues but the eigenvectors differ. Identity of the eigenvalues
also comes from the fact that Λ and Λ̂ are similar matrices, meaning that there exists an
invertible matrix P such that Λ̂ = P−1ΛP.

Finally, we determine the weights f̃ j. Since P̂i P̂k, i, k = 0, . . . , n − 1 are polynomials of
degree smaller than 2J − 1, the integrals

〈
P̂i, P̂k

〉
=
∫ w

w
P̂i (w) P̂k (w) f (w) dw
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can be exactly expressed using the quadrature formula

δik =
〈

P̂i, P̂k
〉
=

J

∑
j=1

P̂i

(
w̃j
)

P̂k

(
w̃j
)

f̃ j.

This set of equations can be expressed in matrix form as

Π′WΠ = I

where W = diag
(

f̃ 1, . . . , f̃ J) is the diagonal matrix of quadrature weights, and Π =(
π̂J−1

(
w̃1) , . . . , π̂J−1

(
w̃J))′ is the matrix the polynomial vectors π̂J−1

(
w̃i) in its rows.

These polynomial vectors are also eigenvectors of the matrix Λ̂. Given that W and I are
full rank, the matrix Π is invertible, and

W−1 = ΠΠ′.

The i-th element of the diagonal is

1
f̃ i

= π̂J−1

(
w̃i
)′

π̂J−1

(
w̃i
)
=
∥∥∥π̂J−1

(
w̃i
)∥∥∥2

.

Again recall that π̂J−1
(
w̃i) is the vector of values of polynomials P̂n (w), n = 0, . . . , J − 1,

evaluated at the given root w̃i of the polynomial P̂J (w). It is also an eigenvector of the
Jacobi matrix Λ̂ associated with eigenvalue w̃i. We can therefore construct the weights f̃ i

from the eigenvectors π̂J−1
(
w̃i), i = 1, . . . , J, we only need to determine an appropriate

normalization of the eigenvectors.

Denote ϕi an arbitrarily scaled eigenvector of Λ̂ associated with eigenvalue w̃i. This
vector can differ from π̂J−1

(
w̃i) only by a scaling factor. Since the first element of π̂J−1

(
w̃i)

is equal to P̂0
(
w̃i) = µ−1/2

0 , we must have

ϕi

ϕi
1
=

π̂J−1
(
w̃i)

P̂0 (w̃i)

have

ϕi =
ϕi

1

P̂0 (w̃i)
π̂J−1

(
w̃i
)
=

√
µ0ϕi

1π̂J−1

(
w̃i
)

.

As a consequence, the weights f̃ i are given by

f̃ i =
1

∥π̂J−1 (w̃i)∥2 =
µ0
(
ϕi

1

)2

∥ϕi∥2 . (2.36)

These results give us an algorithm for the construction of the quadrature nodes and weights:

1. Choose an interval (w, w̄) and a weighting function f (w). Pick J.

2. Construct the monic polynomial base Pn (w), n = 0, . . . , J using the recurrence equa-
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tion (2.32), respectively its orthonormal version P̂n (w) using (2.33).

3. Construct the matrix Λ̂ in (2.35) from the coefficients of the polynomials.

4. Find the eigenvalue w̃i of Λ̂ and associated eigenvector ϕi, i = 1, . . . , J. Construct the
weights f̃ i using the normalization (2.36) with

µ0 =
∫ w

w
f (w) dw =

(
P̂0

(
w̃i
))−2

.

The construction of the polynomial base requires the recursive computation of coeffi-
cients ar,s in (2.31). In general, this may require a numerical evaluation but well-known
analytical formulas exist for special cases. In what follows, we derive specific formulas for
particular weighting functions and integration ranges.

Gauss–Legendre quadrature

The Gauss–Legendre rule concerns the integration problem with f (w) = 1 and (w, w) =

(−1, 1). In this case, the orthogonal basis consists of the so-called Legendre polynomials.
These satisfy the recursion

(n + 1) P̃n+1 (w) = (2n + 1)wP̃n (w)− nP̃n−1 (w)

with P̃0 (w) = 1 and P̃1 (w) = w. These polynomials satisfy∫ 1

−1
P̃n (w) P̃m (w) f (w) dw =

2
2n + 1

δmn,

so they are neither orthonormal nor monic. We want their monic representation in the
form of the recursive formula (2.32), so that we can construct the matrix Λ̂ in (2.35) from
coefficients an,n and an,n−1 of the monic polynomials. Therefore define the scaling factor λn

as
Pn (w) = λnP̃n (w)

where Pn (w) is monic. Then we can rewrite the recurrence formula as

(n + 1)
Pn+1 (w)

λn+1
= (2n + 1)w

Pn (w)

λn
− n

Pn−1 (w)

λn−1

Pn+1 (w) =
λn+1

λn

2n + 1
n + 1

wPn (w)− λn+1

λn−1

n
n + 1

Pn−1 (w) .

The first two polynomials are still P0 (w) = 1 and P1 (w) = w. If Pn (w) is monic then in
order for Pn+1 (w) also to be monic, we need

λn+1

λn

2n + 1
n + 1

= 1 =⇒ λn+1

λn
=

n + 1
2n + 1

.
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This also implies that

λn+1

λn−1
=

λn+1

λn

λn

λn−1
=

n + 1
2n + 1

n
2n − 1

=
n2 + n
4n2 − 1

,

so that the recurrence formula becomes

Pn+1 (w) = wPn (w)− λn+1

λn−1

n
n + 1

Pn−1 (w) = wPn (w)− n2

4n2 − 1
Pn−1 (w) .

Hence

an,n = 0 an,n−1 =
n2

4n2 − 1
,

which yields the J × J matrix Λ̂ with a zero main diagonal and terms
√

an,n−1, n = 1, . . . , J −
1 on the super- and subdiagonal. The eigenvalues of Λ̂ correspond to the nodes w̃j and the
weights f̃ j can be computed from the associated eigenvectors.

The nodes and weights can also be directly translated to an approximation over an
arbitrary interval (w, w) and weighting function f (w) = c through a simple linear trans-
formation. In this case, the new nodes wj and weights f j are related to w̃j and f̃ j through

wj = w +
w − w

2

(
w̃j + 1

)
f j = c

w − w
2

f̃ j

For example, when f (w) is a density on (w, w), then c = (w − w)−1

Gauss–Hermite quadrature

The Gauss–Hermite rule involves the weighting function f (w) = exp
(
−w2) on the inter-

val (w, w) = (−∞,+∞). This weighting function satisfies∫ ∞

−∞
f (w) dw =

√
π.

The orthogonal basis is given by the Hermite polynomials P̃n (w) given by P̃0 (w) = 1,
P̃1 (w) = 2x, and furher by the recurrence relation

P̃n+1 (w) = 2wP̃n (w)− 2nP̃n−1 (w) .

These polynomials satisfy the orthogonality restriction∫ ∞

−∞
P̃m (w) P̃n (w) exp

(
−w2) dw =

√
π2nn!δmn.

To construct the monic polynomials Pn (w), we again define

Pn (w) = λnP̃n (w) .
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Then we can rewrite the recurrence formula as

Pn+1 (w) = 2
λn+1

λn
wPn (w)− 2n

λn+1

λn−1
Pn−1 (w) .

The first two polynomials are still P0 (w) = 1 and P1 (w) = w. If Pn (w) is monic then in
order for Pn+1 (w) also to be monic, we need

λn+1

λn
=

1
2

.

This also implies that
λn+1

λn−1
=

λn+1

λn

λn

λn−1
=

1
4

,

so that the recurrence formula becomes

Pn+1 (w) = wPn (w)− n
2

Pn−1 (w) .

Hence the coefficients an,n and an,n−1 in the general formula (2.32) that enter the tridiagonal
matrix Λ̂ in (2.35) satisfy

an,n = 0 an,n−1 =
n
2

.

The J × J matrix Λ̂ therefore has zero main diagonal terms and terms
√

an,n−1 = n
2 , n =

1, . . . , J − 1 on the super- and subdiagonal. The eigenvalues of Λ̂ correspond to the nodes
w̃j and the weights f̃ j can be computed from the associated eigenvectors using formula
(2.36).

The Gauss-Hermite rule is frequently used to compute expectations of a normally dis-
tributed random variable with mean µ and variance σ2. The weighting function is then the
density

f (w) =
1√

2πσ2
exp

(
−1

2
(w − µ)2

σ2

)
.

Since the density integrates to one, and the new variable is a linear transformation of the
original one, the nodes and weights are transformed as

wj = µ +
√

2σw̃j f j =
1√
π

f̃ j, j = 1, . . . , J.
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Chapter 3

Perturbation methods and linear state
space models

Textbook: Ljungqvist and Sargent (2018), Chapter 2 (Sections 2.4–2.6, linear vector au-
toregressions, Sections 2.12–2.13, applications), Chapter 5 (linear quadratic dynamic pro-
gramming). Judd (1998), Chapter 13 (perturbation methods). Holmes (1995) (series ex-
pansion methods).
Perturbation methods: Blanchard and Kahn (1980), Sims (2002), Lombardo (2010),
Borovička and Hansen (2014), Bhandari et al. (2019), Campbell and Shiller (1988).
QuantEcon: Quantitative Economics with Python: Topic 24 (AR(1) processes), Topic
27–28 (linear state space models), Topic 78 (linear regression). Advanced Quantitative
Economics with Python: Topics 16–19 (dynamic linear economies).

In this chapter, we study methods for finding approximate solutions to models that are
potentially highdimensional, such as those use in quantitative dynamic macroeconomics.
To achieve this, we need to find a class of stochastic processes that allow for tractable
solutions of equilibrium models consisting of forward- and backward-looking equations,
as well as their estimation. For this purpose, we study in Section 3.1 multivariate linear
models, so-called linear vector autoregressions.

As a second step, we need to develop a numerical approach how to approximate in-
teresting nonlinear models using linear dynamics. Here, we rely on perturbation methods
that linearize the model in the vicinity of the model’s steady state. The specific conceptual
approach we use is the series expansion method.

The perturbation approximation is highly scalable and easy to implement but requires
the model to be sufficiently smooth in the neighborhood of the steady state. It is necessary
to be aware of the limitations of the method, in particular what features of the model will
be neglected by the approximation. A linear approximation of the model will intuitively
work well if nonlinearities are not substantial. Higher-order polynomial approximations
can deal with some nonlinearities as well, and standard packages such a Dynare can con-
struct such polynomial approximations of the model solution automatically. However,

https://python.quantecon.org/
https://python-advanced.quantecon.org/
https://python-advanced.quantecon.org/
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evaluation of the accuracy of the approximation is a nontrivial issue, as mentioned in the
cautious note in Section 3.2.8 at the end of this chapter.

3.1 Linear vector autoregressions

We will now study a class of multivariate linear models. These models are easy to work
with and relatively easy to estimate using well-understood methods, and can often be the
outcome of an approximation to a solution of a nonlinear equilibrium model.

Analogously to the Markov chain model described in Section 1.1, the multivariate
stochastic linear model is described by the following components:

• state of the system xt ∈ Rn,

• initial distribution π0 (x0) ∼ N (µ0, Σ0),

• transition density π (x′ | x) ∼ N (Aox, CC′), where Ao is an n × n matrix and C is an
n × p matrix.

Observe that this specification again describes completely a filtered probability space
from Definition A.3. The sample space Ω contains all infinite sequences of realizations
x∞ = (x0, x1, . . .). The filtration {Ft}∞

t=0 is generated from measurable sets of partial histo-
ries xt = (x0, x1, . . . , xt). The construction is somewhat more involved here since the state
space is infinite. In particular, for a given t, the σ-algebra Ft is constructed from all sets of
paths x∞ ∈ Ω that take the following form

Ft = {x∞ ∈ Ω : x0 ∈ B0, x1 ∈ B1, . . . , xt ∈ Bt}

where Bj, j = 0, . . . , t are open (or Borel) sets on Rn, and then from all sets that can be
constructed by repeated application of the rules in Definition A.1. The σ-algebra F can
then be defined formally as F =

⋃
t≥0 Ft. Finally, the probability measure P describing

the full joint distribution of the model can be formed from the initial distribution and the
transition density.

It is extremely useful to notice that the model can be equivalently represented using
the stochastic linear difference equation

xt+1 = Aoxt + Cwt+1 wt+1 ∼ N
(
0, Ip

)
iid. (3.1)

where wt+1 is an p× 1 vector of iid Gaussian shocks (so-called random innovations). Such
a model is called a vector autoregression (VAR). Observe that when this equation can be
inverted to obtain

wt+1 = C−1 (xt+1 − Aoxt)

then the information sets Ft can be equivalently generated using partial histories xt =

(x0, x1, . . . , xt) or using the histories of innovations (x0, w1, . . . wt).



3.1 Linear vector autoregressions 95

Some of the results that follow will continue to hold even when the assumptions on the
distribution of innovations are weakened. In particular, we can relax the assumption of a
Gaussian distribution, and instead assume that wt+1 is a random vector satisfying

E [wt+1 | Ft] = 0 (3.2)

E
[
wt+1w′

t+1 | Ft
]

= Ip,

where Ft is the σ-algebra (information set) generated by (x0, w1, . . . wt). The sequence
of shocks {wt+1}∞

t=0 satisfying (3.2) is called a martingale difference sequence. An even
weaker assumption further relaxes the conditional moments, and only assumes that the
shocks are unconditionally mean zero and uncorrelated

E [wt+1] = 0 (3.3)

E
[
wtw′

t−j

]
= Ip · 1 {j = 0} .

A sequence of shocks satisfying the pair of restrictions (3.3) is called white noise.

We will often append an observation equation, or measurement equation, to obtain
what is called a state-space representation of the model:

xt+1 = Aoxt + Cwt+1 (3.4)

yt = Gxt + vt

where yt and vt are m × 1 vectors. The vector yt represents observations of a potentially
‘hidden’ state xt, and vt is iid measurement noise with a given covariance matrix. In some
applications, we will allow vt to be correlated with wt.

The multivariate linear Markov process is incredibly versatile because many interesting
linear models can be rewritten into the VAR form.

Example 3.1. A scalar second-order autoregression

zt+1 = α + ρ1zt + ρ2zt−1 + wt+1 (3.5)

can be written as

xt+1 =

 zt+1

zt

1

 =

 ρ1 ρ2 α

1 0 0
0 0 1

 zt

zt−1

1

+

 1
0
0

wt+1

with measurement equation
zt = [1 0 0] xt

The matrix Ao constructed above is called the companion form.

The autoregressive model (3.5) is an example of how uncorrelated disturbances wt may
generate persistent oscillations in the observed series zt. This effect was independently de-
scribed by Eugen Slutsky and Udny Yule in Slutsky (1927) (appeared in English as Slutsky
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(1937)) and Yule (1927), and is known as the Slutsky–Yule effect. Slutsky (1927) noted,
for example, that moving averages constructed from the random numbers drawn in the
Russian government lottery resemble the time series of British business cycles.

The idea revolutionized the way how to think about the propagation mechanism gener-
ating business cycles. Ragnar Frisch constructed a continuous-time model of aggregate dy-
namics in Frisch (1933) in which he distinguishes between the ‘impulse problem’ and the
‘propagation problem’. Oscillations in his model are generated by a time-to-build mech-
anism where capital goods need time to be completed before they can be used for pro-
duction, an early precursor to the time-to-build model of Kydland and Prescott (1982). As
another early example, the equilibrium dynamics for aggregate output in the multiplier-
accelerator model of Samuelson (1939) take exactly the form (3.5), where ρ1 and ρ2 are
model parameters calibrated to mimic the characteristics of business cycle fluctuations,
generated by fluctuations in government spending.

Example 3.2. The vector autoregression can incorporate moving-average dynamics by stacking the
history of shocks. The ARMA(1,1) model

zt+1 = ρzt + wt+1 + γwt

can be written as

xt+1 =

[
zt+1

wt+1

]
=

[
ρ γ

0 0

] [
zt

wt

]
+

[
1
1

]
wt+1

with measurement equation
zt = [1 0] xt.

Other examples of models that can be suitably stacked into the VAR form include an order-k vector
autoregression

zt+1 =
k

∑
j=1

Ajzt+1−j + Cywt+1,

or models that include deterministic or stochastic seasonality:

yt = yt−4

yt = ϕyt−4 + wt.

3.1.1 First and second moments

When innovations wt+1 are normally distributed and the unconditional distribution of the
initial state x0 is normal as well, then the linear form of (3.1) implies that xt will be normally
distributed as well. Since normal distributions are completely described by their first two
moments, tracing the first two moments over time is sufficient for the description of the
joint distribution of the process.

However, even when the innovations are not normal, we are often still interested in
studying the dynamics of the first two moments. This leads us to the definition of covari-
ance stationarity.
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Definition 3.1. A stochastic process is said to be covariance stationary if

• the mean is independent of time, E [xt] = E [x0] = µ̄

• the sequence of autocovariance matrices

E
[
(xt − E [xt])

(
xt+j − E

[
xt+j

])′]
only depends on j, not on t.

Obviously, a stationary process (according to Definition A.11) is covariance stationary.
On the other hand, a linear covariance stationary process with normal innovations and
normal unconditional distribution of the initial state is also stationary.

Definition 3.2. A real square matrix Ao is said to be stable if all its eigenvalues are strictly within
the unit circle.

In order for xt+1 to have a stationary mean different from zero, it will often be useful to
impose a particular structure on

xt+1 = Aoxt + Cwt+1 (3.6)

by singling out a constant from the evolution of the state:[
x1,t+1

x2,t+1

]
=

[
1 0
b Ã

] [
x1,t

x2,t

]
+

[
0
C̃

]
wt+1 x0 =

[
x1,0

x2,0

]
(3.7)

where x1,t is scalar. The matrix Ao then has one unit root, and the remaining roots are the
roots of Ã which we assume is stable.

Law of motion for first moments

Denote µt
.
= E [xt] the unconditional mean of xt (which can still depend on t if the process

is not stationary). Then
µt+1 = Aoµt

and we can find limt→∞ µt = µ∞ as the unique solution to

µ̄ = A0µ̄ =⇒ (I − A0) µ̄ = 0

To provide more information let us look at the structured equation (3.7). Denote µ̄′ =

(µ̄1, µ̄′
2). Obviously, x1,t = x1,0 = µ̄1. The lower block can be written as

x2,t+1 = āx1,0 + Ãx2,t + C̃wt+1.

Taking unconditional expectations, we have

µ2,t+1 = bµ̄1 + Ãµ2,t.
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When Ã is stable, limt→∞ µ2,t = µ2,∞ = µ̄2, and we can find the value as

µ̄2 =
(

I − Ã
)−1

bµ̄1.

Law of motion for second moments

In order to derive the evolution of unconditional variance, denote

Σt
.
= E

[
(xt − µt) (xt − µt)

′] .

The law of motion for Σt can be derived from (3.6) by subtracting the unconditional mean
µt+1 = A0µt from both sides and taking the variance of both sides. Hence

Σt+1 = A0Σt A′
0 + CC′.

A fixed point of this recursion satisfies

Σ∞ = A0Σ∞ A′
0 + CC′. (3.8)

We will denote this fixed point Cx (0) = Σ∞. This fixed point is the covariance matrix

Cx (0) = E
[
(xt − µ̄) (xt − µ̄)′

]
under the stationary distribution. Equation (3.8) is a discrete Lyapunov equation and can
be efficiently solved using alternative algorithms (like the doubling algorithm).

Similarly, to compute the autocovariance function Cx (j), start with (3.6) and write

xt+j − µt+j = Ao
(
xt+j−1 − µt+j−1

)
+ Cwt+j = . . .

= Aj
o (xt − µt) + Aj−1

o Cwt+1 + . . . + Cwt+j

Post-multiply by (xt − µt)
′ and take unconditional expectations to obtain

E
[(

xt+j − µt+j
)
(xt − µt)

′] = Aj
oE
[
(xt − µt) (xt − µt)

′]
Hence, when the process has a stationary mean, we obtain

Cx (j) = Aj
oCx (0) .

The sequence {Cx (j)}∞
j=0 is the autocovariance function or autocovariogram.

Example 3.3. Consider yt = Gxt. Then Cy (j) = GCx (j) G′.

Summary

To summarize, we distinguish different moments based on the conditioning we impose:
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• conditional moments E [xt+1 | xt] = Axt, Cov (xt+1 | xt) = CC′

• moments conditional on x0,

E [xt | x0] = E0 [xt] = At
ox0

E
[
(xt − E0 [xt]) (xt − E0 [xt])

′] =
t−1

∑
h=0

Ah
oCC′

(
Ah

o

)′
• unconditional moments E [xt]

.
= µt and E

[
(xt − µt) (xt − µt)

′] = Σt, satisfying

µt+1 = Aoµt

Σt+1 = AoΣt A′
o + CC′

• stationary moments

(I − Ao) µ̄ = 0

Cx (0) = AoCx (0) A′
o + CC′

Cx (j) = Aj
oCx (0)

3.1.2 Impulse response functions

The stochastic process we posited in (3.1) specifies a law of motion that describes a deter-
ministic propagation mechanism for xt, systematically perturbed by random innovations
wt+1. This idea goes back to the impulse and propagation problems described by Frisch
(1933):

“There are several alternative ways in which one may approach the impulse
problem. . . One way which I believe is particularly fruitful and promising is to
study what would become of the solution of a determinate dynamic system if it
were exposed to a stream of erratic shocks that constantly upsets the continu-
ous evolution, and by so doing introduces into the system the energy necessary
to maintain the swings.”

In order to understand the propagation mechanism, we want to capture how a shock
today affects the distribution of the stochastic process in the future. In general, the sys-
tem starts in a state x0 and is impacted in periods t = 1, 2, . . . by the sequence of shocks
wt. Specifically, we want to pose the following question: What are the consequences of
perturbing the distribution of the shock w1 today for the distribution of xt, t ≥ 1?

In order to answer it, consider a common initial condition x0 and two alternative pro-
cesses representing iid disturbances:

w = {w1, w2, w3, . . .}
w̃ = {w̃1, w̃2, w̃3, . . .}
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where we impose that w̃j = wj, ∀j ≥ 2. The innovation processes thus have the same
innovations except period one. Now define

xt+1 = Aoxt + Cwt+1, t ≥ 0

x̃t+1 = Ao x̃t + Cw̃t+1

The impulse response function is defined as the difference

x̃t+1 − xt+1.

Observe that the impulse response function is a stochastic process that in general depends
on x0, as well as on both sequences of shocks w̃ and w. So in the general nonlinear case,
we need to think about ways how to summarize information contained in the process
x̃t+1 − xt+1. It turns out that in the linear case, this difference takes a convenient simple
form.

In order to derive it, notice that

xt+1 = Aoxt + Cwt+1 = A2
oxt−1 + AoCwt + Cwt+1

= At+1
o x0 +

t

∑
j=0

Aj
oCwt+1−j (3.9)

This is the so-called moving-average representation of the process {xt} that specifies the
process as a linear combination of past innovations. Using this moving-average represen-
tation, it is easy to infer that

x̃t+1 − xt+1 = At
0C (w̃1 − w1)

In the study of linear models, it is a common choice to take w1 = 0 and w̃1 = ek, k =

1, . . . , p. The matrix-valued function

ht = At
oC (3.10)

is therefore also commonly referred to as (linear) impulse response function.

Observe that ht is a matrix whose entry
[
At

oC
]

ik represents the response t periods after
the impact of the shock of the i-the element of the vector state process x to a perturbation
of the k-th element of the innovation w1. Finally, notice that the representation (3.9) makes
the computation of the conditional covariance of xt easy, because w are iid innovations.
Hence

E
[
(xt − E [xt | x0]) (xt − E [xt | x0])

′
]
=

t−1

∑
j=0

Aj
oCC′

(
Aj

o

)′
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3.1.3 Applications

Prediction and discounting

The moving average representation is an extremely powerful tool for computing expecta-
tions and other statistics. Rewrite (3.9) as

xt+j = Aj
oxt +

j−1

∑
k=0

Ak
oCwt+j−k

Hence
Et
[
xt+j

] .
= E

[
xt+j | xt

]
= Aj

oxt.

Similarly, consider a function yt = Gxt where G is a conformable matrix. Then

Et

[
∞

∑
j=0

βjyt+j

]
= G

∞

∑
j=0

(βAo)
j xt = G (I − βAo)

−1 xt

provided that the matrix βAo has all unit roots smaller than one in modulus.

Geometric sums of quadratic forms

In linear-quadratic models, we often want to calculate

αt = Et

[
∞

∑
j=0

βjx′t+jYxt+j

]
. (3.11)

We can proceed by guess and verify and establish a recursive formula

αt = x′tYxt + βEt

[
Et+1

∞

∑
j=0

βjx′t+1+jYxt+1+j

]
=

= x′tYxt + βEtαt+1.

Guessing
αt = x′tνxt + σ

where ν is a symmetric n × n matrix and σ a scalar, we plug in to obtain

x′tνxt + σ = x′tYxt + βEt
[
x′t+1νxt+1 + σ

]
= x′tYxt + βx′t A′

oνAoxt + βEt
[
w′

t+1C′νCwt+1
]
+ βσ

= x′tYxt + βx′t A′
oνAoxt + βtr

[
C′νC

]
+ βσ.
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Comparing coefficients on constant terms and terms involving squares of xt, we obtain

ν = Y + βA′
oνAo (3.12)

σ = (1 − β)−1 βtr
[
C′νC

]
where tr [·] denotes the trace of a matrix. The equation for ν is again a discrete Lyapunov
equation.

Asset pricing

An area that heavily relies on linear methods (in a specific sense) is asset pricing. Generally,
the current ‘fundamental’ price of an asset is the sum of the present discounted value of
future cash flows that the asset pays out.

We therefore need to determine a model of cash flows, and a model of discounting. This
is the content, in an abstract general equilibrium setup, of the Theory of Value of Debreu
(1959). A model of horizon-dependent discounting can be traced back to the study of the
yield curve in Fisher (1896, 1906, 1930), and Hicks (1939). Arrow (1964) studied state-
dependent discounting in a model of risky payoffs, leading to so-called Arrow–Debreu
prices, which are prices of hypothetical securities with a unit payoff in a particular state of
the economy.

Consider the cash flow yt and the ‘discount factor’ zt, modeled as

yt = Gxt zt = Hxt

where G and H are row vectors. We are interested in computing the ‘asset price’

pt = Et

[
∞

∑
j=0

βjzt+jyt+j

]

Observe that given the stochastic discount factor process βjzt+j, the asset price is a linear
function of the cash flows. The stochastic discount factor is typically derived from agent’s
preferences, reflecting the marginal rate of substitution between today and uncertain fu-
ture states. We derived the stochastic discount factor in this way in Section 1.2. Moreover,

pt = Et

[
∞

∑
j=0

βjx′t+jH
′Gxt+j

]
,

and we can use (3.11) to evaluate this sum to obtain

pt = x′tνxt + σ.

The coefficients ν and σ are determined in (3.12). Recall that σ is determined as the dis-
counted sum of covariances of the innovations in zt and yt. Specifically, observe that the
term C′νC depends on the underlying volatility of xt reflected in C, as well as on Y = H′G
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that reflects the comovement of cash flows with the stochastic discount factor. The value
of σ thus can be interpreted as a risk premium on asset with cash flow yt.

Evaluation of a dynamic criterion

We now consider a recursive computational algorithm that provides the basis for linear-
quadratic dynamic programming. Let the system be driven by

xt+1 = Axt + But + Cwt+1

where ut is a control vector chosen by the decision maker as

ut = −Fxt.

Later, we will determine F as an outcome of an optimization problem. For the given control
ut, we want to compute

v (x0; F) = −E0

[
∞

∑
t=0

βt (x′tRxt + u′
tQut

)]
,

where R and Q are symmetric matrices. We can rewrite this problem as

xt+1 = Aoxt + Cwt+1

v (x0; F) = −E0

[
∞

∑
t=0

βtx′tYxt

]

with
Ao = A − BF Y = R + F′QF.

The solution is then given by

v (x0; F) = −x′0Px0 − σ

where, in line with equations (3.12), P satisfies

P = Y + βA′
oPAo

= R + F′QF + β (A − BF)′ P (A − BF) (3.13)

Finding optimal control

Imagine we are now interested in finding the optimal control {ut}∞
t=0 that maximizes

v (x0):

v (x0) = max
{ut}∞

t=0

−E0

[
∞

∑
t=0

βt (x′tRxt + u′
tQut

)]
.
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We describe here a variant of the value function iteration algorithm called Howard im-
provement algorithm, described in Howard (1960), Chapter 4. This algorithm is also called
the policy function iteration, see Chapter 5 in Ljungqvist and Sargent (2018)).

Conjecture an initial guess for the policy function in the form ut = −F0xt for some
matrix F0. Let us assume that the decision maker uses F0 from period 1 onward. Then

v (x1; F0) = −x′1P0x1 − σ0,

where P0 is given as the solution to (3.13) for F = F0, and σ0 is a constant that is incon-
sequential for the following arguments. Given this restriction on future controls, let us
choose the optimal control at time 0 by solving

max
u0

−{x′0Rx0 + u′
0Qu0 + βE0

[
(Ax0 + Bu0 + Cw1)

′ P0 (Ax0 + Bu0 + Cw1)
]︸ ︷︷ ︸

x′1P0x1

+ βσ0}

We now differentiate with respect to the vector u0. Notice that for a function f (u) : Rk →
R, the first derivative is the column vector

∂

∂u
f (u) =

(
∂

∂u1
f (u) , . . . ,

∂

∂uk
f (u)

)′

so you can verify that, for example,

∂

∂u
(
u′Qu

)
= Qu + Q′u,

which, for a symmetric matrix Q, reduces to ∂
∂u (u′Qu) = 2Qu. The first-order condition

implies
0 = −2Qu0 − 2βB′P0 (Ax0 + Bu0) ,

and hence
u0 = −β

(
Q + βB′P0B

)−1 B′P0A︸ ︷︷ ︸
.
= F1

x0. (3.14)

We can now construct the iterative step. Given Fj, solve equation (3.13) for Pj, and then
improve the policy to Fj+1 using equation (3.14):

Pj = R + F′
j QFj + β

(
A − BFj

)′ Pj
(

A − BFj
)

(3.15)

Fj+1 = β
(
Q + βB′PjB

)−1 B′Pj A.

Initial F0 should be chosen such that
√

β (A − BF0) has stable roots, in order for P0 to be
finite. When the process converged, Fj → F∞, there is no one-period improvement in
policy ut = −F∞xt. The algorithm also proves that optimal policy is linear in xt.

Finally, observe that the matrices Pj and Fj do not depend on C. Hence optimal control
ut = −F∞xt does not depend on the volatility of the time series. This is a result known as
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certainty equivalence—in linear-quadratic models, the presence of uncertainty does not
alter decision rules. However, uncertainty affects the constant term in the value function,
as we have seen in the asset pricing application.

Value function iteration and policy function iteration

An alternative to iterative scheme (3.15) is to iterate on both equations simultaneously:

Pj+1 = R + F′
j QFj + β

(
A − BFj

)′ Pj
(

A − BFj
)

(3.16)

Fj = β
(
Q + βB′PjB

)−1 B′Pj A.

This time, the algorithm can be initialized from an arbitrary initial positive-semidefinite
matrix P0 (P0 = 0 is a popular choice). However, this algorithm is slower in practice than
(3.15).

To understand why, observe that algorithm (3.16) corresponds to the linear-quadratic
version of the value function iteration algorithm from Section 2. Given the iterate of the
value function given by matrix Pj, a new current-period decision u = −Fjx is derived, and
a new update of the value function given by Pj+1 is constructed, under the assumption
that the new decision is followed in the current period only.

On the other hand, the policy function iteration algorithm (3.15) assumes that given Pj
and the new policy u = −Fj+1x, the new iterate for the value function, given by Pj+1, is
computed by assuming that this new policy u = −Fj+1x is obeyed in all periods (a new
fixed point for the value function with the given policy is found).

3.1.4 Likelihood of the linear vector autoregressive process

In Section 1.1.5, we constructed the likelihood of data generated by a Markov chain. Here,
we look at the likelihood associated with the linear vector process with Gaussian innova-
tions. We are given a sample x̂T = {x̂t}T

t=0 generated from model (3.1)

xt+1 = Aoxt + Cwt+1 wt+1 ∼ N (0, In)

where we for convenience assume that CC′ is invertible. The joint density of the distribu-
tion of the process can be written as

f
(

xT
)
= f (xT | xT−1) . . . f (x1 | x0) f (x0) ,

where we used the Markov property to construct the factorization. For the Gaussian dis-
tribution,

f (xt+1 | xt) =
1

(2π)n/2 (det (CC′))1/2 exp
(
−1

2
(xt+1 − Aoxt)

′ (CC′)−1
(xt+1 − Aoxt)

)
.
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We assume that there is a vector of unknown parameters θ such that matrices Ao and C
(and perhaps also the distribution f (x0)) are functions of θ. The goal is then to maximize
the log-likelihood

log L
(

θ | x̂T
)

= log f (x̂0 | θ)− T
2

log det
(
C (θ)C (θ)′

)
−1

2

T−1

∑
t=0

(x̂t+1 − Ao (θ) x̂t)
′ (C (θ)C (θ)′

)−1
(x̂t+1 − Ao (θ) x̂t) .

In Section 4.3.1 we revisit this problem in a more complicated environment where xt is
not observable and we only observe imperfect signals of xt. The estimator will then also
involve a filtering method to estimated the unobserved path of xt.

3.2 Perturbation methods

Linear vector autoregressions are appealing due to their tractability, allowing for easy
treatment of high-dimensional problems. However, most economic models do not ad-
here to such a linear form. At the same time, it turns out that a range of stochastic dynamic
equilibrium models can be suitably approximated on the relevant part of the state space
using linear dynamics.

The idea of a linear perturbation method is to start with a particular convenient point
in the state space that will serve as an expansion point. A convenient choice is the deter-
ministic steady state, a point to which the trajectory in a deterministic version of the model
without any uncertainty would converge. Then the approximation technique introduces a
‘small’ amount of uncertainty in the form of a perturbation of the dynamics in the vicinity
of the steady, and constructs a linear approximation to study the approximate ‘local’ be-
havior. Finally, we extend the approximate local behavior to the level of uncertainty in the
original model.

We first provide a derivation of the perturbation approximation using the so-called
series expansion method, and then discuss several applications. First, we study linear
approximations of asset return dynamics due to Campbell and Shiller (1988), and then
consider log-linear approximations of price-dividend ratios widely used in the asset pric-
ing literature. We then show how to approximate a nonlinear optimal control problem
using a linear-quadratic approximation with a quadratic objective function and linear law
of motion of the state, and map it to the framework analyzed in Section 3.1.3. Finally,
we briefly discuss approaches to solving linear stochastic models with backward- and
forward-looking equations arising in general equilibrium dynamics.

3.2.1 Taylor’s theorem

The idea of the perturbation approximation extends the logic of Taylor’s theorem to dy-
namic environments. Consider a function f (x) : R → R and a particular point x̄ ∈ R.
Taylor’s theorem shows that if f (x) is k-times differentiable at x̄, then f (x) can be written
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using a polynomial expansion

f (x) = f (x̄) + f ′ (x̄) (x − x̄) +
f ′′ (x̄)

2
(x − x̄)2 + . . . +

f (k) (x̄)
k!

(x − x̄)k + hk (x) (x − x̄)k

where hk (x) is a remainder (error) function such that

lim
x→x̄

hk (x) = 0.

This means that the approximation error in the vicinity of x̄ is of higher order than (x − x̄)k.
For the ‘first-order’ case (k = 1), we obtain the linear approximation

f (x) = f (x̄) + f ′ (x̄) (x − x̄) + h1 (x) (x − x̄) = f (x̄) + f ′ (x̄) (x − x̄) + o (x − x̄)

where o (ε) is the ‘little-o’ function such that

lim
ε→0

o (ε)
ε

= 0.

An rigorous application of Taylor’s theorem in the context of the dynamic macroeconomic
model is a nontrivial extension, since it involves a simultaneous approximation of the
whole dynamic system. More discussion is provided in Judd (1998), Chapter 13.

3.2.2 Series expansion method

We base the perturbation approximation on the series expansion method, originally de-
veloped for approximation of differential equations (Holmes (1995)), and applied in the
context of dynamic macroeconomic models by Lombardo (2010). More discussion, vari-
ous alternative approaches, and applications in the context of macroeconomics and asset
pricing are provided in Borovička and Hansen (2014) and Bhandari et al. (2019).

Let xt be an n-dimensional Markov stochastic process of the form

xt+1 = ψ (xt, wt+1) wt+1 ∼ N
(
0, Ip

)
with a given initial condition x0, where wt+1 is a p-dimensional standard normal shock,
and ψ : Rn × Rp → Rn is assumed to be a sufficiently smooth function.

We now extend this model by consider a class of models indexed by a perturbation
parameter q that scales the volatility of the shocks wt+1:

xt+1 (q) = ψ (xt (q) , qwt+1, q) . (3.17)

Each choice of q generates different dynamics of the innovations, and hence a different
solution xt (q) for the paths of the process. The last argument in (3.17) allows for the
function ψ to also explicitly depend on the perturbation parameter, which is a choice that
allows for additional flexibility in designing the perturbation method.
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Specifically, for q = 0, we obtain the deterministic model

xt+1 (0) = ψ (xt (0) , 0, 0) ,

while for q = 1, we recover the original model

xt+1 (1) = ψ (xt (1) , wt+1, 1) .

Assume that we can write the class of stochastic processes xt (q) indexed by the perturba-
tion parameter in the form of a series expansion around q = 0:

xt (q) ≈ x0t + qx1t +
q2

2
x2t + . . . . (3.18)

The series expansion extends the idea of Taylor expansion to a stochastic dynamic envi-
ronment. The processes xjt, j ≥ 0, can be viewed as derivatives of xt with respect to the
perturbation parameter.

We want to construct tractable forms of the laws of motion for the derivatives xjt, and
then reconstruct the original process xt (q) for q = 1 using (3.18). The laws of motion can
be inferred by substituting (3.18) into (3.17)

x0t+1 + qx1t+1 +
q2

2
x2t+1 + . . . = ψ

(
x0t + qx1t +

q2

2
x2t + . . . , qwt+1, q

)
, (3.19)

differentiating j times and evaluating the derivatives at q = 0.

The zero-th order derivative is computed by evaluating (3.19) at q = 0:

x0t+1 = ψ (x0t, 0, 0) .

We assume that the deterministic dynamics in the process x0t converges to a steady state
x̄, which is a fixed point of the equation

x̄ = ψ (x̄, 0, 0) .

Solving this nonlinear equation for this fixed point, we set x0t = x̄. Differentiating (3.19)
with respect to q and evaluating at q = 0 then yields

x1t+1 = ψq + ψxx1t + ψwwt+1 (3.20)

where ψx, and ψw are the n × n and n × p partial derivative matrices of ψ with respect to x
and w, respectively, evaluated at (x̄, 0, 0), and ψq is the partial derivative with respect to q:

ψq =
∂ψ

∂q
(x̄, 0, 0) ψx =

∂ψ

∂x
(x̄, 0, 0) ψw =

∂ψ

∂w
(x̄, 0, 0) .

The laws of motion for higher-order derivatives x2t, x3t, . . . can be constructed by contin-
uing the procedure, we stop here with the linear approximation. We can then combine the
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derivatives to obtain an approximation of xt via (3.18) evaluated at q = 1.

We now move on to provide several fruitful applications of the perturbation approxi-
mation.

3.2.3 Campbell–Shiller decomposition of returns

In this section, we analyze an application of the series expansion technique to linear ap-
proximation of asset returns, first used by Campbell and Shiller (1988). This approximation
will lead to a highly tractable analysis of the sources of variation in price-dividend ratios.

We start with the definition of the return

Rt+1 =
Qt+1 + Gt+1

Qt
=

Qt+1/Gt+1 + 1
Qt/Gt

Gt+1

Gt
, (3.21)

and rewrite it in logarithms of the returns, price-dividend ratio, and dividend growth

rt+1 = log Rt+1 zt = log
Qt

Gt
gt+1 = log

Gt+1

Gt

to obtain

exp (rt+1) =
exp (zt+1) + 1

exp (zt)
exp (gt+1) (3.22)

Now we apply the first-order series expansion to all three quantities:

rt+1 ≈ r̄ + qr1t+1

zt ≈ z̄ + qz1t

gt+1 ≈ ḡ + qg1t+1

Using these series expansions in (3.22) and taking the logarithm of that equation, we obtain
an expression for the logarithm of the asset return

r̄ + qr1t+1 = log [exp (z̄ + qz1t+1) + 1]− (z̄ + qz1t) + (ḡ + qg1t+1) . (3.23)

We now construct the first-order series expansion of this relationship. The zeroth order
term is obtained by evaluating equation (3.23) at q = 0:

r̄ = log [exp (z̄) + 1]− z̄ + ḡ,

and the relationship for the first-order process is obtained by differentiating (3.23) with
respect to q and evaluating the derivative at q = 0:

r1t+1 =
exp (z̄)

exp (z̄) + 1
z1t+1 − z1t + g1t+1. (3.24)

We denote

ρ =
exp (z̄)

exp (z̄) + 1
.
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The advantage of the linear relationship (3.24) relative to the original definition (3.21) is
that the linear expression can be easily solved forward. Use (3.24) to express the price-
dividend z1t, and iterate forward

z1t = g1t+1 − r1t+1 + ρz1t+1 = g1t+1 − r1t+1 + ρ (g1t+2 − r1t+2) + ρ2z1t+2 = . . .

= lim
T→∞

T

∑
j=1

ρj (g1t+j − r1t+j
)
+ lim

T→∞
ρTz1T.

Under a transversality (no-bubble) condition

lim
T→∞

ρTz1T = 0,

we obtain

z1t =
∞

∑
j=1

ρj (g1t+j − r1t+j
)
=

∞

∑
j=1

ρjg1t+j −
∞

∑
j=1

ρjr1t+j. (3.25)

This equation expresses (up to the constant term z̄) the current price-dividend ratio z1t

as a function of future dividend growth rates g1t+j and future returns. This expression
is an accounting identity derived from the definition of the return (3.24), only using the
transversality condition.

The equation states that if the current price-dividend ratio z1t increases, the right-hand
side of (3.25) has to increase as well. This increase has to come either in the form of an
increase of future dividend growth rates g1t+j, or in the form of a decrase in future returns,
or a combination of both.

Since equation (3.25) is an accounting identity, the fact that an increase in the price-
dividend ratio has to be accompanied by an increase in the right-hand side of (3.25) does
not have any economic content (beyond the ability to test the validity of the transversality
condition). In particular, it does not imply that economic causality runs from changes in
the current price-dividend ratio z1t to changes in future dividend growth rates and returns.

However, we can study statistical association of price-dividend ratios with future div-
idend growth and returns to understand which of the two factors on the right-hand side
explains more of the variation in price dividend ratio. To do so, compute the covariance of
both sides of the equation with z1t. This yields

Var (z1t) = Cov

(
z1t,

∞

∑
j=1

ρjg1t+j

)
+ Cov

(
z1t,−

∞

∑
j=1

ρjr1t+j

)
,

and dividing by Var (z1t), we obtain

1 =
Cov

(
z1t, ∑∞

j=1 ρjg1t+j

)
Var (z1t)

+
Cov

(
z1t,−∑∞

j=1 ρjr1t+j

)
Var (z1t)

.

Both terms on the right-hand side of this equation can be estimated empirically by truncat-
ing the infinite sums. The literature systematically finds that the second term is substan-
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tially large than the first term, implying that a majority of movements in the price-dividend
ratio are associated with subsequent low returns. An interpretation of this result is that
price-dividend ratios do not predominantly move because of fluctuations in expected fu-
ture dividend growth but rather because of fluctuations in required (or expected) returns,
or discount rates. Since expected returns can be decomposed into the risk-free rate and
risk premium, and we know that the risk-free rate empirically moves very little, it must
be that fluctuations in price-dividend ratios must be largely attributable to fluctuations in
risk premia.

Another way how to view this decomposition result is to consider a vector autoregres-
sion for the vector

xt =

 r1t

g1t

yt


where yt is a subvector of variables used to predict returns r1t and dividend growth g1t,
perhaps also including lagged variables. Using coordinate vectors, we can express r1t =

e′1xt and g1t = e′2xt. Specifying

xt+1 = Aoxt + Cwt+1, (3.26)

we have

Et
[
r1t+j

]
= e′1Et

[
xt+j

]
= e′1Aj

oxt

Et
[
g1t+j

]
= e′2Et

[
xt+j

]
= e′2Aj

oxt

The VAR can be estimated using OLS. Then we can express the expressions on the right-
hand side of (3.25) as

Et

[
∞

∑
j=1

ρjr1t+j

]
=

∞

∑
j=1

e′1 (ρAo)
j xt = e′1 (ρAo) [I − ρAo]

−1 xt (3.27)

Et

[
∞

∑
j=1

ρjg1t+j

]
=

∞

∑
j=1

e′2 (ρAo)
j xt = e′2 (ρAo) [I − ρAo]

−1 xt (3.28)

At this point, it is useful to review the role of the expectations operator in the above equa-
tions. The conditional expectations Et [·] are taken with respect to the information set gen-
erated by the variables in the VAR up to time t, which, given the Markov structure of
the VAR, reduces to xt. However, the full information set at time t is larger if we decide
not to include all relevant predictors of returns and dividend growth into the VAR. This
means that when we take conditional expectations of equation (3.25) conditional on time-t
variables in the VAR, we write

Et [z1t] = Et

[
∞

∑
j=1

ρjg1t+j

]
− Et

[
∞

∑
j=1

ρjr1t+j

]
= (e2 − e1)

′ (ρAo) [I − ρAo]
−1 xt.
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The left-hand side expression Et [z1t] is a projection of the price-dividend ratio z1t on the
time-t VAR variables. It can be equal to z1t if z1t itself is perfectly predicted by xt. In order
to understand how the contribution of a predictor variable that moves the price-dividend
ratio decomposes into movements in future returns and future dividend growth, we can
separately evaluate expressions (3.27)–(3.28).

Empirically, future dividend growth is much harder to predict than future returns. To
illustrate the consequence of this point forecefully, consider a simple example in which
dividend growth is iid, while returns can be predicted using a persistent scalar variable yt:

r1t+1 = yt + σrwr
t+1

g1t+1 = σgwg
t+1

yt+1 = ϕyt + σywy
t+1

where wr
t+1, wg

t+1 and wy
t+1 are indepenend shocks. This problem can be mapped into the

VAR (3.26) with matrices

Ao =

 0 0 1
0 0 0
0 0 ϕ

 C =

 σr 0 0
0 σg 0
0 0 σy


with xt = (r1t, g1t, yt)

′ and wt+1 =
(
wr

t+1, wg
t+1, wy

t+1

)′
. Solving for expressions (3.27)–(3.28)

yields

Et

[
∞

∑
j=1

ρjr1t+j

]
=

ρ

1 − ρϕ
yt Et

[
∞

∑
j=1

ρjg1t+j

]
= 0

and hence
z1t = − ρ

1 − ρϕ
yt.

Changes in expected returns thus drive the price-dividend ratios, and the sensitivity of the
price-dividend ratio to the predictor variable is the larger the more persistent the predictor
is.

3.2.4 Linear approximation of valuation ratios

We now study a log-linear approximation of the price dividend ratio in a valuation model.
Consider the valuation equation

Qt

Gt
= Et

[
St+1

St

Gt+1

Gt

(
Qt+1

Gt+1
+ 1
)]

.

Contrary to the accounting identity in the form of definition of returns (3.21) that we
worked with in the previous subsection, this valuation equation, which links price-dividend
ratos, dividend growth and the stochastic discount factor, is a model that predicts the price-
dividend ratio given a model of the SDF and cash flows.
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Denote
zt = log

Qt

Gt
st+1 = log

St+1

St
gt+1 = log

Gt+1

Gt
,

which allows to rewrite the valuation equation as.

exp (zt) = Et [exp (st+1 + gt+1) (exp (zt+1) + 1)]

Now assume that each of the processes qt, st, gt can be written in the series expansion form
(for perturbation parameter q)

exp (z̄ + qz1t) = Et [exp (s̄ + qs1t+1 + ḡ + qg1t+1) (exp (z̄ + qz1t+1) + 1)] .

Computing the zeroth and first-order derivative of this equation with respect to q yields

exp (z̄) = exp (s̄ + ḡ) (exp (z̄) + 1)

exp (z̄) z1t = Et [exp (s̄ + ḡ) (s1t+1 + g1t+1) (exp (z̄) + 1) + exp (s̄ + ḡ) exp (z̄) z1t+1] .

Using the steady-state equation from the first line in the equation for the first-derivative
process on the second line, we get

z1t = Et [s1t+1 + g1t+1 + exp (s̄ + ḡ) z1t+1] . (3.29)

This is a linear forward-looking equation for the price-dividend ratio, or, more specifically,
for the deviations of the logarithm of the price-dividend ratio from the steady state value.
In order to solve this equation, let us impose linear dynamics on the model. Specifically,
assume a linear law of motion for the state xt ∈ Rn

xt+1 = Aoxt + Cwt+1, wt+1 ∼ N
(
0, Ip

)
and impose a linear structure of the SDF and dividend growth rate

s1t+1 = Sxt+1

g1t+1 = Gxt+1

where S and G are 1 × n vectors.

With this specification, we can conjecture that the solution for the price-dividend ratio
is also linear

z1t = Qxt

with Q being a 1 × n coefficient vector to be solved for. Plugging these specifications into
the valuation equation yields

Qxt = Et [Sxt+1 + Gxt+1 + exp (s̄ + ḡ) Qxt+1]

= (S + G) Aoxt + exp (s̄ + ḡ) QAoxt

This equation has to hold for every value of xt, so coefficients on the left- and right-hand
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side have to match
Q = (S + G) Ao + exp (s̄ + ḡ) QAo.

We can therefore solve for the vector Q

Q = (S + G) Ao [I − exp (s̄ + ḡ) Ao]
−1

which represents the present discounted value of future dividends under the log-linearized
model.

A key question is what the log-linear approximation of the valuation equation omits.
A central observation is that under this approximation, the mapping between the price-
dividend ratio z1t and the state of the economy xt

z1t = Qxt = (S + G) Ao [I − exp (s̄ + ḡ) Ao]
−1 xt

does not depend on uncertainty of the underlying state, embedded in the parameter ma-
trix C. Increasing the volatility of shock by increasing the magnitude of C will therefore
make the state, and hence the price-dividend ratio, more volatile but will not generate
any compensation for risk in the form of higher risk premia that would push the average
price-dividend ratio lower.

To understand why this is the case, recall that risk premia are given by covariances of
the stochastic discount factor with returns, since the Euler equation

0 = Et

[
St+1

St

(
Rt+1 − R f

t+1

)]
implies

Et

[
Rt+1 − R f

t+1

]
= −R f

t+1Covt

[
St+1

St
, Rt+1 − R f

t+1

]
.

The linear approximation of the valuation of

z1t = Et [s1t+1 + g1t+1 + exp (s̄ + ḡ) z1t+1] .

neglects these covariances because of the additive form between the SDF and future divi-
dends and price-dividend ratios.

This conclusion is immediately related to the fact that compensation for risk in a model
of smooth preferences with risk aversion characterized by the Arrow (1965)–Pratt (1965)
measure is a ‘second-order’ concept. To see this result more clearly, let us revisit the series
expansion of the valuation equation

exp (z̄ + qz1t) = Et [exp (s̄ + qs1t+1 + ḡ + qg1t+1) (exp (z̄ + qz1t+1) + 1)] .

But before we log-linearize the equation, let us first manipulate the expression on the right-
hand side. Substitute in the linear model

s1t+1 = Sxt+1 g1t+1 = Gxt+1 xt+1 = Aoxt + Cwt+1
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together with the linear conjecture for the price dividend ratio z1t+1 = Qxt+1 to obtain

exp (z̄ + qz1t) = Et [exp (s̄ + ḡ + q̄ + q (S + G + Q) (Aoxt + Cwt+1))]

+Et [exp (s̄ + ḡ + q (S + G) (Aoxt + Cwt+1))] .

Collecting the deterministic and random components, we obtain

exp (z̄ + qz1t) = exp (s̄ + ḡ + q̄ + q (S + G + Q) Aoxt) Et [exp (q (S + G + Q)Cwt+1)]

+ exp (s̄ + ḡ + q (S + G) Aoxt) Et [exp (q (S + G)Cwt+1)] .

In order to compute the expectation of the exponential, we utilize the formula for the
expectation of a log-normally distributed random variable

w ∼ N (0, I) =⇒ E [exp (µ + σw)] = exp
(

µ +
1
2

σσ′
)

.

In our case, σ = q (S + G + Q) and σ = q (S + G), and hence

exp (z̄ + qz1t) = exp (s̄ + ḡ + q̄ + q (S + G + Q) Aoxt) ·

· exp
(

1
2
q2 (S + G + Q)CC′ (S + G + Q)′

)
+ exp

(
s̄ + ḡ + q (S + G) Aoxt +

1
2
q2 (S + G)CC′ (S + G)′

)
The effect of risk premia is embedded in in the two terms involving the covariance CC′.
These two terms interact the uncertainty in the SDF, cash flows, and next-period price-
dividend ratio, and scale linearly with the covariance of the shocks CC′, rather than lin-
early with volatility.

More importantly from the perspective of the perturbation approximation, the risk pre-
mium contribution scales with q2, so it vanishes in the linear approximation. We need at
least a second-order approximation of the valuation equation to pick up the risk premium
effect, or rely on on an alternative perturbation technique. For example, Borovička and
Hansen (2014), and Bhandari et al. (2019) utilize a series expansion in which the perturba-
tion parameter q scales down the volatility of the shocks while at the same time scaling up
the risk aversion parameter in the preference specification, so that compensation for risk
in the form of risk premia does not vanish in the linear approximation.

3.2.5 Linear-quadratic approximation of stochastic control models

We now focus on the approximation of a constrained stochastic control model. The model
can be written in sequence form as

max
{at}∞

t=0

E0

∞

∑
t=0

βtu (xt, at) subject to xt+1 = ψ (xt, at, wt+1)
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where xt is the state vector, with x0 given, at is the vector of controls that affect utility
and the evolution of the state, and the function ψ represents the set of restrictions that
determine the controlled law of motion for the state.

We again apply the series expansion method. The approximation we use produces a
first-order approximation of the controlled law of motion, and a second-order approxima-
tion of the objective function. With this approximation, we turn the problem into a linear-
quadratic control problem that we studied in Section 3.1.3, and that offers semi-analytical
solutions in the form of a linear policy function.

We start with the first-order series expansion of the controlled law of motion. We ap-
proximate the state and control dynamics to first order as

xt (q) ≈ x̄ + qx1t at (q) ≈ ā + qa1t

and write the class of laws of motion indexed by the perturbation parameter as

xt+1 (q) = ψ (xt (q) , at (q) , qwt+1, q)

The first-order approximation of the controlled law of motion then is

x̄ = ψ (x̄, ā, 0)

x1t+1 = ψq + ψxx1t + ψaa1t + ψwwt+1

The partial derivative matrices ψq, ψx, ψa, and ψw are evaluated at the steady state (x̄, ā, 0, 0).

With the linear approximation of the state and control, we approximate the period
utility function u (xt, at) to second order. We write the period utility process as

u (xt (q) , at (q) , q) = ut (q) ≈ ū + qu1t +
q2

2
u2t (3.30)

In order to obtain the derivative processes ū, u1t, and u2t, evaluate the derivatives with
respect to q of

u (xt (q) , at (q) , q) ≈ u (x̄ + qx1t, ā + qa1t, q) .

The zeroth-order derivative evaluates the period utility function at the steady state

ū = u (x̄, ā, 0) .

The first-order derivative of the utility function is given by

u1t = uq + uxx1t + uaa1t.

Finally, the second-order derivative is

u2t = uqq + 2uqxx1t + 2uqaa1t + x′1tuxxx1t + a′1tuaaa1t + 2a′1tuaxx1t

where all partial derivatives of u are evaluated at the steady state (x̄, ā, 0)
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Then we can construct the second-order approximation of ut in (3.30) evaluated at q =

1, by combining ū, u1t and 1
2 u2t:

u (xt, at) ≈ ū + u1t +
1
2

u2t.

We thus obtain the decision problem

max
{a1t}∞

t=0

E0

∞

∑
t=0

βtû (xt, at)

with

û (xt, at) = ū + uq +
1
2

uqq +
(
ux + uqx

)
x1t +

(
ua + uqa

)
a1t

+
1
2

x′1tuxxx1t +
1
2

a′1tuaaa1t + a′1tuaxx1t

subject to
x1t+1 = ψq + ψxx1t + ψaa1t + ψwwt+1

with a given initial condition x0. This is a linear-quadratic problem with a tractable solu-
tion even for high-dimensional state spaces. The solution of the problem is provided in
Section 3.1.3. The optimal control a∗t is a linear function of the state xt, the solution is based
on computation of quadratic sums using formula (3.11) together with an optimization step.

3.2.6 Solving linear equilibrium models

Dynamic equilibria in macroeconomic and asset pricing modeling often feature a combi-
nation of backward-looking and forward-looking equations.

A backward-looking equation is characterized by an initial state, and represents the
current value of the variable as a function of past realizations or innovations, for example
in the form of a law of motion

xt+1 = Aoxt + Cwt+1.

On the contrary, a forward-looking equation represents the current value of a variable as a
function of its future values, for example in the form of an Euler equation

z1t = Et [s1t+1 + g1t+1 + exp (s̄ + ḡ) z1t+1] .

The path of a forward-looking equation is pinned down by a transversality condition.

We want to find a solution of the dynamic model in the form of a law of motion for a set
of variables that define the appropriate notion of the state vector, which will be backward-
looking, with an appropriate initial condition, and a mapping from the state to all remain-
ing endogenous variables.

As an example, let us consider the valuation model for the price-dividend ratio. In that
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model, we have the backward-looking law of motion of the state vector that pins down the
model for the SDF and dividend growth

xt+1 = Aoxt + Cwt+1 s1t+1 = Sxt+1 g1t+1 = Gxt+1,

and the forward-looking equation

z1t = Et [s1t+1 + g1t+1 + exp (s̄ + ḡ) z1t+1]

which we solved forward, imposing the appropriate transversality condition

lim
T→∞

exp (T (s̄ + ḡ)) z1t+T = 0.

to obtain the price-dividend ratio as a function of the state, z1t = Qxt.

Another example is the deterministic neoclassical growth model. The backward-looking
equation is the law of motion for capital, controlled by the consumption-investment choice

kt+1 = (1 − δ) kt + G (kt)− ct,

with a given initial condition k0. The forward-looking equation is the Euler equation for
the optimal consumption choice.

U′ (ct) = βU′ (ct+1)
(
1 − δ + G′ (kt+1)

)
This equation needs to be solved forward, and a transversality condition imposed that
states that the optimal choice of consumption leads the state variable to the steady state.
The solution of the problem involves finding the mapping ct = c (kt).

There are well-established methods for solving these sets of linear forward- and backward-
looking equations, and the conditions stated in Blanchard and Kahn (1980), and Sims
(2002) spell out required conditoins for a unique stable solution to exist. Ljungqvist and
Sargent (2018), Chapter 5 provide a pedagogical treatment. Implementations of these
model solutions are available in existing software packages, in particular in Dynare.

3.2.7 VAR estimation and identification of structural shocks

Another appealing feature of the linear vector autoregression setup is tractability of esti-
mation. Imagine we have a law of motion for the a vector of macroeconomic variables in
the form of a VAR

xt+1 = Aoxt + Cwt+1

where xt are the variables of interest, and wt+1 consistutes a vector so-called ‘structural’
macroeconomic shocks, i.e., shocks that have a particular interpretation in the context of
macroeconomic models, like shocks to total factor productivity or shocks emerging from
monetary or fiscal policy.

The matrix Ao can be estimated using OLS, equation by equation, with each equation
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estimating one row of the matrix. In order to estimate the covariance matrix of the inno-
vations, Σ = CC′, we then collect residuals from the estimation of individual rows of the
VAR and compute their empirical covariance.

A complication arises when we want to obtain C from the knowledge of Σ = CC′.
There are generally many solutions to this decomposition, and we need to impose addi-
tional restrictions to be able to identify C. These additional restrictions must come from the
economic structure of the problem. This problem is known as shock identification problem
in structural VARs.

To understand the problem, imagine we want to understand the dynamic impact of a
shock on the macroeconomy. Recall the impulse response function [ht]ik =

[
At

oC
]

ik from
Section 3.1.2 that measures the impact of the k-th component of the time-0 shock vector,
wk

0, on the i-th component of the vector of time-t macroeconomic variables, xi
t. We need to

know the matrix C to be able to infer the impulse response.

Now imagine that instead of decomposing Σ as CC′, we find another decomposition
Σ = C̃C̃′. With the alternative decomposition, we would now incorrectly measure the
impulse response as

[
At

oC̃
]

ik
, so instead of isolating the true response of the particular

shock wk
o, we would infer some linear combination of impulse responses of all the shocks.

One of the many examples of imposing structure that helps with identification is the
so-called Cholesky decomposition, which is useful if we have a specific idea on the lags
with which particular shocks affect the variables of interest. The Cholesky decomposition
produces a lower triangular matrix C.

Christiano et al. (2005) use this structure to identify the effects of monetary policy sur-
prises on macroeconomic variables. Imagine that xt consists of inflation πt, real GDP yt

and nominal interest rate it. We want to study the effect of an increase in it on inflation
and GDP. The obvious concern is endogeneity—the Federal Reserve adjusts it in response
to changes in macroeconomic conditions. Christiano et al. (2005) therefore make the iden-
tification assumption that states that an exogenous change in the interest rate is such that
inflation and output cannot respond to it contemporaneously in the same period that the
shock to the interest rate occurs.

This identification assumption can be implemented as follows. We order it last in the
VAR vector xt, and use a Cholesky decomposition of CC′. With this structure, we have πt+1

yt+1

it+1

 = Ao (θ)

 πt

yt

it

+

 C11 0 0
C21 C22 0
C31 C32 C33

 w1
t+1

w2
t+1

w3
t+1

 .

The last component of the shock vector, w3
t+1, is the identified exogenous monetary policy

shock. When it occurs in period 0, it affects i0 but not π0 or y0. Future values of πt and
yt are only affected through the propagation encoded in the matrix Ao, and this impact is
captured in the impulse response function [ht]i3 =

[
At

oC
]

i3 for i = 1, 2.

Another frequent situation is the case when Ao and C are matrices that are not un-
constrained but have a particular structure implied by an economic model. Specifically,
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consider a vector of structural parameters θ that restricts the entries of the matrices Ao and
C, such that Ao and C are functions of θ:

xt+1 = Ao (θ) xt + C (θ)wt+1.

We could still estimate the Ao (θ) in an unconstrained way consistently using OLS but if we
want to explicitly impose the cross-equation restrictions embedded in Ao (θ) and C (θ) by
estimating θ directly, we cannot rely on OLS anymore. A variety of estimating techniques
can then be used instead, including GMM, maximum likelihood methods, or Bayesian
estimation.

3.2.8 A cautious note on the accuracy of perturbation approximations

Since the solution to the linear-quadratic problem in Section 3.2.5 or linearized equilib-
rium models in Section 3.2.6 only involves operations with coefficient matrices, it is highly
scalable at negligible computational costs. However, by construction, it provides an ap-
proximation that is designed to work well if the economy resides in the neighborhood of
the steady state and the nonlinearities are not substantial.

Importatly, there is a critical distinction in terms of judging the accuracy of the approx-
imation relative to the intuition provided by Taylor’s theorem discussed in Section 3.2.1.
The Taylor’s theorem implies that accuracy of the linear or polynomial approximation of
a smooth nonlinear function in the neighborhood of the expansion only depends on the
local properties (local curvature) of that function, not on the behavior of the function far
from the expansion point.

Because of forward-looking behavior in dynamic stochastic models, this intuition does
not carry over to these models. Even in the neighborhood of the steady state, the endoge-
nous decisions depend on expectations of future realizations across the whole state space.
So when the approximation substantially alters the behavior of the model in the tails of the
state space, this will have also have consequences for the behavior near the steady state.
In this sense, the accuracy of the approximation is no longer ‘localized’. Evaluation of this
accuracy therefore becomes much more involved and requires a good understanding of
the extent to which these inaccuracies due to anticipation effects are sufficiently modest.



Chapter 4

Filtering and learning

Textbook: Ljungqvist and Sargent (2018), Chapter 2 (Sections 2.7–2.9, Kalman filter).
Applications: Jovanovic (1979), Muth (1960).
QuantEcon: Quantitative Economics with Python, Topic 31 (Kalman filter), Topic 50–52
(Bayes law), Topic 53 (search with learning)

In this chapter, we study a problem where the economic agent or econometrician does
not have a perfect information about the state of the economy and must learn about it from
noisy observations. We follow the seminal work by Kalman (1960) and study a problem
where the underlying state follows a vector autoregression with Gaussian innovations, and
the measurement is a linear function of the state with added measurement noise. With a
Gaussian prior and Gaussian shocks, the posterior will also be Gaussian. In the language of
Bayesian probability theory, a Gaussian prior is a conjugate prior for a likelihood function
of that data that is also Gaussian.

Under this conjugate prior structure, the inference problem becomes one in which we
only need to deduce expressions for the mean and variance of the posterior because a
Gaussian distribution is uniquely pinned down by these two moments. Kalman (1960)
derived a recursive formula for these expressions.

4.1 Kalman filter

We now assume that the realizations of linear vector autoregression are not observable,
and the econometrician observes instead a noisy measurement of the current state. The
problem, solved by Kalman (1960), is to construct the optimal forecast of the path of the
underlying state, given the observed measurements. The system can be written as

xt+1 = Aoxt + Cwt+1 n × 1 wt+1 ∼ N
(
0, Ip

)
yt = Gxt + vt m × 1 vt ∼ N (0, R) .

(4.1)

https://python.quantecon.org
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Here, xt is an unobservable state vector that follows a Gaussian Markov process, yt is a
measurement vector and vt is measurement noise independent of {wt}∞

t=1. We assume an
initial condition

x0 ∼ N (x̂0, Σ0) . (4.2)

The algorithm leads to a recursive formula for the best predictor of xt given observations
yt−1 = (yt−1, . . . , y0). Because of the linear-Gaussian structure of the whole system, we can
infer that the predictor will also be Gaussian, so it is sufficient to construct predictors for
the first two moments of its distribution

x̂t = E
[

xt | yt−1
]

(4.3)

Σt = E
[
(xt − x̂t) (xt − x̂t)

′] .

Since the underlying state xt is persistent, observed data yt will be serially correlated. The
idea is to derive the contribution of the information embedded in the new observation
yt to the prediction of xt+1, relative to what we already could have inferred from yt−1.
Mathematically, we are applying the Gram–Schmidt orthogonalization process to the se-
quence of the data observations yt, and constructing an orthogonal basis of innovations
(a0, a1, . . . at) from (y0, y1, . . . yt). A particular innovation at will represent new information
in the additional data point yt relative to what we learned from yt−1. Since the innovations
are orthogonal, projecting the unobserved state xt on the innovations will be simpler than
projecting on the original data. Effectively, we are replacing (4.3) with an equivalent rep-
resentation

x̂t = E
[

xt | at−1
]

.

Observe that if we are successful, the method will constitute a massive simplification
of the inference problem in this class of models. We have seen in Section 1.1.7 that filtering
the Markov state on a hidden Markov chain involved a recursive formula for the whole
distribution of the state. Here, the recursive formula reduces to keeping track of the first
two moments.

It turns out that the Kalman filtering problem and the problem of iteratively solving
a Bellman equation in a linear-quadratic environment, studied in Section 3.1.3 are related
through a reversal of the time axis. While the Kalman filter proceeds forward in time, the
dynamic programming method on the Bellman equation proceeds backwards.

Let us start from the initial condition (4.2) and study how much we can learn about
the unknown x0 from observing y0. We will proceed by using linear projections, which
corresponds to running theoretical OLS regressions. This method is justified as a way of
obtaining efficient forecasts given the linear-Gaussian environment for the problem.

Starting from the initial distribution for x0, we infer

y0 ∼ N
(
Gx̂0, GΣ0G′ + R

)
.

To construct the forecast of x0 given the data point y0, let us project the unknown x0 − x̂0
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on the new information embedded in the observation of y0:

x0 − x̂0 = L0 (y0 − Gx̂0)︸ ︷︷ ︸
innovation a0

+ η0

The residual η0 is orthogonal on the innovation a0
.
= y0 − Gx̂0 by construction. The inno-

vation a0 represents the ‘surprise’, or new information, embedded in the observation of y0

relative to its expected value Gx̂0. This innovation also constitutes the first element in the
construction of the orthogonal basis (a0, a1, . . .) constructed from observations (y0, y1, . . .).

Given the orthogonality between η0 and a0, post-multiplying by (y0 − Gx̂0)
′ and taking

expectations yields

E
[
(x0 − x̂0) (y0 − Gx̂0)

′] = L0E
[
(y0 − Gx̂0) (y0 − Gx̂0)

′]
Σ0G′ = L0

(
GΣ0G′ + R

)
,

and hence the n × m matrix regression coefficient L0 takes the form

L0 = Σ0G′ (GΣ0G′ + R
)−1 .

Equation (4.1) then implies that we can write

x1 = Aox0 + Cw1 = Ao x̂0 + Ao (x0 − x̂0) + Cw1. (4.4)

The mean forecast of the state x1 given the data point y0 is therefore given by

x̂1 = E
[
x1 | y0] = E

[
x1 | a0]

= Ao x̂0 + AoL0 (y0 − Gx̂0)

= Ao x̂0 + K0 (y0 − Gx̂0) , (4.5)

where the matrix
K0 = AoΣ0G′ (GΣ0G′ + R

)−1

is called the Kalman gain. Subtracting (4.5) from (4.4) yields

x1 − x̂1 = Ao (x0 − x̂0) + Cw1 − K0 (y0 − Gx̂0)

= (Ao − K0G) (x0 − x̂0) + Cw1 − K0v0.

Notice that the three terms on the previous line are independent. Hence the variance of
the forecast given the data point y0

Σ1 = E
[
(x1 − x̂1) (x1 − x̂1)

′] =
= (Ao − K0G)Σ0 (Ao − K0G)′ + CC′ + K0RK′

0

We therefore have the distribution x1 | y0 ∼ N (x̂1, Σ1). We therefore have the recursive
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system

at = yt − Gx̂t (4.6)

Kt = AoΣtG′ (GΣtG′ + R
)−1

x̂t+1 = Ao x̂t + Ktat

Σt+1 = (Ao − KtG)Σt (Ao − KtG)′ + CC′ + KtRK′
t

• The first equation defines the innovation at, which is the deviation of the observed
yt from its best predictor Gx̂t constructed given yt−1.

• The second equation defines the Kalman gain, which tells how much the innovation
updates the previous best guess of the state x̂t+1

• The third equation is the law of motion for the mean forecast x̂t+1. Notice that the
best forecast of x̂t+1 given yt−1 is A0 x̂t, to which we add Ktat as the contribution of
the information from yt.

• Finally, we update the accuracy (variance) of the forecast Σt+1.

We can substitute for Kt into the law of motion for Σt to obtain

Σt+1 = AoΣt A′
o − AoΣtG′ (GΣtG′ + R

)−1 GΣt A′
o + CC′. (4.7)

This is a matrix Riccati equation which often appears in linear-quadratic dynamic pro-
gramming.

• Observe that while the evolution of x̂t is stochastic, being updated by the innovations
that are constructed from the observations of yt, the evolution of Σt deterministic. Σt

typically converges to a constant in a time-invariant model, and the constant is zero
when CC′ = 0. This says that all observations yt are equally informative, regardless
of their particular value. This result is specific to this particular model.

• The path x̂t is often called the filtered path of xt, in other words it represent the most
likely location of xt conditional on yt−1.

• Can subsequent realizations of yt+j, j = 0, 1, 2, . . . make the estimate of xt more pre-
cise? They can. yt+j is a signal about xt+j, and knowledge where the state x is at time
t + j is also informative about where the state has been at time t. This is what the
Kalman smoother does.

4.2 Applications

4.2.1 Muth’s example

In the 1950’s, Phillip Cagan (Cagan (1956)), Milton Friedman (Friedman (1957)), and others
studied models of adaptive expectations, in which expectations about the future slowly
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adjust in response to arrival of new data. In Muth (1960), John Muth asked what type
of underlying stochastic processes would ‘rationalize’ the adaptive expectations model
as the best statistical forecast of the future. In this way, he wanted to identify agent’s
beliefs (forecasts) with objective (mathematical) expectations, given available information.
This can be viewed a precursor of the assumption of rational expectations, more fully
developed in Muth (1961).

The solution to the problem is close to the filtering solution of Kalman (1960), despite
the fact that Muth did not use the Kalman filter directly. The idea is to postulate a stochastic
process under which the adaptive expectations model can be interpreted as the result of
optimal learning (filtering).

Specifically, consider the model for agent’s adaptive expectations

y∗t+1 = K
∞

∑
j=0

(1 − K)j yt−j

= (1 − K) y∗t + Kyt (4.8)

where K is the weight on the current observation for the time-t forecast of yt+1, denoted
y∗t+1. Cagan (1956) used this model as a model of agent’s forecasts of future inflation, Fried-
man (1957) for forecasts of future income.

Muth (1960) studied a model that can be written as a special case of the system in the
Kalman filter problem:

xt+1 = xt + wt+1 (4.9)

yt = xt + vt

where wt, vt are independent scalar shocks with covariances Q and R, respectively, and yt

and xt are also scalar. In the context of the Kalman filter model (4.1), we have

A0 = 1, CC′ = Q, G = 1

Then the filtering equations (4.6) together with (4.7) become

at = yt − x̂t

Kt =
Σt

Σt + R
x̂t+1 = x̂t + Ktat

Σt+1 = Σt −
Σ2

t
Σt + R

+ Q

When we take the limit as t → ∞, we expect Σt → Σ and Kt → K. Then the law of motion
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for the forecast is given by

x̂t+1 = x̂t + Kat = x̂t + K (yt − x̂t) =

= (1 − K) x̂t + Kyt

=
R

Σ + R
x̂t +

Σ
Σ + R

yt

Observe that this forecasting formula is in line with the ‘adaptive’ forecast model (4.8).
We can then conclude that optimal filtering (best forecast) in the model (4.9) yields an
belief updating formula which Cagan (1956) and Friedman (1957) interpreted as adaptive
expectations.

4.2.2 Jovanovic’s model

Jovanovic (1979) has a model of learning about the quality of an employment match be-
tween a worker and a firm. The true underlying quality is θ, and the worker-firm pair
observes a sequence of output realizations which are noisy realizations of the match qual-
ity:

θt+1 = θt = θ

yt = θt + vt

The pair has a prior θ ∼ N (m−1, Σ0). The time-t forecast of θ is denoted mt = x̂t+1 =

E
[
θ | yt]. The model then fits into the Kalman filter framework with Ao = 1, C = 0,

G = 1, R > 0, and we thus obtain

at = yt − mt−1

Kt =
Σt

Σt + R
mt = mt−1 + Ktat

Σt+1 =
ΣtR

Σt + R
.

This can be summarized as

mt = (1 − Kt)mt−1 + Ktyt

Kt =
Σt

Σt + R
1

Σt+1
=

1
R
+

1
Σt

The quantity Σ−1
t is called precision, and as Σ−1

t → ∞ over time, the value of the parameter
θ is ultimately learned. Also, over time, the Kalman gain declines to zero, as additional ob-
servations become less and less informative. This is contrary to the case when xt fluctuates
over time.
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4.2.3 Innovations representation and VARs

Let us return to the state-space model

xt+1 = Aoxt + Cwt+1 (4.10)

yt = Gxt + vt

We can think about this system as a representation of a Markov equilibrium of a particular
economic model. The p + m shocks wt and vt have a so-called ‘structural interpretation’
and represent shocks to technology, preferences, endowments, information sets, measure-
ments, etc. However, the Markov state consists of variables xt which may not have directly
observable counterparts.

Instead, the measurement equation provides partial information about xt. The innova-
tions representation

x̂t+1 = Ao x̂t + Ktat

yt = Gx̂t + at

has a very different interpretation than the structural system (4.10). Uncertainty is now
summarized by m shocks (innovations) at which may not have a direct ‘structural’ coun-
terpart. Even under the filtration of the econometrician which is constructed from histories
of observable data yt, these innovations are cross-correlated:

Var
[

at|yt−1
]
= Var

[
G (xt − x̂t) + vt|yt−1

]
= GΣG′ + R.

Further, while these innovations are independent over time under the filtration of the
econometrician, they are dependent under the complete information generated by the
data-generating process and combine structural shocks wt and measurement errors vt:

at = yt − Gx̂t = G (xt − x̂t) + vt =

= GA (0xt−1 − x̂t−1)− GKt−1at−1 + GCwt + vt.

Nevertheless, the innovations at can be more informative about structural shocks wt if we
can impose more structure on the problem. We are therefore interested in methods that
could help us extract these innovations without having to estimate the whole state-space
representation of the model.

It turns out that even though the observations yt do not have a Markov structure, the
innovations at can be recovered from a properly specified regression using these observa-
tions. Assume that the Kalman filter has asymptotically converged, Kt → K and Σt → Σ.



128 Filtering and learning

Now we have

x̂t = Ao x̂t−1 + Kat−1 = Ao x̂t−1 + K (yt−1 − Gx̂t−1)

= (Ao − KG) x̂t−1 + Kyt−1

=
∞

∑
j=0

(Ao − KG)j Kyt−j−1

Then

yt = Gx̂t + at = G
∞

∑
j=0

(Ao − KG)j Kyt−j−1 + at (4.11)

Hence, in order to recover the innovations at, we need to form an infinite-order autore-
gression of yt. The Kalman filter provides an interpretation of the coefficient matrices
(Ao − KG)j estimated in the regression, and the residuals at. In practice, the infinite-order
VAR is replaced by a VAR with a ‘sufficiently’ large number of lags.

With more structure imposed on the problem, we could be able to identify elements
of the innovations vector at or their linear combinations with specific structural shocks.
Then we can compare impulse responses to that particular innovation generated by the
VAR (4.11) with impulse responses to the structural shock in wt generated by the struc-
tural model. Christiano et al. (2005) use this impulse response function matching method
to find the parameters of the structural model that provide the closest match to a VAR
impulse response for a shock to interest rates induced by a monetary policy surprise.

4.2.4 Relationship to linear-quadratic dynamic programming

In Section 3.1.3, we derived the solution to the optimal control problem in a linear-quadratic
environment

v (x0) = max
{ut}∞

t=0

−E0

[
∞

∑
t=0

βt
(

x′tR̃xt + u′
tQ̃ut

)]
xt+1 = Axt + But + Cwt+1

We have determined that the value function is quadratic in the state xt and optimal control
ut is linear in the state

v (x) = −x′Px − σ u = −Fx (4.12)

where the matrices P and F are the fixed points of the value function backward iteration
scheme

Pj+1 = β
(

A − BFj
)′ Pj

(
A − BFj

)
+ R̃ + F′

j QFj (4.13)

Fj+1 = β
(

Q̃ + βB′PjB
)−1

B′Pj A, (4.14)
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and the evolution of the state under optimal control obtained by solving for the fixed point
is given by

xt+1 = (A − BF) xt + Cwt+1 (4.15)

In contrast, the evolution equations for the filtering problem are given by

Σt+1 = (Ao − KtG)Σt (Ao − KtG)′ + CC′ + KtRK′
t (4.16)

Kt = AoΣtG′ (GΣtG′ + R
)−1 (4.17)

with evolution of the mean estimate of the state given by

x̂t+1 = (Ao − KtG) x̂t + Ktyt. (4.18)

Asymptotically, matrices Σt and Kt will converge to their limiting values Σ and K, respec-
tively, under stationarity assumption imposed on the problem.

Both problems have the same structure, with a reversed time axis. In the linear-quadratic
optimization problem, we are exercising optimal control, which leads to the controlled law
of motion (4.15), combining the impact of the current state, current control, and the next-
period random innovation wt+1. The extent of optimal control is given by the matrix F
given in (4.14), which trades off current period cost, summarized by Q̃, with cost imposed
via the impact on the next-period value function, captured by the matrix Pj. Equation
(4.13) then summarizes how the value function is iterated backward under the optimally
chosen policy to obtain the current iteration Pj+1 from the previous iteration Pj. The matrix
Pj+1 combines the contribution of Pj, anticipating the effect of the shift in the state under
the optimal control, and the current utility flow summarized in R̃ + F′

j QFj.

On the other hand, the filtering problem yields the evolution of the best forecast of
the state (4.18), which combines the impact of the current state, current update via KtGx̂t,
and the new ‘shock’ yt. The extent to which the new observation is used in updating the
state is controlled by the Kalman gain (4.16), which trades off the impact of the current
period noise R and the uncertainty Σt inherited from the previous forecast. The evolution
equation for Σt in (4.16) then summarizes how the covariance of the posterior, which is a
quadratic form, evolves over time, combining the uncertanty inherited from the previous
period, and the uncertainty embedded in the current period, CC′+KtRK′

t, which combines
uncertainty in the evolution of the state, and the uncertainty included in the forecast by
embedding the new signal yt.

The forecasting problem has the same structure as the linear-quadratic dynamic opti-
mization problem because it is a problem that designs the optimal filter under a quadratic
objective function. In the linear-Gaussian environment, linear projection that we used
minimizes the mean square error of the forecast, which is what is being encoded in the
covariance matrix Σt. The small difference is that the linear-quadratic decision problem is
discounted, which is reflected in the appearance of the time preference parameter β in the
equations.
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4.3 Estimation

4.3.1 Estimation of the hidden state space model

Since the innovations representation is written completely in terms of a Markov represen-
tation of observable variables, we can conveniently write the likelihood function. Recall
that we have

x̂t+1 = Ao x̂t + Ktat

yt = Gx̂t + at

and that yt | yt−1 ∼ N (Gx̂t, Ωt) where Ωt = Var
(
at | yt−1). To see this, notice that

x̂t = E
[
xt | yt−1], i.e., x̂t summarizes information about the mean of xt embedded in yt−1.

Similarly, since Σt = Var
(
xt | yt−1), then Ωt = GΣtG′ + R. Finally y0 ∼ N (Gx̂0, Σ0).

In this way, the likelihood of observations {yt}T
t=0 can be factorized as

f (y0, . . . , yT) = f
(

yT | yT−1
)

. . . f
(
y1 | y0) f (y0) .

Observe the crucial difference to Section 3.1.4—the observed data do not represent a Markov
system, hence the conditioning on yt−1. The conditionally Gaussian factors are given by

log f
(

yt | yt−1
)
= −m

2
log (2π)− 1

2
det (Ωt)−

1
2

a′tΩ
−1
t at.

Recall that the matrix Ωt is constructed from matrices Ao, C, G, R. Now again, we can imag-
ine that these matrices are functions of a parameter vector θ which we need to estimate.
Maximizing the likelihood

f
(

yT | θ
)

with respect to θ is the efficient way to proceed.

Observe how we achieved the factorization. We observe the data histories yt−1, from
which we construct the best predictor of xt, summarized by the normal distribution N (x̂t, Σt).
Then the forecast of yt conditional on the predictor is the same as the forecast conditional
on the whole history yt−1.

One aspect that we have not discussed is the way how the filtered path {x̂t}T
t=0 was

constructed. Recall that we used a method that used linear regressions to project the evo-
lution of the hidden state on innovations in new data. However, in the linear Gaussian
model, the least-squares estimator corresponds to the maximum likelihood estimator.

Bayesian estimation

Often we may want to incorporate some prior knowledge about the parameter θ into the
estimation. This can be done by combining the likelihood of the data with the prior using
the Bayes theorem.



4.3 Estimation 131

Specifically, assume that prior to seeing the data, the econometrician has a belief about
what θ may be, summarized using the prior distribution p̃ (θ). We are interested in know-
ing how her belief changes after seeing the data, which serve as evidence about which θ

are more probable. By Bayes theorem, the posterior distribution for θ then is

p̃
(

θ | yT
)
=

f
(
yT, θ

)
f (yT)

=
f
(
yT | θ

)
p̃ (θ)∫

f (yT | θ) p̃ (θ) dθ
.

Observe that now, we are not interested in a single value of θ (as in the case of the max-
imum likelihood estimator) but in the whole posterior distribution p̃

(
θ | yT). Statistical

theory developed powerful simulation algorithms based on Monte Carlo Markov chain
(MCMC) methods to construct p̃

(
θ | yT). With an estimate of the posterior distribution at

hand, we can construct posterior statistics of θ that are of our interest, like the posterior
mean of θ. The choice of these statistics can be motivated by decision-theoretical consider-
ations that weigh losses associated with incorrect estimates of the parameter vector.

The Bayesian approach can often be computationally more tractable than the maxi-
mum likelihood estimation, especially when the likelihood has a complicated structure
with many local maxima or almost flat regions, because the posterior distribution can be
constructed without resorting to any maximization. Appendix B of Chapter 2 in Ljungqvist
and Sargent (2012) describes the construction of the Bayesian posterior distribution for θ

using Markov chain Monte Carlo methods.

Finally, notice that the Kalman filter has a Bayesian interpretation, with x0 ∼ N (x̂0, Σ0)
representing the prior information about the initial state that can be distinct from the true
initial distribution.

Other estimation approaches

There is an important caveat to maximum likelihood being the efficient approach to esti-
mation. The efficiency result is conditional on the assumption that the model specification,
i.e., the model structure, distributional assumption imposed on exogenous shocks, etc.,
is correct. However, the econometrician may doubt the specification, and in the presence
of model misspecification, other approaches to estimating underlying parameters may be
preferable.

In Section 1.1.6, we introduced the idea of method of moments estimation. Hansen
(1982) formalized and generalized this idea in the form of the generalized method of mo-
ments (GMM) estimator. For example, Hansen and Singleton (1983) use GMM to study
implications of a large class of asset pricing models based on moment conditions derived
from investors’ Euler equations. The GMM estimator only relies on partial identification,
i.e., its strength lies in the fact that we do not need to specify a full-fledged equilibrium
model. Asset pricing is a particular fruitful area of applying GMM, since finding a well-
specified model in asset pricing is particularly hard.

Another stream of estimation techniques, applied by Christiano et al. (2005) and many
others, relies on matching impulse response functions derived from a structural theoret-
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ical model (4.10) and from an empirical VAR model (4.11). The complication arises from
the fact that the theoretical model (4.10) can be used to construct impulse responses to
structural shocks wt, while the empirical model involves disturbances in the form of non-
structural innovations at. The identification problem then consists of mapping the non-
structural shocks at to their structural counterparts wt through a suitable rotation of the
innovations, so that the impulse responses are comparable.

4.3.2 Frequentist and Bayesian inference

There is also a philosophical divide between the frequentist view of the world, captured
in the maximum likelihood or moment estimation methods, and the Bayesian view, asso-
ciated with the approach above. The distinction may appear negligible in applications but
it is worth taking a note of it. It is worth stressing that regardless the conceptual differ-
ences, both approaches have a common goal, to learn about the unknown parameter from
observed data.

The frequentist view, pioneered by Jerzy Neyman, Egon Pearson, or Abraham Wald,
takes the perspective that the unknown parameter takes a particular fixed ‘true’ value
θ0 unknown to the econometrician, and the uncertainty in the world comes in the form of
random samples of data x̂T generated from P (θθ). The goal is to deal with the randomness
in the finite samples of data, perhaps by extending the sample length (up to the whole
infinite population). The approach relies on statistical testing (hypothesis testing), in the
form of asking whether the data could have been generated from a model with a given
θ = θ0, as opposed to another θ = θ1. The interest lies in the distribution of data given a value
of the parameter.

The Bayesian view follows the tradition of Thomas Bayes, Pierre-Simon Laplace, or
Bruno de Finetti. This view takes the data x̂T as fixed pieces of evidence, while the pa-
rameter θ is the source of uncertainty. The decision-maker is endowed with a prior belief
about the distribution of the parameter, and the pieces of evidence then sharpen (update)
the belief about θ. The outcome is a description of the posterior probability distribution
of θ, which tells us which values of θ are more likely than others. The interest lies in the
distribution of the parameter given observed data.



Chapter 5

Finite difference methods in
derivative pricing

Textbook: Brownian motion and Itô calculus: Duffie (2001), Chapters 5.A–5.D. Øksendal
(2007), Chapters 1–6. Black–Scholes model: Duffie (2001), Chapters 5.E–5.H, 6.G–6.I.
Øksendal (2007), Chapter 12.3. Numerical methods: Judd (1998), Chapter 10, Holmes
(2007), Thomas (1995), Candler (2001).
Applications: Merton (1973), Black and Scholes (1973), Cox et al. (1979).

In this chapter, we study the problem of pricing of derivative securities in a continuous-
time environment. The problem is as follows. Imagine we have a stock with price Qt

that follows a given process. We are now interested in pricing another financial security
whose price is derived from the price of the stock. This derivative security generates a
one-time cash flow at time T in the amount G (QT), and we are interested in the price of
this derivative security at time t ≤ T.

Black and Scholes (1973) and Merton (1973) provided a path-breaking solution to this
problem. The solution is based on an application of the arbitrage pricing theory (APT)
of Ross (1976), which states that two assets or portfolios that provide identical payoffs
also must have the same price, otherwise investors could create arbitrages by buying the
cheaper asset and selling the more expensive asset. We described the concept of an arbi-
trage in Section 1.6.

The derivative pricing result was formulated in a continuous-time model where un-
certainty is driven by a special process called the Brownian motion, and the characteri-
zation of the solution takes the form of a partial differential equation (PDE). When this
PDE does not have an analytical solution, we must solve it numerically. We focus on a
versatile method called the finite difference method, which translate the continuous-time
continuous-state space problem into a discrete-time discrete-state space problem on a grid
similar to that we used in Section 2.4.2.

In Section 5.1, we introduce the Brownian motion, followed by a concise discussion a
class of processes derived from the Brownian motion in Section 5.2. Section 5.3 contains



134 Finite difference methods in derivative pricing

the formulation of the Black–Scholes model for pricing derivative securities. Section 5.4
presents the finite difference method for solving the associated partial differential equa-
tion.

5.1 Brownian motion

The Brownian motion is an important stochastic process that constitutes the foundations
of continuous-time stochastic calculus. The term goes back to the Scottish botanist Robert
Brown who observed in 1828 the irregular movements of pollen stuck in liquid. Brownian
motions are the fundamental building block of stochastic integrals, which are a generaliza-
tion of Riemann–Stieltjes integrals to a stochastic environment, and lead to a broad class
of stochastic processes called Itô processes.

5.1.1 Motivating examples

We can view a Brownian motion as a continuous-time version of the accumulation of a
sequence of normally distributed shocks. We first provide a sequence of examples that
motivate the intuition underlying the Brownian motion using continuous-time limits of
discrete-time models.

Predictable dynamics

A discrete-time deterministic model of capital accumulation can be described by the law
of motion for capital

kt+1 = (1 − δt) kt + it, (5.1)

where δt is the depreciation rate and it is the investment rate. To derive the continuous-
time version of the equation, assume a time period of length ∆t. Then

kt+∆t − kt = it∆t − δtkt∆t

where the terms involving ∆t represent investment and depreciation flows. Dividing by
∆t and taking the limit as ∆t → 0 yields

dkt

dt
= it − δtkt.

Defining the investment rate ιt = it/kt, we can rewrite the equation as

dkt

dt
1
kt

=
d log kt

dt
= ιt − δt,

which can be represented as

kt = k0 exp
(∫ t

0
(ιs − δs) ds

)
.
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We have therefore solved for the stock of capital kt by integrating up net investment ιs − δs

along the trajectory of the economy over time on s ∈ [0, t].

This continuous-time limit expressed in the form of an integral is valid even in situa-
tions when functions ι and δ are stochastic, as long as the integral above is valid. In this
stochastic case, the dynamics of ι and δ generate a filtration {Ft}, t ∈ T = {0, 1, . . . , T} , see
Section A.2. For a given path, the integral is a standard Riemann–Stieltjes integral, which
follows from the fact that the law of motion (5.1) implies that kt+1 is so-called ‘predictable’,
i.e., kt+1 is Ft measurable.

Portfolio choice

The predictability assumption used in the preceding example is rather restrictive, and we
are interested in constructing continuous-time counterparts of stochastic dynamics where
it does not hold. Consider the joint evolution of two investment instruments:

Qt+1 = Qt + µt + σt (Wt+1 − Wt) (5.2)

Bt+1 = Bt + rtBt.

for t = 0, 1, . . . , T − 1. Here, Qt can be interpreted as the stock price of a non-dividend
paying stock, Bt as the cumulative value of investment into a sequence of one-period risk-
free bond contracts with one-period interest rate rt, and Wt+1 −Wt ∼ N (0, I) is a normally
distributed shock. The joint dynamics of the two processes generate a filtration {Ft}, t ∈
T = {0, 1, . . . , T}. The expected return on the stock is

E
[

Qt+1 − Qt

Qt
| Ft

]
=

µt

Qt

and σt is the one-period volatility of the stock return. At any date t, the investor chooses
to invest the current wealth Jt by purchasing θ

f
t units of the risk-free asset at price Bt, and

θr
t units of the risky asset at price Qt. The budget constraint is

Jt = θ
f
t Bt + θr

t Qt.

The value of this portfolio at time t + 1 is

Jt+1 = θ
f
t Bt+1 + θr

t Qt+1,

which can be subsequently reinvested again. Manipulating this expression yields

Jt+1 = θ
f
t (Bt+1 − Bt) + θr

t (Qt+1 − Qt) + θ
f
t Bt + θr

t Qt︸ ︷︷ ︸
Jt

.
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Hence we have an expression for the increment in wealth Jt+1 − Jt, which corresponds to
the net return on the portfolio. Summing up these increments over time, we have

T−1

∑
t=0

(Jt+1 − Jt) = JT − J0 =
T−1

∑
t=0

[
θ

f
t (Bt+1 − Bt) + θr

t (Qt+1 − Qt)
]

.

The intertemporal portfolio choice is determined as a solution to the problem of maximiz-
ing expected utility from time-T wealth JT,

E [u (JT)]

subject to the intertemporal budget constraint and initial condition J0, with

JT = J0 +
T−1

∑
t=0

[
θ

f
t (Bt+1 − Bt) + θr

t (Qt+1 − Qt)
]

= J0 +
T−1

∑
t=0

[
θ

f
t rtBt + θr

t µt + θr
t σt (Wt+1 − Wt)

]
,

where the second line follows from the definition of the returns in (5.2). Repeating the
continuous-time approximation above, we now have the dynamics on periods with inter-
val ∆t

Qt+∆t − Qt = µt∆t + σt (Wt+∆t − Wt)

Bt+∆t − Bt = rtBt∆t,

with Wt+∆ − Wt ∼ N (0, ∆t). The wealth accumulation process is given by

JT = J0 +
I−1

∑
i=0

[
θ

f
i∆t

(
B(i+1)∆t − Bi∆t

)
+ θr

i∆t

(
Q(i+1)∆t − Qi∆t

)]
= J0 +

I−1

∑
i=0

[(
θ

f
i∆tri∆tBi∆t + θr

i∆tµi∆t

)
∆t + θr

i∆tσi∆t

(
W(i+1)∆t − Wi∆t

)]
with I = T/∆t. We would like to take the continuous-time limit that should lead to

dQt ≈ µt + σt“dWt” (5.3)

dBt = rtBtdt.

The question is how to construct the limiting approximation of the stochastic component
“dWt” on the first line rigorously. The limit will lead to a so-called stochastic differential
equation, which cannot be characterized by a Lebesgue integral. Uncertainty in Qt will
be driven by innovations to a Brownian motion that could be interpreted as a limiting
sequence of normally distributed increments.

An associated problem is the continuous-time limit of the portfolio strategy
{

θ
f
t , θr

t

}
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that leads to the process for wealth accumulation

JT = J0 +
∫ T

0

[(
θ

f
t rtBt + θr

t µt

)
dt + θr

t σt“dWt”
]

. (5.4)

In the discrete-time model, the investor chooses the portfolio shares θ
f
t , θr

t at discrete times
t = 0, 1, . . . , T − 1, where each pair θ

f
t , θr

t is Ft-measurable. In the continuous-time limit,
the investor will adjust the portfolio continuously in a sense that needs to be made precise,
and this strategy will be represented by a pair of stochastic processes θ

f
t , θr

t , t ∈ [0, T]
that will depend on the observed histories of the shocks, and satisfy certain measurability
restrictions.

Filtering

Another example involves linear filtering using the Kalman (1960) filter

xt+1 − xt = Axt + B (Wt+1 − Wt)

yt+1 − yt = Dxt + G (Wt+1 − Wt)

where yt represents an m-dimensional vector of observable data, xt is an n-dimensional
vector of an unobservable stochastic process which the decision-maker predicts using ob-
servations of yt, and Wt+1 − Wt ∼ N

(
0, Ip

)
is a shock with a p-dimensional multivariate

normal distribution. This formulation is only a minor change of notation relative to the
version of the filter that we solved in Section 4.1.

We can again rely on the same intuition with discretization

xt+∆ − xt = Axt∆t + B (Wt+∆ − Wt)

yt+∆ − yt = Dxt∆t + G (Wt+∆ − Wt)

and the limit should again lead to

dxt ≈ Axt + B“dWt”

dyt ≈ Dxt + G“dWt”.

The continuous-time version of the filter was solved by Kalman and Bucy (1961).

The formulation of the portfolio choice and filtering examples seems to be restrictive
in the sense that the dynamics of relevant variables, for example the stock return in (5.3)
are separated into a predictable component (µt) and a component representing the impact
of the infinitesimal normally distributed shock (scaled by σt). While this induced linearity
seems restrictive, and it certainly is restrictive in discrete-time models, this specification
provides much more generality in the continuous-time limit.
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Figure 5.1: Sample paths of a Brownian motion.

5.1.2 Definition and properties

The definition of the Brownian motion is straightforward.

Definition 5.1. A k-dimensional Brownian motion is a stochastic process W on Rk such that

1. W0 = 0,

2. ∀s, t ∈ T for which s ≤ t, the difference Wt − Ws ∼ N (0, (t − s) Ik),

3. for all t0 < t1 < t2 < . . . tn ∈ T , the random variables Wtj − Wtj−1 , j ∈ {1, . . . , n} are
independent.

Said simply, the Brownian motion is a process with independent, normally distributed
increments. It turns out that this definition characterizes a unique process, as long as we
restrict our attention to processes with continuous sample paths.

Following the general construction of a stochastic process from Section A, we denote
Ω the sample space, or the set of all paths of the Brownian motion, with elements ω ∈ Ω.
The expression W (ω) represents one particular path of the Brownian motion, and Wt (ω)
the associated value along that path at time t. Figure 5.1 plots simulated sample paths of a
Brownian motion.

As any stochastic process, the Brownian motion generates a filtration {Ft} where,
somewhat informally, Ft is the information set that contains all information about the
realized path of the Brownian motion up to time t.
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The Brownian motion satisfies the Markov property: ∀t, s ≥ 0 and for every Borel set
H ∈ B on Rk

P (Wt+s ∈ H | Ft) = P (Wt+s ∈ H | Wt) .

See Section A.3 for the definition of Borel sets. In words, the distribution of Wt+s con-
ditional on time-t information set is the same as the distribution conditional only on the
value Wt. This follows directly from the independence of the increments of the Brownian
motion in Definition 5.1.

The Brownian motion is also a martingale with respect to filtration {Ft}. For s < t,

E [Wt | Fs] = E [Wt − Ws | Fs] + Ws = Ws

and, at the same time,
(E [|Wt|])2 ≤ E

[
|Wt|2

]
= nt < +∞,

so that the properties of Definition A.10 are satisfied.

5.1.3 Variation of a stochastic process

We want to establish a formal definition of how ‘variable’ the paths of a stochastic pro-
cess are. These results will show that the paths of the Brownian motion are qualitatively
distinct from the usual smooth functions of time. The idea of the definition is to partition
a particular time interval T , define a discrete-time version of variability of the paths by
measuring changes in the value of the stochastic process along the path between the nodes
of the partition, and then take a continuous-time limit as the partition is refined and the
distance between the nodes of the partition vanishes to zero.

Definition 5.2. The set of points P = {t0, . . . , tn} with 0 = t0 < t1 < . . . < tn = t is a
partition of the interval [0, t]. Define

l (P) = max
∣∣tj − tj−1

∣∣ .

to be the norm of the partition.

We denote l (P) → 0 to be the limit of an arbitrary sequence of partitions P such
that the norm of the partitions in the sequence converges to zero. Then we can define the
following:

Definition 5.3. Let X : Ω × T → R be a continuous stochastic process. Then for p > 0 define
the p-th variation process of Xt as

⟨X, X⟩p
t (ω) = lim

l(P)→0

n−1

∑
j=0

∣∣∣Xtj+1 (ω)− Xtj (ω)
∣∣∣p

where the limit is in probability.

For p = 1, the variation process is called the total variation process, and for p = 2, it is
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called the quadratic variation process. For the second moment, we can also define the cross-
variation process of two processes X and Y as

⟨X, Y⟩2
t (ω) = lim

l(P)→0

n−1

∑
j=0

(
Xtj+1 (ω)− Xtj (ω)

) (
Ytj+1 (ω)− Ytj (ω)

)
(5.5)

=
1
4

[
⟨X + Y, X + Y⟩2

t (ω)− ⟨X − Y, X − Y⟩2
t (ω)

]
.

Example 5.1. (Exercise 2.17 in Øksendal (2007)) For the univariate Brownian motion W,

⟨W, W⟩2
t (ω) = t a.s..

To show this, start with a partition P of the time interval [0, t], and consider

E


∑

tj≤t

(
Wtj+1 − Wtj

)2
− t

2
 = E


∑

tj≤t

(
Wtj+1 − Wtj

)2

2
−

−2t ∑
tj≤t

E
[(

Wtj+1 − Wtj

)2
]
+ t2

= ∑
tj≤t

3
(
tj+1 − tj

)2
+ ∑

tj,tk≤t
j ̸=k

(
tj+1 − tj

)
(tk+1 − tk)− 2t2 + t2 =

= 2 ∑
tj≤t

(
tj+1 − tj

)2
+ t2 − 2t2 + t2 → 0

as l (P) → 0. Therefore ∑tj≤t

(
Wtj+1 − Wtj

)2
→ t in L2 (P) sense.

This is a strong result because it shows that every individual path of the Brownian
motion on [0, t] has the same ‘length’ t when measured using the quadratic variation. Since
⟨W, W⟩2

∆t (ω) = ∆t for an arbitrarily short interval ∆t, the result also provides heuristic
intuition why we can write (dWt)

2 = dt, which is a central insight of Itô calculus, as
manifested in Itô’s lemma, Theorem 5.1.

Since the quadratic variation is finite, it can be shown that the total variation of a Brow-
nian motion must be infinite,

∀t > 0 : ⟨W, W⟩1
t (ω) = +∞.

This conclusion also implies that the paths of a Brownian motion are nowhere differen-
tiable.

The Brownian motion is an incredibly versatile process. For example, it turns out that
continuous-time martingales with continuous paths and finite quadratic variation can be
represented as transformations of a Brownian motion. Informally, the result states that
when specifying martingales in a stochastic environment generated by the Brownian mo-
tion, such transformed Brownian motions cover the class of martingales without loss of
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generality.

5.2 Itô calculus

The Brownian motion is an essential component in the construction of the stochastic inte-
gral. The geometric argument underlying the construction is conceptually similar to that of
the Riemann–Stieltjes integral but technical complications associated with the irregularity
of paths of the Brownian motion are substantial and require a careful treatment.

We start with the review of the construction of the Riemann–Stieltjes integral. In order
to construct the Riemann integral of a piecewise continuous function f (t) on T = [0, T]
we choose a partition P of T , and then define the integral through the limit

∫ T

0
f (t) dt .

= lim
l(P)→0

n−1

∑
j=0

f
(
τj
) (

tj+1 − tj
)

, (5.6)

where the values of τj can be chosen to be arbitrary elements of the intervals of the parti-
tion, τj ∈

[
tj, tj+1

]
. The integral is well defined only if the limit does not depend on a par-

ticular choice of the sequence of partitions, nor on the choices of the points τj ∈
[
tj, tj+1

]
.

Geometrically, the construction approximates the area under the curve f (t) using the sum
of rectangular areas f

(
τj
) (

tj+1 − tj
)
.

The Riemann–Stieltjes integral generalizes the Riemann integral to integrate along the
path of a sufficiently smooth function g (t):

∫ T

0
f (t) dg (t) .

= lim
l(P)→0

n−1

∑
j=0

f
(
τj
) (

g
(
tj+1

)
− g

(
tj
))

. (5.7)

The idea underlying the construction of the stochastic integral is similar, with integration
along the path of a smooth function g to be replaced with integration along the path of the
Brownian motion W (ω). In particular, we desire to form the discrete-time approximation
using a partion P ,

n−1

∑
j=0

f
(
τj
) (

Wtj+1 (ω)− Wtj (ω)
)

, (5.8)

and ask how to construct a well-defined limit as l (P) → 0, in the same way the Riemann–
Stieltjes integral is formulated in (5.7).

The sum in (5.8) depends on the particular path ω of the Brownian motion, and so it
is itself random. Moreover, the integrand f

(
τj
)

can also be a stochastic process itself, and
so we can write instead fτj (ω), where fτj is a random variable measurable with respect to
Fτj . The stochastic integral that is the desired outcome of this construction will therefore
also be a stochastic process.

It turns out that due to the infinite total variation of W, we will need to choose the
points τj in a specific way to make the limit well defined. Our particular interest in financial
applications will lead us to choose τj to be the initial point of the interval, τj = tj, which
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yields the so-called Itô integral. We proceed in several steps, first providing the definition
of the integral for a class of so-called elementary processes, and then extend this definition
to larger classes of processes through limits.

Example 5.2. As a motivation, consider an economically interesting example that builds on the
problem introduced in Section 5.1.1. Let the share price evolve as a Brownian motion W, and
consider an investor who can trade shares only at a finite number of dates tj ∈ [0, T] which define
a partition P .

Denote θtj (ω) the number of shares bought at time tj. We assume that the choice θtj (ω) can
depend on information available up to time tj, and therefore θtj can be viewed as a random variable
measurable with respect to Ftj . With this construction, the evolution of wealth Jt is given by

Jt (ω) = J0 +
n(t)−1

∑
j=0

θtj (ω)
(

Wtj+1 (ω)− Wtj (ω)
)
+ θn(t) (ω)

(
Wt (ω)− Wtn(t) (ω)

)
(5.9)

where n (t) is the index of the interval in the partition such that t ∈ [tn(t), tn(t)+1), and n (T) =

n. The wealth process represents cumulative gains from investments between individual trading
dates, and the last term is the gain until time t since the last preceding trading date tn(t). The key
observation is the timing procedure, which makes the portfolio choice θtj for the investment in the
time interval

[
tj, tj+1

)
measurable with respect to the σ-algebra Ftj . The process θt viewed as a

continuous-time process is constant on the intervals
[
tj, tj+1

)
, and is called a dynamic strategy.

5.2.1 Construction of Itô integral

Processes that have piecewise constant trajectories that are allowed to jump only at a finite
number of times are called elementary processes.

Definition 5.4. An elementary (also called simple) process ϕ on [0, T] is a process for which
there exists a partition P of [0, T] such that ϕt = ϕtj for t ∈ [tj, tj+1).

Stochastic integrals of elementary processes constitute the fundamental building blocks
in our analysis, and they are defined via a direct construction. The construction exactly
mimics the intuition of the dynamic strategy outlined in (5.9).

Definition 5.5. For the class of elementary processes ϕ, the Itô integral of ϕ is defined as

∫ t

0
ϕs (ω) dWs (ω)

.
=

n(t)−1

∑
j=0

ϕtj (ω)
(

Wtj+1 (ω)− Wtj (ω)
)

(5.10)

+ϕtn(t) (ω)
(

Wt (ω)− Wtn(t) (ω)
)

,

where the last term reflects the interrupted last interval of the partition and n (t) is such that
t ∈ [tn(t), tn(t)+1).

Since the elementary process is constant on [tn(t), tn(t)+1), we could have chosen the
value ϕτj for any τj ∈

[
tj, tj+1

)
without any consequences. The integral in (5.10) is itself a
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stochastic process, since the integral is defined pathwise, for every ω ∈ Ω. The argument
ω will mostly be omitted in the expressions in the following text.

Stochastic integrals of more complicated processes will be constructed through lim-
iting arguments, using approximations of integrated processes on the class elementary
processes. The following example illustrates the challenges in such an approximation.

Example 5.3. We are interested in approximating the evolution of a Brownian motion W on the
interval T = [0, T]. Consider a partition P of T , and define two candidate approximations,

ϕt (ω) =
n−1

∑
j=0

Wtj (ω) 1[tj,tj+1) (t)

ψt (ω) =
n−1

∑
j=0

Wtj+1 (ω) 1[tj,tj+1) (t) .

The process ϕt approximates the path of the Brownian motion Wt (ω) on the interval
[
tj, tj+1

)
with

the initial value Wtj (ω), while ψt approximates the path of the Brownian motion Wt (ω) on the
interval

[
tj, tj+1

)
with the terminal value Wtj+1 (ω). The values at the endpoints of the intervals

are inconsequential. As we refine the partition, the approximations therefore approach each other in
a loose sense, so it would seem that choosing ϕt or ψt will lead to the same limit as l (P) → 0.

In the case of a Riemann integral, the limits of integrals of the two approximations as we refine
the partition indeed coincide, and define the Riemann integral of the Brownian motion:

lim
l(P)→0

∫ T

0
ϕt (ω) dt = lim

l(P)→0

∫ T

0
ψt (ω) dt .

=
∫ T

0
Wt (ω) dt.

This is not surprising because this construction is in line with the definition of Riemann integral,
and since the path of a Brownian motion is continuous, the path is Riemann integrable.

The situation is markedly different in the case of the stochastic integral. Since ϕ and ψ are
elementary processes, their Itô integrals on [0, T] are defined, omitting the path arguments ω, as

∫ t

0
ϕsdWs

.
=

n(t)−1

∑
j=0

Wtj

(
Wtj+1 − Wtj

)
+ Wtn(t)

(
Wt − Wtn(t)

)
∫ t

0
ψsdWs

.
=

n(t)−1

∑
j=0

Wtj+1

(
Wtj+1 − Wtj

)
+ Wtn(t)+1

(
Wt − Wtn(t)

)
.

To see the distinction between the two constructions, compute the expectations

E
[∫ T

0
ϕtdWt | F0

]
= E

[
n−1

∑
j=0

Wtj

(
Wtj+1 − Wtj

)
| F0

]
= 0, (5.11)

E
[∫ T

0
ψtdWt | F0

]
= E

[
n−1

∑
j=0

Wtj+1

(
Wtj+1 − Wtj

)
| F0

]
= T.
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These expectations will therefore remain distinct even if we take the limit l (P) → 0. So despite the
fact that both ϕ and ψ seem to be reasonable approximations of W for the purposes of the construc-
tion the stochastic integral, they yield different answers.

The intuitive reason is that there is too much variation in W over time—the result is closely
related to the fact that W is a process of infinite total variation, while the Stieltjes integral (5.7)
integrates against a function g that has finite total variation. Hence approximations in the con-
struction of the stochastic integral using values at the initial or terminal endpoint of the interval do
not yield results that are close to each other as we refine the partition.

Example 5.3 shows that the choice of the points at which to approximate the integrated
function on the subintervals of the partition is essential. The choice of the approximation of
W using ϕ, i.e., at the initial points of the subintervals, yields the Itô integral. Other choices
are possible as well, for example, choosing the average 1

2 (ϕ + ψ) as the approximation
yields the so-called Stratonovich integral.

From the perspective of financial applications, it turns out that the Itô integral is the
desirable choice. This choice aligns with the wealth accumulation process in Example 5.2,
the resulting Itô integral of the portfolio choice process θ yields the appropriate wealth
dynamics, with a portfolio choice process θ that corresponds to infinitesimal rebalancing
as l (P) → 0. Mathematically, the Itô integral is adapted to filtration {Ft} generated by the
Brownian motion, meaning that the portfolio choice at the t cannot depend on information
at future dates u > t.

On the other hand, the integral constructed using ψ is not adapted to {Ft} because
the integral up to time t ∈

[
tj, tj+1

)
uses the value of ψ at tj+1 > t. While this may seem

innocuous in the limit as l (P) → 0, it is a key difference. In the wealth accumulation
example, this corresponds to choosing the portfolio θtj at time tj according to the realized
return Wtj+1 at the future date tj+1.

The Itô integral is also a martingale with respect to the filtration generated by the Brow-
nian motion, consistently with the expected value in (5.11). For u < t,

E
[∫ t

0
ϕsdWs | Fu

]
= E

[∫ u

0
ϕsdWs +

∫ t

u
ϕsdWs | Fu

]
(5.12)

=
∫ u

0
ϕsdWs + E

[∫ t

u
ϕsdWs | Fu

]
=
∫ u

0
ϕsdWs.

The first equality follows from the linearity of the integral, the second equality from the
fact that

∫ u
0 ϕsdWs is measurable with respect to Fu, and the third equality utilizes the same

calculation as in (5.9).

Having defined the Itô integral on the class of elementary processes in Definition 5.5,
the goal now is to extend this definition to a larger class of stochastic processes f , giving a
meaning to the expression ∫ t

0
fs (ω) dWs (ω) .

The construction is based on limiting approximations of the stochastic process f using ele-
mentary processes. Naturally, for the construction to work, we need to make sure that the
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class of stochastic processes of interest can be well approximated by elementary processes.
We will not provide the details of this construction, which can be found, for example, in
Øksendal (2007), Chapter 3. We will however point out some results.

Let L be the set of all processes adapted to the filtration generated by the Brownian
motion. We define three nested subsets of this set:

L1 =

{
f ∈ L :

∫ T

0
| ft| dt < ∞ a.s.

}
(5.13)

L2 =

{
f ∈ L :

∫ T

0
( ft)

2 dt < ∞ a.s.
}

(5.14)

H2 =

{
f ∈ L2 : E

[∫ T

0
( ft)

2 dt
]
< ∞

}
(5.15)

The class L1 is the class of all pathwise integrable processes, L2 is the class of all pathwise
square integrable processes, and H2 the class of processes with a finite second moment. It
is easy to see that H2 ⊂ L2 ⊂ L1.

The choice of the classes is motivated by the desire to construct stochastic integrals for
a sufficiently large set of functions that will be of our interest. Specifically, for stochastic
processes f ∈ H2, we have the following definition.

Definition 5.6. Let f ∈ H2. Then the Itô integral of f is defined by∫ T

0
ft (ω) dWt (ω) = lim

k→∞

∫ T

0
ϕk

t (ω) dWt (ω) (5.16)

where
{

ϕk} is a sequence of elementary functions in H2 such that

E
[∫ T

0

(
ft (ω)− ϕk

t (ω)
)2

dt
]
→ 0 as k → ∞. (5.17)

The idea of the definition is to construct a sequence of elementary processes
{

ϕk} with
piecewise constant paths such that ϕk approximates the process f successively better as
k → ∞, in the sense of (5.17). The definition is only meaningful if every such sequence{

ϕk} that satisfies (5.17) yields the same value of the limit on the right-hand side of (5.16),
which is a result that needs to be proven. Then this common value defines the Itô integral
of f .

Functions in the class H2 are well behaved, and the stochastic integral of a process
f ∈ H2 has the martingale property, just like in the case of elementary processes (5.12):

E
[∫ t

0
fs (ω) dWs (ω) | Fu

]
=
∫ u

0
fs (ω) dWs (ω) .

Stochastic integrals can also be defined in a similar way for processes f belonging to the
larger class L2 but the resulting stochastic integrals may not be martingales anymore, and
are generally only so-called local martingales.
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5.2.2 Itô processes

We now define a class of processes called Itô processes that additively combine Riemann
integrals and Itô integrals. As it will turn out, this class is sufficiently general to cover
many interesting applications.

Definition 5.7. An n-dimensional Itô process is a process X : Ω × T →Rn such that

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs (5.18)

where µ ∈
(
L1)n, σ ∈

(
L2)n×k and W is a k-dimensional Brownian motion. We assume that µ

and σ are Ft-adapted where {Ft} is a filtration with respect to which W is a martingale.

An Itô diffusion is an Itô process for which the coefficients satisfy µs = µ (Xs) and σs =

σ (Xs) for all s ∈ T .

The process µ is called drift, and σ is called the volatility of the Itô process. The Itô
process Xt defined above is n-dimensional, with uncertainty generated by a k-dimensional
Brownian motion, hence µ is an n × 1-dimensional vector process, and σ is an n × k di-
mensional. The restrictions µ ∈

(
L1)n and σ ∈

(
L2)n×k are imposed so that the Riemann

integral and the Itô integral in (5.18) are well defined. The definition assures that
∫ t

0 σsdWs

is at least a local martingale, and when σ ∈
(
H2)n×k, then it is also a martingale.

As stated above, an Itô process is the sum of a Riemann integral and an Itô integral.
Often, equation (5.18) is written in the ‘differential’ form

dXt = µtdt + σtdWt.

When the processes µ, σ ∈ H2, then the Itô integral is a martingale and the argument of
the Itô integral is square integrable. It then follows that for t, u ≥ 0,

E [Xt+u | Ft] = Xt +
∫ t+u

t
µsds

Var [Xt+u | Ft] = E

[(∫ t+u

t
σsdWs

)2

| Ft

]
= E

[∫ t+u

t
|σs|2 dt | Ft

]
where the last equality follows from a result known as Itô isometry. Then we can localize
the mean and variance by constructing the infinitesimal expected growth rate and variance
of the process:

d
du

E [Xt+u | Ft]

∣∣∣∣
u=0

= µt a.s.

d
du

Var [Xt+u | Ft]

∣∣∣∣
u=0

= |σs|2 = σtσ
′
t a.s.

which provides a justification for calling the two coefficients the drift and volatility of the
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Itô process. Informally, we will write these results in the shorhand differential form

Et [dXt] = µtdt

Vart [dXt] = σtσ
′
t dt,

where Et [·] = E [· | Ft].

Given an Itô process X, we define two additional classes of processes that will be useful
in the study of portfolio problems and other applications.

Definition 5.8. For an n-dimensional Itô process X, we define

L (X) =
{

θ ∈ (L)n : θ′µ ∈ L1, θ′σ ∈
(
L2)k

}
(5.19)

H2 (X) =

{
θ ∈ L (X) : E

[(∫ T

0
θ′tµtdt

)2
]
< ∞, θ′σ ∈

(
H2)k

}
(5.20)

Definition 5.8 can be interpreted as follows. Let X be the vector process describing
the price dynamics of n available assets with drift µ and volatility σ, and θ is an n × 1
dynamic portfolio strategy with each entry representing the number of units of each of
these assets held over time. Then the instantaneous gain on this portfolio at time t is θ′tdXt,
and accumulating these gains over time yields

JT = J0 +
∫ T

0
θ′tdXt = J0 +

∫ T

0
θ′tµtdt +

∫ T

0
θ′tσtdWt, (5.21)

which is the wealth process that characterizes the cumulative value of the portfolio gains.
Classes L (X) and H2 (X) are therefore classes of portfolio strategies θ that leads to portfo-
lio value processes with desirable properties. In particular, if θ ∈ H2 (X), then the stochas-
tic integral

∫ T
0 θ′tdXt has finite variance and the Itô integral component

∫ t
0 θ′sσsdWs is a mar-

tingale.

The wealth accumulation process (5.21) is a generalization and the continuous-time
version of the wealth accumulation process specified in the motivating example in (5.4).
Investor’s portfolio strategies are adjusted continuously, in response to changes in eco-
nomic environment. Since the portfolio strategy consists of continuously reinvesting ex-
isting wealth, it is called self-financing.

5.2.3 Itô’s lemma

The definition of an Itô process X in (5.18) seems to be restrictive, since it involves a linear
combination of a Riemann integral and an Itô integral. It would then seem that nonlinear
transformations of X would not longer be Itô processes. For example, in the case of the
discrete-time linear vector-autoregression (3.1):

xt+1 = Aoxt + Cwt+1 wt+1 ∼ N
(
0, Ip

)
iid,
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a transformation yt = f (xt) for some nonlinear function f would no longer yield a linear
vector-autoregression for yt.

Starting from a given Itô process X, we want to characterize its nonlinear transforma-
tion Yt = f (t, Xt) where f is a given, sufficiently differentiable function. It turns out that
Yt is again an Itô process.

The characterization is provided by a key result of stochastic calculus, Itô’s lemma, due
to Itô (1951). We first provide its scalar version, with only a heuristic proof.

Theorem 5.1 (Itô’s lemma). Let X be a univariate Itô process

dXt = µtdt + σtdWt

where W is a univariate Brownian motion. Let f : R2 → R with f ∈ C2 (T × R) (twice
continuously differentiable). Then Yt = f (t, Xt) is an Itô process and

dYt = ft (t, Xt) dt + fx (t, Xt) µtdt +
1
2

fxx (t, Xt) σ2
t dt + fx (t, Xt) σtdWt.

Proof. The heuristic proof goes as follows. First consider a ‘second-order’ Taylor approxi-
mation

dYt = ftdt + fxdXt +
1
2

ftt (dt)2 + ftxdtdXt +
1
2

fxx (dXt)
2

Now observe

dtdXt = dt (µtdt + σtdWt) = µt (dt)2 + σtdtdWt

(dXt)
2 = µ2

t (dt)2 + 2µtσtdtdWt + σ2
t (dWt)

2

When we computed the quadratic variation of an Itô process in Example 5.1, we already
argued that (dWt)

2 = dt, hence (dWt)
2 is a first-order term in dt. However, the remaining

terms are higher than first order. Since dWt can be argued to have mean zero and variance
dt, the term dtdWt will be mean zero and variance (dt)2. which is a higher-order stochastic
term than dWt. Therefore, the only term left in the two expressions above is σ2

t (dWt)
2 =

σ2
t dt. Combining these results yields the statement of Itô’s lemma.

A key observation obtained from Itô’s lemma is that the process Yt also follows an Itô
diffusion:

Yt = Y0 +
∫ t

0

[
ft (s, Xs) + fx (s, Xs) µs +

1
2

fxx (s, Xs) σ2
s

]
ds +

∫ t

0
fx (s, Xs) σsdWs.

The linearity of the Itô process and additivity of its two integrals is therefore without loss
of generality, and preserved under the nonlinear transformation Yt = f (t, Xt). The non-
linearity is embedded in the transformation of the drift and volatility coefficients of the Itô
process.

The formula can be extended to multivariate Brownian motions when we note that for
two independent Brownian motions W j and Wk, we have

(
dW j

t

) (
dWk

t
)
= 0.
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Theorem 5.2 (Multivariate Itô’s lemma). Let W be a k-dimensional Brownian motion, X an
n-dimensional Itô process

dXt = µtdt + σtdWt

and f : T × Rn → Rm be from C2. Then for Yt = f (t, Xt), we have for the k-th component Yk
t

dYk
t =

[
f k
t + f k

x µt +
1
2

tr
[
σtσ

′
t f k

xx

]]
dt + f k

x σtdWt.

5.2.4 Examples

A useful result in integration is the integration by parts formula for the Riemann–Stieltjes
integral. The Itô integral also has an integration by parts formula but only for integrated
functions that have bounded total variation, in the sense of Definition 5.3.

Theorem 5.3 (Integration by parts). Suppose the process ft (ω) is continuous and of bounded
total variation with respect to t ∈ [0, T] for almost all ω. Then∫ T

0
ftdWt = fTWT −

∫ T

0
Wtd ft. (5.22)

The assumption of bounded variation of f is crucial. The integration by parts formula
will, for instance, not work for ft = Wt, since the Brownian motion has infinite total varia-
tion. The following example illustrates this.

Example 5.4. We want to show that∫ T

0
WtdWt =

1
2

W2
T − 1

2
T.

We can obtain this result as an application of Itô’s lemma. Let Xt = Wt and Yt = f (t, Xt) =
1
2W2

t .
Then an application of Itô’s lemma yields

dYt = d
(

1
2

W2
t

)
= WtdWt +

1
2

dt.

and integrating up, we obtain:∫ T

0
dYt = YT − Y0 =

∫ T

0
WtdWt +

∫ T

0

1
2

dt

1
2

W2
T =

∫ T

0
WtdWt +

1
2

T.

Notice that if we had used the integration by parts formula (5.22), we would have obtained∫ T

0
WtdWt

!
= W2

T −
∫ T

0
WtdWt,



150 Finite difference methods in derivative pricing

and hence ∫ T

0
WtdWt =

1
2

W2
T,

which is an incorrect result because the integration by parts formula omitted the second-order term
implied by Itô’s lemma.

Example 5.5. We want to compute
∫ T

0 tdWt. Since t has finite total variation, we can apply the
integration by parts formula (5.22)∫ T

0
tdWt = TWT −

∫ T

0
Wtdt.

This can be verified by applying Itô’s lemma to the first term on the right-hand side

d (tWt) = Wtdt + tdWt.

Integrating up verifies that the application of the integration by parts formula is correct in this case.

Itô’s lemma can also be useful for the derivation of explicit solutions for Itô’s processes,
as we illustrate with the next couple of examples.

Example 5.6. Let X be an Itô process characterized in differential form by

dXt = µdt + σdWt

with a given initial condition X0. We can proceed by integrating∫ t

0
dXs = Xt − X0

=
∫ t

0
µds +

∫ t

0
σdWs = µ

∫ t

0
ds + σ

∫ t

0
dWs = µt + σ (Wt − W0) .

Since W0 = 0, we obtain the explicit solution for Xt in the form

Xt = X0 + µt + σWt,

which is a process called the arithmetic Brownian motion. In particular, since Wt ∼ N (0, t), the
distribution of Xt conditional on X0 is

Xt ∼ N
(
X0 + µt, σ2t

)
.

Example 5.7. Let X be an Itô process characterized in differential form by

dXt = µXtdt + σXtdWt

with a given initial condition X0. To find an explicit solution for Xt, we cannot integrate both sides
of the above formulas since the right-hand side also depends on Xt. Let us therefore first define
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Yt = log Xt and apply Itô’s lemma

dYt = d log Xt =
1

Xt
dXt −

1
2

1
X2

t
(dXt)

2 =
1

Xt
(µXtdt + σXtdWt)−

1
2

1
X2

t
σ2X2

t dt

=

(
µ − 1

2
σ2
)

dt + σdWt.

We can now integrate both sides of the equation∫ t

0
dYs = Yt − Y0 =

∫ t

0

(
µ − 1

2
σ2
)

ds +
∫ t

0
σdWs =

(
µ − 1

2
σ2
)

t + σWt.

Hence we obtain
Yt = Y0 +

(
µ − 1

2
σ2
)

t + σWt.

Exponentiating and noticing that Xt = exp (Yt), we have the solution

Xt = X0 exp
((

µ − 1
2

σ2
)

t + σWt

)
,

which is a process called the geometric Brownian motion. Xt is therefore a random variable that is
log-normally distributed conditional on X0,

Xt ∼ N
(

log X0 +

(
µ − 1

2
σ2
)

t, σ2t
)

,

and
E [Xt|X0] = X0 exp (µt) ,

which follows from the formula for the mean of a log-normally distributed variable.

5.2.5 Feynman–Kac formula

The Feynman–Kac formula establishes a link between a class of partial differential equa-
tions (PDEs) and stochastic processes driven by Brownian motions. While Kac (1949) de-
rived the result in the diffusion setup, Richard Feynman previously characterized analo-
gous results in the context of quantum mechanics in his thesis.

The formula allows to solve PDEs using simulations of stochastic processes, or, vice
versa, solve stochastic differential equations by characterizing solutions to PDEs.

For notational simplicity, we outline the results in the case of a scalar state variable x,
the conceptually identical multivariate case can be found, for example, in Øksendal (2007),
Theorem 8.2.1. Consider the PDE

h (x, t)− g (x, t) r (x, t) + gx (x, t) µ (x, t) +
1
2

gxx (x, t) σ (x, t)2 + gt (x, t) = 0 (5.23)

with terminal boundary condition g (x, T) = G (x). The Feynman–Kac formula states that
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the solution g (x, t) to the PDE can be written as a conditional expectation

g (x, t) = E
[∫ T

t
ϕ (t, s) h (Xs, s) ds + ϕ (t, T) G (XT) |Xt = x

]
(5.24)

where

ϕ (t, s) = exp
(
−
∫ s

t
r (Xτ, τ) dτ

)
for a stochastic process X that satisfies, under the probability measure under which the
expectation is taken,

dXt = µ (Xt, t) dt + σ (Xt, t) dWt

and Xt = x is the initial condition. The solution therefore takes the form of a present value
equation, with a payoff flow h (x, s) and terminal payoff G (x), discounted by the discount
rate r (x, t).

To show this relationship, we can write equation (5.24) in a recursive form as

g (x, t) = h (x, t) dt + E
[∫ T

t+dt
ϕ (t, s) h (Xs, s) ds + ϕ (t, T) G (XT) |Xt = x

]
=

= h (x, t) dt + ϕ (t, t + dt) E [g (Xt+dt, t + dt) |Xt = x]

An application of Itô’s lemma to the term ϕ (t, dt) g (Xt+dt, t + dt) yields

ϕ (t, t + dt) g (Xt+dt, t + dt) = g (Xt, t)− r (Xt, t) g (Xt, t) dt

+

[
gx (Xt, t) µ (Xt, t) +

1
2

gxx (Xt, t) σ (Xt, t)2 + gt (Xt, t)
]

dt

+gx (Xt, t) σ (Xt, t) dWt

This expansion can be plugged back into the expectation operator. The contribution of
the diffusion term on the last row to the expectation is zero. Reorganizing the terms and
dividing the whole equation by dt yields PDE (5.23). The terminal condition on the PDE is
satisfied.

5.3 The Black–Scholes model

The Black–Scholes model for option pricing has been developed in Black and Scholes
(1973), with a central insight based on dynamic hedging provided by Robert Merton. The
model was extended to the pricing of more complicated derivative securities in Merton
(1973), and to more complex environments in the subsequent literature. While research
on the pricing of derivative securities has been active before, the central contribution of
Black and Scholes (1973) and Merton (1973) is that they were able to derive the valuation
formulas in terms of relatively easy-to-measure parameters.
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5.3.1 Market structure

The environment is a security market model with two basic securities. Time is continuous
and given by a finite interval T = [0, T]. One security provides a constant risk-free return
r over each infinitesimal horizon. We call this security the (infinitesimal) risk-free bond.
An initial investment B0 = 1 into this security accumulates over time as

dBt = rBtdt (5.25)

so that the value of such an investment at time t is

Bt = exp
(∫ t

0
rds
)
= exp (rt) . (5.26)

The second security is a risky stock with price Qt that follows a geometric Brownian mo-
tion

dQt = µQtdt + σQtdWt (5.27)

with constant scalar parameters µ and σ and a given initial price Q0. For simplicity, we
assume that the stock pays no dividends on [0, T]. An explicit solution to this equation is
found in the same way as in Example 5.7. Applying Itô’s lemma, we have

d log Qt =

(
µ − 1

2
σ2
)

dt + σdWt

and integrating up, we obtain

Qt = Q0 exp
((

µ − 1
2

σ2
)

t + σWt

)
. (5.28)

The expected price conditional on Q0 then is

E [Qt|Q0] = Q0 exp (µt) .

From these expressions, we can compute the annualized expected infinitesimal returns on
the two investments over a short horizon t. For the investment into the risk-free security

lim
t→0

1
t

E [Bt]− B0

B0
= lim

t→0

1
t
(exp (rt)− 1) = r,

and for the risky stock

lim
t→0

1
t

E [Qt]− Q0

Q0
= lim

t→0

1
t
(exp (µt)− 1) = µ.

The infinitesimal risk premium on the stock therefore is µ − r.

The security market is hence characterized by three parameters, the risk-free rate r, the
expected return on the risky investment µ and the volatility of the risky investment σ.
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Uncertainty in this financial market is driven by a scalar Brownian motion. At every
time t, an investor can choose to purchase θ

f
t units of the risk-free asset at price Bt and θr

t
units of the stock at price Qt. The financial gain over an infinitesimal horizon from this
investment is

θ
f
t dBt + θr

t dQt

and a given portfolio strategy θ f , θr yields terminal wealth at time T

JT = J0 +
∫ T

0

[(
θ

f
t rBt + θr

t µ
)

dt + θr
t σdWt

]
.

The value JT is the terminal payoff from the portfolio strategy.

We hence have a market with uncertainty driven by a univariate Brownian motion and
two investable assets, one risk-free and one risky with a nontrivial volatility of the price.
Without going into formal proofs, this market is so-called complete. Consider an arbitrary
time-T payoff GT that is FT-measurable, which means that it is a function of the history
of the Brownian motion W, and, for technical reasons, also square integrable. Market
completeness means that any such payoff GT can be obtained as an outcome of a suitably
chosen dynamic portfolio strategy θ f , θr, with a particular amount of initial wealth.

5.3.2 Derivative securities

We are interested in pricing a security with terminal payoff at time T equal to G (QT). Since
the payoff is a function of the underlying stock price, such a security is called derivative.
Typical examples of derivative securities are options. A call option with strike price K has
payoff

G (QT) = max (QT − K, 0) ≡ (QT − K)+ , (5.29)

while a put option with strike price K has payoff

G (QT) = max (K − QT, 0) ≡ (K − QT)+ . (5.30)

The term option comes from the fact that, for example in the case of a call option, its payoff
is equivalent to the right to buy the underlying stock at time T for the price K. The value
of that option at maturity is therefore equal to the difference QT − K but if this difference is
negative, the owner is not mandated to buy the stock at price K that would be higher than
the current market price QT. Correspondingly, a put option gives the owner the right to
sell the stock at time T for the price K. Options with this specification are called European
options because they give the right to exercise them on a given date T, while American
options give the right to exercise at any time on or before the given date T.

The time-T payoff G (QT) of the derivative security only depends on QT. Further, the
interest rate r is constant, and the distribution of the future stock price conditional on
time-t information only depends on Qt. We can therefore conjecture that the time-t price
can be written as g (Qt, t), where g is a pricing function we need to derive. The explicit
dependence of the price on time t is given by the fact that we are pricing a security with
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a finite-horizon payoff at time T, and hence we need to encode the time remaining to
maturity of the security.

Since the risk-free bond and the stock generate a complete market, every other finan-
cial security is redundant, meaning that its payoff can be achieved by a suitable dynamic
portfolio strategy in the bond and stock. It follows from absence of arbitrage, discussed
in Section 1.6, that the price g (Qt, t) must be equal to the value of the portfolio needed to
replicate the same terminal payoff G (QT). If it were not, then a strategy that would pur-
chase the cheaper asset or portfolio while selling the more expensive one would generate
immediate positive payoff without any future financial consequences.

5.3.3 Replication argument

We now develop the replication argument. In order to do that, we need to determine the
portfolio positions that generate the replicating portfolio. One of the fundamental ideas of
Black and Scholes (actually pointed out to them by Robert Merton, see Footnote 3 in Black
and Scholes (1973)) that provides an answer to this problem is the concept of dynamic
hedging. The idea is to find a particular combination of the bond and stock such that
the infinitesimal return is the same as the infinitesimal return on the derivative security.
Extending the infinitesimal argument to finite horizons yields the desired answer.

We develop the idea in an equivalent way, from a slightly different angle. Specifically,
we want to construct a portfolio consisting of a particular combination of the stock and
the derivative that makes the return on this portfolio risk-free, over an infinitesimal hori-
zon. Since the portfolio is risk-free, it must earn the risk-free rate r, otherwise an arbitrage
opportunity would emerge.

Let such a self-financing portfolio consist of one option with current price g (Qt, t) and
a position of θr

t units of the risky stock with price Qt. The value of this portfolio is

1 · g (Qt, t) + θr
t Qt.

By the self-financing assumption, the financial gain on the stock portion of this portfolio is
θr

t dQt, and the financial gain on the option portion is 1 · dg (Qt, t). An application of Itô’s
lemma implies that

dg (Qt, t) = gQ (Qt, t) dQt +
1
2

gQQ (Qt, t) (dQt)
2 + gt (Qt, t) dt

=

[
gQ (Qt, t) µQt +

1
2

gQQ (Qt, t) σ2 + gt (Qt, t)
]

dt + gQ (Qt, t) σQtdWt.

The evolution of the value of the portfolio is therefore given by

dg (Qt, t) + θr
t dQt =

[
(gQ (Qt, t) + θr

t ) µQt +
1
2

gQQ (Qt, t) σ2Q2
t + gt (Qt, t)

]
dt

+ [gQ (Qt, t) + θr
t ] σQtdWt.

We want to choose θr
t to make the gain on the portfolio locally risk-free, corresponding to
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a zero risk exposure. This implies we must choose

θr
t = −gQ (Qt, t) .

With this choice, the financial gain on the portfolio is equal to

dg (Qt, t)− gQ (Qt, t) dQt =

[
1
2

gQQ (Qt, t) σ2Q2
t + gt (Qt, t)

]
dt. (5.31)

At the same time, because this portfolio is risk-free, the absence of arbitrage argument
implies that this portfolio then must earn the risk-free rate r, and hence

dg (Qt, t)− gQ (Qt, t) dQt = r [g (Qt, t)− gQ (Qt, t) Qt] dt. (5.32)

Equalizing the drift terms on the right-hand sides of (5.31) and (5.32), and writing Q in-
stead of Qt, we obtain the equation

rg (Q, t) = gt (Q, t) + gQ (Q, t) rQ +
1
2

gQQ (Q, t) σ2Q2. (5.33)

This is a second-order partial differential equation for the price of the derivative secu-
rity g (Q, t). This second-order PDE has a terminal boundary condition g (Q, T) = G (Q)
which states that the price of the derivative security at maturity time T is equal to the
payoff G (Q).

An inspection of the PDE (5.33) reveals that it does not depend on the expected return
on the stock µ, and hence we only need to determine parameters r and σ. This is a criti-
cal observation shown by Black and Scholes (1973) that simplified valuation of derivative
securities dramatically. While the risk-free rate r is directly observable and the volatility
of risky asset returns can be reasonably inferred from high-frequency data, measuring the
expected return on a risky asset µ is an inherently difficult task.

It turns out that the replication argument combined with absence of arbitrage imply
that the valuation of the derivative security does not depend on µ. This argument does
not depend on the extremely simple structure of the Black and Scholes (1973) model and
carries over to a variety of extensions as well.

5.3.4 Analytical solution

The prices of the European call and put options with payoffs (5.29)–(5.30) can be deter-
mined as closed-form expressions which only depend on quantiles of the normal distribu-
tion. These well-known formulas are provided in the following proposition.

Proposition 5.4. Time-t prices of European call and put options with payoffs (5.29) and (5.30),
respectively, with strike price K and maturity T, are given by

C (Q, t) = QN (z1)− exp (−r (T − t))KN (z2)

P (Q, t) = exp (−r (T − t))KN (−z2)− QN (−z1)
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where N (·) is the cumulative standard normal distribution function, and

z1 =
log
(

Q
K

)
+
(
r + 1

2 σ2) (T − t)

σ
√

T − t
z2 = z1 − σ

√
T − t.

It can be verified that C (Q, t) and P (Q, t) satisfy the partial differential equation (5.33)
with the alternative terminal boundary conditions given by the payoffs (5.29) and (5.30),
respectively.

It turns out that given a strike price K, it is sufficient to compute only the price of one of
the options because the call and put option price are related through the so-called put-call
parity

P (Qt, t) + Qt = C (Qt, t) + K exp (−r (T − t)) . (5.34)

The put-call parity result is based on a replication argument. The left-hand side of (5.34) is
the value of a portfolio consisting of a put option and the stock, with payoff max (K − QT, 0)+
QT = max (K, QT). The right-hand side is the value of a portfolio invested in a call option
and a risk-free investment with face value K, with total payoff max (QT − K, 0) + K =

max (QT, K).

Since the portfolios on both sides of the equation have identical payoffs at time T, then,
by the no-arbitrage argument, they must also have the same time-t valuation. P (Qt, t) and
C (Qt, t) are the prices of the options, Qt is the stock price and K exp (−r (T − t)) is the
time-t value of the risk-free investment.

5.3.5 Comparison with Feynman–Kac formula and risk-neutral valuation

The Black–Scholes problem for the valuation of the derivative security yielded the partial
differential equation

rg (Q, t) = gt (Q, t) + gQ (Q, t) rQ +
1
2

gQQ (Q, t) σ2Q2

with terminal condition g (Q, T) = G (T). This equation is a special case of the PDE fea-
tured in the Feynman–Kac formula derived in Section 5.2.5. In particular, the Feynman–
Kac formula implies that the solution to the Black–Scholes problem can be equivalently
written as

g (Qt, t) = E
[
e−r(T−t)G (QT) |Qt

]
(5.35)

with Qt following the dynamics

dQt = rQtdt + σQtdW∗
t . (5.36)
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Equation (5.35) can be interpreted as a present discounted value formula for the time-t
price of the cash flow G (QT), discounted by a hypothetical stochastic discount factor

S∗
T

S∗
t
= e−r(T−t)

under the assumption that the dynamics of the stock price is modified to (5.36), with ex-
pected return on the stock equal to r instead of µ. We also use the notation W∗

t for the
underlying Brownian motion because strictly speaking the process in (5.36) is not the same
as the driving the data-generating dynamics of the stock price.

Formulas (5.35)–(5.36) reflect a result known as valuation under the risk-neutral mea-
sure. This central result in asset pricing theory states that we can view asset prices as
expected cash flows discounted by risk-free rates as in (5.35) if we properly adjust the
dynamics of those cash flows, as in (5.36).

Formulas (5.35)–(5.36) also provide a direct way of obtaining the analytical solution
in Proposition 5.4. The price is simply the expectation of a piecewise linear function of
QT, where QT is lognormally distributed. The calculation of the price therefore involves
integrals over the (log)normal distribution, with quantiles determined by the kink in the
payoff function.

5.3.6 Extensions and further remarks

The original Black–Scholes model was formulated for a constant interest rate and a stock
price modeled as a geometric Brownian motion. One natural test of the model is to ask
how well the model performs at a particular point in time in the cross-section of traded
options. Since the risk-free rate r is observable for the given maturity T, the only remaining
parameter that needs to be estimated is the volatility σ of the underlying stock.

One can therefore take the observed prices CK (Q, t) for options with different strike
prices K, and invert the relationship to compute the so-called implied volatility of the
stock, i.e., the volatility that is needed in the Black and Scholes (1973) model to make the
price of the option consistent with the data. If the model is correct, then all options should
share the same implied volatility.

This is, however, not supported by the data, and options with strike prices further away
from the current stock price Qt typically yield higher implied volatilities. Since option
prices are increasing in the stock volatility due to the convex nature of their payoffs, this is
equivalent to saying that the prices of such options are higher compared to what the Black–
Scholes model would predict if volatility was calibrated to price correctly the options with
strike prices K close to Qt.

The literature on derivative pricing then quickly expanded to deal with these short-
comings of the seminal model, with extensions including price processes with jumps or
stochastic volatility, see, for example, Cox and Ross (1976), Ross (1978), Merton (1977), or
Heston (1993).

An interesting aspect of the discussion concerns the concept of market completeness
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in an environment where options are traded. Consider an economy where the stock price
follows an Itô process

dQt = µ (Qt) dt + σ (Qt) dWt

with a univariate Brownian motion W. The Black–Scholes model is a special case of this
economy. We know that markets are complete and dynamic trading over T = [0, T] in the
stock and the bond can replicate all square integrable time-T payoff. Breeden and Litzen-
berger (1978) present an interesting result that shows any such time-T payoff can also be
replicated by time-0 static trade in call and put options with different strike prices K.

Now consider an extension where the dynamics of Qt can also depend on a volatility
factor Xt, with dynamics

dQt = µ (Qt) dt + σ (Qt, Xt) dWt

dXt = µX (Xt) dt + σX (Xt) dWt

where Wt is now a two-dimensional Brownian motion. In order to replicate complete mar-
kets, we need dynamic trade in two risky securities with linearly independent exposure
vectors σ (Qt, Xt) and σX (Xt), for example, a traded stock index and the volatility index.
Typically, stock options with payoffs G (QT) and volatility options with payoffs G (XT) are
traded as well, with different strike prices. Time-0 trade in a combination of such sets of
options however does not complete markets, we would need assets that allow to replicate
the space of payoffs which are functions of the joint state (QT, XT), not just QT and XT

separately.

5.3.7 Numerical implementation

While the Black–Scholes model permits an analytical solution, extensions of the model
may require numerical implementation. Next, we describe two approaches applicable in
this situation. In Section 5.4, we study discretization schemes for partial differential equa-
tions of the type derived in (5.33), or, more generally, for those implied by the Feynman–
Kac formula in Section 5.2.5. The discretization schemes replace derivatives for the func-
tion of interest with differences on a predetermined grid, and lead to systems of linear
equations for which efficient solution methods exist, at least in cases when the state space
is low-dimensional.

As a second method, we study the construction of binomial trees introduced in Cox
et al. (1979). This is a computationally efficient method that replaces the distribution of
paths of an underlying Itô diffusion using a recombining tree where each node has two
alternative branches, with probabilities of reaching alternative branches that approximate
the dynamics of the Itô diffusion. Evolution along the branches of the tree represents
partial sums of scaled Bernoulli random variables which approximate the underlying Itô
diffusion by a generalization of a result known as Donsker’s invariance principle.
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5.4 Difference schemes for parabolic PDEs

In this section, we study numerical solutions of a class of partial differential equations
associated with the computation of the present value of a cash flow

v (x, t) = E
[∫ T

t
ϕ (t, s) h (Xs, s) ds + ϕ (t, T) H (XT, T) | Xt = x

]
where

ϕ (t, s) = exp
(
−
∫ s

t
r (Xτ, τ) dτ

)
dXt = µ (Xt, t) dt + σ (Xt, t) dWt

where Xt ∈ X = (l, r) with an appropriately specified boundary condition at {l, r}. By the
Feynman–Kac formula from Section 5.2.5, v (x, t) solves the differential equation

−vt (x, t) = Dv (x, t) + h (x, t) (5.37)

where
Dv (x, t) = −v (x, t) r (x, t) + vx (x, t) µ (x, t) +

1
2

vxx (x, t) σ (x, t)2 (5.38)

is a differential operator that collects derivatives with respect to the state dimension, and
v (x, T) = H (x, T) is the associated terminal condition. We also impose a general bound-
ary condition in the space dimension

α (x, t) vx (x, t) + β (x, t) v (x, t) = γ (x, t) x ∈ {l, r} , t ∈ [0, T) (5.39)

for some (predetermined) functions α, β and γ that incorporates a variety of possible be-
haviors of X at the boundaries. We treat here the case where X is univariate but extensions
to multivariate cases are straightforward.

Equation (5.37) is a PDE of the so-called parabolic type.1 The form of these equations,
together with the given terminal condition, invite a particular solution technique that re-
sembles backward iteration on a value function.

The idea is to overlay a grid of nodes over the region X ×T = [l, r]× [0, T] and approx-
imate equation (5.37) by replacing derivatives at the nodes with differences. This turns the
functional equation (5.37) into an algebraic system of linear equations. This system is very
easy to solve in principle but there are important considerations regarding the choice of
the grid and construction of the derivatives which affect the accuracy and stability of the
solution method.

1The classification of second-order PDEs is based on the combination of coefficients Avxx + Bvxt +
Cvxt+lower order terms = 0. In particular, equations satisfying B2 − AC = 0 are classified as parabolic,
B2 − AC < 0 as elliptic and B2 − AC > 0 as hyperbolic. Solutions to each of the types of equations have
different qualitative properties. Parabolic equations describe phenomena such as heat conduction or particle
diffusion over time. Elliptic equations are used to characterize stable steady states because a local pertur-
bation does not spread out throughout the solution. Hyperbolic equations capture finite-speed, wave-like
propagation of initial perturbations.
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5.4.1 Mapping of the problem to the Black–Scholes model

The Black–Scholes problem for the valuation of the derivative security is characterized by
the partial differential equation

rg (Q, t) = gt (Q, t) + gQ (Q, t) rQ +
1
2

gQQ (Q, t) σ2Q2 (5.40)

with terminal condition g (Q, T) = G (T). Hence we have r (x, t) = r, µ (x, t) = rx,
σ (x, t) = σx, h (x, t) = 0, and H (x, T) = G (x).

A more delicate issue is the choice of the boundary conditions at x ∈ {l, r}. The state
space for the valuation problem is the open interval Q ∈ (0, ∞), and does not prescribe any
specific boundary conditions, since the boundaries {0, ∞} are not part of the state space,
they are so-called open.

In the implementation of the Black–Scholes model, we will not go into the details of
exact characterization of these open boundaries, and instead take a practical approach.
Imagine that we are interested in the solution on the interval [a, b] ⊂ (0, ∞). We then
choose boundaries {l, r} with 0 < l < a < b < r < ∞ such that the solution on [a, b] is not
sensitive to the choice of the boundaries.

In the case of option pricing with payoffs (5.29) or (5.30), a plausible observation is that
if the current state Q is sufficiently distant from the strike price K at which the nonlin-
earity of the payoff occurs, then the price g (Q, t) becomes close to linear in Q. Then we
could neglect the second-order derivative term in (5.40) at those boundaries. Neglecting
for simplicity also the partial derivative in time dimension gt (Q, t), we obtain the bound-
ary condition

rg (Q, t) = gQ (Q, t) rQ Q ∈ {l, r} . (5.41)

This maps to the boundary condition (5.39) with β (x, t) = r, α (x, t) = −rx, and γ (x, t) =
0. Incorporating the time derivative gt (Q, t) back into the boundary is possible, adjusting
the formulas in the following text appropriately.

Another choice to be consider is a transformation of the state variable Q. In the fol-
lowing, we consider the construction of an equidistant grid. At the same time, the state
variable in the Black and Scholes (1973) model follows a geometric Brownian motion, so
perhaps a grid with node distances that scale proportionally with Q may be more desir-
able. Alternatively, we could consider rewriting the model using q = log Q as the state
variable.

To achieve that, define the transformation f (q, t) = f (log Q, t) = g (Q, t) = g (exp (q) , t).
Then the derivatives are given as follows

fq (q, t) =
d
dq

g (exp (q) , t) = gQ (exp (q) , t) exp (q) = gQ (Q, t) Q

fqq (q, t) =
d
dq

(gQ (exp (q) , t) exp (q)) = gQQ (Q, t) Q2 + gQ (Q, t) Q.
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Figure 5.2: Equidistant grid on [l, r]× [0, T].

so that the partial differential equation is transformed to

r f (q, t) = ft (q, t) +
(

r − 1
2

σ2
)

fq (q, t) +
1
2

σ2 fqq (q, t)

with the terminal boundary condition f (q, t) = G (exp (q)). The auxiliary approximate
boundary condition (5.41) can then be written as

f (q, t) = fq (q, t) q ∈ {l, r} .

We then obtain the general specification (5.37)–(5.39) with r (x, t) = r, µ (x, t) = r − 1
2 σ2,

σ (x, t) = σ, h (x, t) = 0, and coefficients in the boundary condition α (x, t) = 1, β (x, t) =
−1, γ (x, t) = 0.

5.4.2 Grid construction and approximation with differences

We discretize the space and time dimensions by choosing integers I, J that define the space
step ∆x .

= (r − l) /I and the time step ∆t .
= T/J. In the space dimension, we construct

a grid X = {l, l + ∆x, l + 2∆x, . . . , r − ∆x, r}. Similarly, the grid in the time dimension is
T = {0, ∆t, 2∆t, . . . , T − ∆t, T}. Combining the two grids, we obtain a two-dimensional
(I + 1)× (J + 1) node grid X × T on X × T where node (i, j) represents the state (x, t) =
(i∆x, j∆t). We denote values of functions on the grid as fi,j

.
= f (i∆x, j∆t).

Figure 5.2 depicts the construction of the grid together with the imposed terminal and
boundary conditions. Nodes vi,J , i ∈ {0, . . . , I} are given by the terminal condition vi,J =

Hi,J . Nodes at the space boundaries v0,j and vI,j, j = {0, . . . , J} are given by the boundary
condition (5.39). The goal is to approximate (5.37) at the interior nodes (i, j).

We start with the discrete approximation of the space derivatives. We approximate the
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derivative vx at node (i, j) using values of v at adjacent nodes. We have several options:

forward difference: vx (i∆x, j∆t) ≈ vx̄
i,j

.
=

1
∆x
(
vi+1,j − vi,j

)
central difference: vx (i∆x, j∆t) ≈ vxc

i,j
.
=

1
2∆x

(
vi+1,j − vi−1,j

)
backward difference: vx (i∆x, j∆t) ≈ vx

i,j
.
=

1
∆x
(
vi,j − vi−1,j

)
.

For example, the forward difference gets its name from the fact that we are using the value
of v in the ‘ahead’ node (i + 1, j). We discuss the suitability of these options later, and
formalize their accuracy in Section 5.4.6.

To approximate vxx we use the difference of differences. For example, we can use the
backward difference of forward differences vx̄:

vxx (i∆x, j∆t) ≈ vx̄x
i,j =

1
∆x

(
vx̄

i,j − vx̄
i−1,j

)
=

1

(∆x)2

(
vi+1,j − 2vi,j + vi−1,j

)
.

Collecting terms, we replace the differential operator

Dv (x, t) = −v (x, t) r (x, t) + vx (x, t) µ (x, t) +
1
2

vxx (x, t) σ (x, t)2

at (x, t) = (i∆x, j∆t) with the difference operator

(Dv)i,j = −vi,jri,j + vx̄
i,jµi,j +

1
2

vx̄x
i,j σ2

i,j

(here, we used forward difference vx̄
i,j as an example). We proceed in the same way at the

boundaries to approximate (5.39), using a forward difference at the lower boundary x = l
and a backward difference at the upper boundary:

α0,jv0,j + β0,jvx̄
0,j = γ0,j

αI,jvI,j + β I,jv
x
I,j = γI,j

From these equations, we can express the values v0,j and vI,j as functions of the values at
the adjacent nodes

v0,j =
γ0,j −

(
β0,j/∆x

)
v1,j

α0,j − β0,j/∆x
(5.42)

vI,j =
γI,j +

(
β I,j/∆x

)
vI−1,j

αI,j + β I,j/∆x

In the time dimension, we proceed in the same way, and approximate vt using differ-
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Figure 5.3: Explicit and implicit schemes for the solution of parabolic PDEs.

ences as follows:

forward difference: vt (i∆x, j∆t) ≈ vt̄
i,j

.
=

1
∆t
(
vi,j+1 − vi,j

)
(5.43)

backward difference: vt (i∆x, j∆t) ≈ vt
i,j

.
=

1
∆t
(
vi,j − vi,j−1

)
(5.44)

The choice will determine two difference solution methods. Using the forward difference
leads to the so-called implicit solution scheme, while the backward difference leads to the
explicit scheme. We study each of them in turn.

5.4.3 Explicit solution scheme

The explicit scheme replaces the differential equation (5.37) with the difference scheme

−vt
i,j = (Dv)i,j + hi,j

for nodes (i, j), i ∈ {1, . . . , I − 1}, j ∈ {1, . . . , J}. We can rewrite this equation as

vi,j−1 = (∆t) (Dv)i,j + vi,j + (∆t) hi,j. (5.45)

The right-hand side depends only on values in nodes at time j. Hence if we know the
solution v·,j at time j at all nodes i, we can use (5.45) to compute the solution at time j − 1.
The complete solution is obtained by iterating backward on (5.45), starting with the known
terminal condition v·,J = H·,J .

The left panel of Figure 5.3 depicts the iteration implied by the explicit scheme. Equa-
tion at node (i, j) collects information from vi−1,j, vi,j and vi,j+1 to explicitly compute the
solution for vi,t−1. For a given j, we can write the system of I − 1 equations at nodes
i ∈ {1, . . . , I − 1} as

vint
·,j−1 = Ajvint

·,j + h̃j (5.46)

where vint
·,j =

(
v1,j, . . . , vI−1,j

)′, values v0,j and vI,j were substituted out using boundary
conditions (5.42), and Aj is a tri-diagonal (I − 1)× (I − 1) matrix.
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Stability of the explicit scheme

We want to assure that the derived iterative scheme (5.46) is stable, which means that
small errors in the approximation do not propagate and amplify as we iterate backwards.
We have

vint
·,0 = A1vint

·,1 + h̃1 = A1A2vint
·,2 + A1h̃2 + h̃1 = . . . =

(
J

∏
j=1

Aj

)
vint
·,J + . . . .

This means that we want to make sure that matrices Aj have eigenvalues inside the unit
circle.

For notational simplicity, we restrict our attention to the heat equation case

r (x, t) = µ (x, t) = 0, σ (x, t) = σ (5.47)

with boundary conditions

α (x, t) = 1, β (x, t) = 0, γ (l, t) = γl , γ (r, t) = γr (5.48)

In this simple case, we have

Aj = A =


1 − ∆t

(∆x)2 σ2 ∆t
(∆x)2

σ2

2 0 0 · · ·
∆t

(∆x)2
σ2

2 1 − ∆t
(∆x)2 σ2 ∆t

(∆x)2
σ2

2 0 · · ·
0 ∆t

(∆x)2
σ2

2 1 − ∆t
(∆x)2 σ2 ∆t

(∆x)2
σ2

2 . . .

0 0
. . . . . . . . .


and

h̃j =



(∆t) hi,j +
∆t

(∆x)2
σ2

2 γl

(∆t) hi,j
...

(∆t) hi,j

(∆t) hi,j +
∆t

(∆x)2
σ2

2 γh


The eigenvalues of matrix A are given by

λi = 1 − 2
∆t

(∆x)2 σ2
(

sin
iπ
2I

)2

i ∈ {1, . . . , I − 1} .

Since we require |λi| < 1, ∀i, we must have

−1 < 1 − 2
∆t

(∆x)2 σ2
(

sin
iπ
2I

)2

< 1,
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so it is sufficient to choose ∆t and ∆x so that they satisfy

σ2∆t < (∆x)2 .

The explicit scheme is therefore conditionally stable. In the more general case with non-
constant coefficients, it is not straightforward to characterize sufficient conditions explic-
itly, but the general intuition based on the stability of matrices Aj still holds. At the very
least, once Aj is constructed, it is worth checking its eigenvalues to get a sense of potential
stability issues.

5.4.4 Implicit solution scheme

Using the forward difference to approximate the time derivative in (5.37) leads to the dif-
ference scheme

−vt
i,j−1 = (Dv)i,j−1 + hi,j−1

at nodes (i, j − 1), i ∈ {1, . . . , I − 1}, j ∈ {1, . . . , J}, which we can write as

vi,j−1 − (∆t) (Dv)i,j−1 = vi,j + (∆t) hi,j−1.

This equation defines values for nodes at time j − 1 implicitly, as an equation for three
unknowns vi−1,j−1, vi,j−1 and vi+1,j collected on the left-hand side, with a known value vi,j.
The right panel in Figure 5.3 depicts the scheme. In matrix form, we now have a system of
I − 1 equations

Ajvint
·,j−1 = vint

·,j + h̃j

where we again substituted out v0,j−1 and vI,j−1 using the boundary conditions. This yields
the iterative scheme

vint
·,j−1 =

(
Aj
)−1

(
vint
·,j + h̃j

)
.

When Aj = A, then this scheme only requires one matrix inversion, but even when it is
not, inverting the tri-diagonal matrix Aj is computationally relatively cheap.

Stability of the implicit scheme

Stability of the implicit scheme will depend on the eigenvalues of matrices
(

Aj
)−1. For the

special case given by restrictions (5.47)–(5.48), the matrix Aj is given by

Aj = A =


1 + ∆t

(∆x)2 σ2 − ∆t
(∆x)2

σ2

2 0 0 · · ·
− ∆t

(∆x)2
σ2

2 1 + ∆t
(∆x)2 σ2 − ∆t

(∆x)2
σ2

2 0 · · ·
− ∆t

(∆x)2
σ2

2 1 + ∆t
(∆x)2 σ2 − ∆t

(∆x)2
σ2

2 . . .
. . . . . . . . .
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and it can be shown that
(

Aj
)−1 have all eigenvalues inside the unit circle. The implicit

scheme for this special case is therefore unconditionally stable.

5.4.5 Upwind scheme for the choice of first difference

Another frequent stability issue concerns the choice of approximation of the first deriva-
tive. We want to study the performance of the explicit scheme, since the implicit scheme
may not always be implementable when the PDE contains terms that are nonlinear in the
space derivative. However, the same arguments can apply to the implicit scheme as well.
In order to study this problem, we return to the PDE (5.37) and simplify it by setting

h (x, t) = r (x, t) = σ (x, t) = 0, µ (x, t) = µ

This yields the first order differential equation on R × T

−vt (x, t) = µvx (x, t) (5.49)

with terminal condition v (x, T) = H (x, T). As we will see, the equation describes the
deterministic time propagation of a traveling wave, because the underlying Itô diffusion
is now deterministic with drift µ.

We truncate the space dimension by choosing an interval X = [l, r] and, as before, over-
lay a grid X × T on [l, r]× [0, T] with steps ∆x = (r − l) /I and ∆t = T/J. We start with
the choice of forward difference to replace vx (except at the right boundary , where we
choose the backward difference).

At any interior node (i, ), we now have the difference scheme

−vt
i,j = µvx̄

i,j

which can be rewritten as

vi,j−1 = vi,j + µ
∆t
∆x
(
vi+1,j − vi,j

)
.

Writing this scheme in the matrix form, we obtain

v·,j−1 = Ax̄v·,j

with

Ax̄ =


1 − µ ∆t

∆x µ ∆t
∆x 0

0 1 − µ ∆t
∆x µ ∆t

∆x 0
. . . . . .
0 1 − µ ∆t

∆x µ ∆t
∆x

0 −µ ∆t
∆x 1 + µ ∆t

∆x


The last line emerges from the use of backward difference at the right boundary. It is
immediate to see that Ax̄ has one eigenvalue equal to 1 − µ ∆t

∆x with multiplicity I − 1 and
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Figure 5.4: Solution to equation (5.49) with T = 1 and terminal condition H(x, T) = (1 +
exp(−20(x − 0.5)))−1. The grid is chosen to be [l, r] = [0, 1] with steps ∆x = 0.01 and ∆t = 0.01.

one eigenvalue equal to 1 with multiplicity two.

The explicit scheme with the forward difference replacing vx will therefore be unstable
when µ < 0. On the other hand, when µ > 0, we need

∣∣1 − µ ∆t
∆x

∣∣ < 1 to achieve stability,
which will be satisfied if ∆x > µ

2 ∆t.

The backward difference choice is a direct counterpart. Repeating the above construc-
tion, we can show that the explicit scheme with the backward difference vx replacing the
derivative vx yields

v·,j−1 = Axv·,j

with

Ax =


1 − µ ∆t

∆x µ ∆t
∆x 0

−µ ∆t
∆x 1 + µ ∆t

∆x 0
. . . . . .

−µ ∆t
∆x 1 + µ ∆t

∆x 0
0 −µ ∆t

∆x 1 + µ ∆t
∆x

 .

The matrix Ax now has one eigenvalue equal to 1 + µ ∆t
∆x with multiplicity I − 1 and one

eigenvalue equal to 1 with multiplicity two. Finally, it can also be shown that the central
difference choice will always lead to instability here, regardless of the choice of µ. On the
other hand, the central difference choice is always stable for the implicit scheme.

The instability can have dramatic consequences. The top row in Figure 5.4 shows the
solution to the PDE with µ > 0 for the case with the forward difference vx̄ on the left,
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and the backward difference vx on the right. The terminal condition at T = 0 is the thick
black line, and as time t goes backward, the wave propagates to the left. While the forward
difference scheme delivers an accurate solution, the solution for the backward difference
scheme completely disintegrates by t = 0.6. The opposite situation occurs in the bottom
row of Figure 5.4, for µ = −0.3.

Our stability analysis revealed that it is appropriate to use the forward derivative when
µ > 0 (and the wave propagates to the left), and to use the backward derivative when µ <

0 (and the wave propagates to the right). In computational fluid dynamics, this approach
yielded the name the upwind differencing scheme because the difference at node (i, j) is
informed from the direction that points against the flow of the wave.

A natural question is which difference to choose if µ (x, t) changes signs. One approach
is to make the direction of the difference depend on the sign of µ (x, t). In particular, we
can approximate

−vt (x, t) = µ (x, t) vx (x, t)

with the difference scheme
−vt

i,j = µ+
i,jv

x̄
i,j − µ−

i,jv
x
i,j

where µ+
i,j = max

(
0, µi,j

)
and µ−

i,j = max
(
0,−µi,j

)
.

5.4.6 Approximation errors

We now return to the discussion of approximation errors associated with replacing the
derivatives in the differential equation

−vt (x, t) = Dv (x, t) + h (x, t) (5.50)

with differences. Establishing these approximation errors are useful because they give
guidance on the how quickly approximation errors decline as we refine the grid and
∆x → 0 and ∆t → 0. Refining the grid is computationally costly, and hence it is impor-
tant to understand the tradeoff between this computational cost and benefits of increasing
accuracy.

Consider the second-order Taylor expansion of a function f ,

f (x + ∆x) = f (x) + (∆x) fx (x) +
1
2
(∆x)2 fxx (x) +

1
6
(∆x)3 fxxx (z+)

where the last term represents the error of approximation, with z ∈ [x, x + ∆x]. This yields

f (x + ∆x)− f (x)
∆x

= f x̄ (x) = fx (x) +
1
2
(∆x) fxx (x) +

1
6
(∆x)2 fxxx (z) = fx (x) + O (∆x)

and the one-sided first differences (forward and backward) approximate the derivative
with accuracy O (∆x).2 As for the central difference, use the expansion of f (x + ∆x) and

2We say that a function g is ‘big-O’ h (∆x) as ∆x → 0, and write g (∆x) = O (h (∆x)), if there exist a δ > 0
and an M > 0 such that |g (∆x)| ≤ M |h (∆x)| for any |∆x| < δ.
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f (x − ∆x) to obtain

f (x + ∆x)− f (x − ∆x)
2 (∆x)

= f xc (x) = fx (x) +
1
12

(∆x)2 ( fxxx (z) + fxxx
(
z′
))

= fx (x) + O
(
(∆x)2

)
and the central difference hence approximates the derivative with accuracy O

(
(∆x)2

)
.

The approximation of the first derivative using the central difference therefore achieves a
higher degree of accuracy than the one-sided differences as ∆x → 0 and the grid becomes
finer. However, this is only a local argument about the approximation of the derivative at
a point and is not a statement about the stability of the approximation of the whole differ-
ential equation on X × T . As we have seen in Section 5.4.5, using the central derivative
may lead to global instability despite the higher degree of local accuracy.

As for the second derivative, it follows from the third-order Taylor approximation that

f (x + ∆x)− 2 f (x) + f (x − ∆x)
(∆x)2 = f x̄x (x) = fxx (x) + O

(
(∆x)2

)
.

The time derivative is approximated using the backward difference for the explicit
scheme and the forward difference for the implicit scheme, which implies that in both
cases, the error is O (∆t).

Combining these results, the error of approximation of the differential equation (5.50)
at a particular node is of order O (∆t + ∆x) when we use forward or backward difference
for vx, and O

(
∆t + (∆x)2

)
when we use the central difference.3

5.4.7 Nonlinear equations and steady states

We now study a version of the neoclassical growth model

v (kt, t) = max
c

Et

[∫ T

t
e−ρ(s−t)u (cs) ds

]
subject to

dkt = ( f (kt)− ct) dt + σ (kt) dWt.

While this is a finite horizon problem, we are mostly interested in the time-invariant so-
lution as T → ∞, which can be obtained by iterating backward in time in t → −∞. The

3The Crank–Nicholson scheme combines the implicit and explicit scheme to construct an approximation
that can be interpreted as the central time difference in between the adjacent time nodes and achieves a degree

of accuracy in the time dimension O
(
(∆t)2

)
. There also exist higher-order approximations of the first- and

second-order derivatives in the space dimension based on the so-called Runge–Kutta methods, which utilize

information from more adjacent points and achieve a higher degree of accuracy than O (∆x) or O
(
(∆x)2

)
,

respectively.
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associated Hamilton–Jacobi–Bellman equation is

0 = max
c

u (c)− ρv (k, t) + vt (k, t) + vk (k, t) ( f (k)− c) +
1
2

vkk (k, t) σ2 (k) (5.51)

While for a given process c, this is a linear PDE, the maximization over c makes the
resulting PDE for the value function nonlinear. For the choice u (c) = (1 − γ)−1 c1−γ,
f (k) = Akα − δk and σ (k) = σk, we have the first-order condition

c (k, t) = vk (k, t)−
1
γ

and substituting it back into (5.51), we obtain

−vt (k, t) = Dv (k, t) (5.52)

with

Dv (k, t) = −ρv (k, t) + a (k, t) vk (k, t) +
1
2

σ2k2vkk (k, t)

a (k, t) =
γ

1 − γ
c (k, t) + (Akα − δk) =

γ

1 − γ
vk (k, t)−

1
γ + (Akα − δk) .

Candler (2001) discusses various approaches of dealing with the nonlinearity embedded in
the dependence of a (k, t) on the derivative vk (k, t). Here, we provide a couple of examples.

Explicit scheme example

The explicit scheme is still conceptually easy to implement but we have to take into account
stability concerns. In order to mimic the notion of upwind differencing, one proposal is
−vt

i,j = Dvi,j with

Dvi,j = −ρvi,j + a+i,jv
k̄
i,j − a−i,jv

k
i,j +

1
2

σ2k2
i vk̄k

i,j . (5.53)

However, we still need to deal choose how to construct the approximation of vk in a (k, t).
The insight from the linear equation is that the instability should be largely addressed by
the choice a+i,jv

k̄
i,j − a−i,jv

k
i,j in (5.53) and the choice of the difference inside a (k, t) should not

matter much, but since the whole equation is nonlinear, we have no theoretical result for
that.

Implicit scheme example and time-invariant limits

Notice that the explicit scheme from the previous example can be written as

vi,j−1 = vi,j + (∆t) Dvi,j.

In the backward iteration scheme constructed to compute the time-invariant limit, vi,j is
the approximation from the previous iteration, (∆t) Dvi,j is the ‘update’, and vi,j−1 is the
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new approximation. We are looking for v = limj→−∞ v·,j. However, the explicit scheme
is only conditionally stable, which imposes an upper bound on ∆t (as a function of ∆x ).
Updates may therefore be small and convergence slow.

On the other hand, the implicit scheme is unconditionally stable, so that ∆t can be
chosen to be large. A large ∆t will lead to an inaccurate solution along the transition path,
but that is not a concern if we are only looking for the time-invariant solution 0 = Dv.

As before, we can rewrite the implicit scheme −vt̄
i,j−1 = Dvi,j−1 as

vi,j−1 − (∆t) Dvi,j−1 = vi,j.

The problem now is that D is a nonlinear operator and therefore cannot be easily inverted
to obtain v·,j−1 as a function of v·,j. One possibility is to propose to replace D with

D∗vi,j−1 = −ρvi,j−1 + a+i,jv
k̄
i,j−1 − a−i,jv

k
i,j−1 +

1
2

σ2k2
i vk̄k

i,j−1

where a+i,j and a−i,j are taken from the node (i, j) and hence are known when constructing
the discretization at (i, j − 1). Then

vi,j−1 − (∆t) D∗vi,j−1 = vi,j (5.54)

has a left-hand side that is linear in the unknown vector v·,j−1 and can be written as
A∗

j v·,j−1 = vi,j with an invertible matrix A∗
j . Notice that equation (5.54) is not a coher-

ent description of the problem along the transition path, since we shifted the time indices
of the derivatives inside ai,j but if it converges, it will recover the correct fixed point. For

the method to work well, it is worth checking that
(

A∗
j

)−1
has eigenvalues inside the unit

circle, but given previous arguments, there is a good chance this will be the case, even for
large ∆t that can speed up convergence.

Candler (2001) discusses strategies for dealing with nonlinear PDEs in more detail, in-
cluding a two-dimensional state space, and also derives iterative schemes for policy func-
tion iteration.

5.5 Binomial trees

Cox et al. (1979) introduced a computationally efficient way how to aproximate a geo-
metric Brownian motion, based on a discretization of the Brownian motion on a tree, and
convergence of a Binomial distribution to a Normal distribution. They then used it to
price derivative securities when the underlying stock price process is a geometric Brow-
nian motion, as in the Black and Scholes (1973) setup. We focus here on the simple case
of the geometric Brownian motion, for extensions to more general Itô diffusions see, e.g.,
Nelson and Ramaswamy (1990). The approach can very efficiently incorporate valuation
of derivatives with more complicated payoff structure.

Consider the securities market from Section 5.3 where the return on the risk-free bond
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Q0

u · Q0

d · Q0

u2 · Q0

u · d · Q0

d2 · Q0

q

1 − q

q

1 − q
q

1 − q

∆t ∆t

Figure 5.5: Discretization of a Brownian motion using a binomial tree.

portfolio and the stock price follow

dBt = rBtdt
dQt

Qt
= µdt + σdWt.

with constant parameters r, µ, σ, where W is a Brownian motion under the data-generating
measure P. Under the risk-neutral measure P∗, the stock price follows

dQt

Qt
= rdt + σdW∗

t

where W∗ is a Brownian motion under P∗. We are going to discretize the evolution of Q
under P∗.

Figure 5.5 describes the logic of the discretization. The time interval [0, T] is discretized
into J periods of length ∆t = T/J. In the discrete approximation of the stock price evo-
lution, starting at time 0, the stock price Q0 can go other up (with probability q), reaching
value u · Q0 in ∆t, or down (with probability 1 − q), reaching value d · Q0 in ∆t. This is
repeated at every subsequent node—e.g., from node u · Q0, the stock price can go to u2 · Q0

or ud · Q0.

The substantial computational advantage lies in the observation that an ‘up–down’
path ends in the same node as a ‘down–up’ path. The tree is therefore recombining—after
j periods, there are only j + 1 nodes, so the size of the state vector that captures the distri-
bution of the stock price grows linearly, rather than exponentially.

In order to construct the tree, we need to determine the parameters u, d and q. Observe
that under the risk-neutral measure,

QT = Q0 exp
((

r − 1
2

σ2
)

T + σ (W∗
T − W∗

0 )

)
hence log QT − log Q0 ∼ N

((
r − 1

2 σ2) T, σ2T
)

under P∗. We want to achieve that the
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distribution of the stock price at time T on the grid matches that in the continuous-time
model. On, the grid, the distribution of the number of ‘up’ steps after J steps is binomial
with parameters (J, q). Consequently, the distribution of log QT − log Q0 on the grid is
given by a (generalized) binomial distribution with mean and variance given by

Ê∗
0 [log QT − log Q0] = J [q log u + (1 − q) log d]

V̂ar
∗
0 [log QT − log Q0] = Jq (1 − q) (log u − log d)2 .

By the Central Limit Theorem, as J → ∞, this distribution converges to a normal distribu-
tion with the same mean and variance. Choosing

u = exp
(

σ
√

∆t
)

d =
1
u

q =
exp (r∆t)− d

u − d

and noting that J = T/∆t, we obtain

lim
∆t→0

Ê∗
0 [log QT − log Q0] = lim

∆t→0

Tσ√
∆t

2 exp (r∆t)− u − d
u − d

= T
(

r − 1
2

σ2
)

lim
∆t→0

V̂ar
∗
0 [log QT − log Q0] = lim

∆t→0

T
∆t

q (1 − q) 4 (log u)2 = Tσ2

The choice of a symmetric grid (du = 1) follows Cox et al. (1979) but other choices are
possible as well. In particular, we could have chosen u, d and q to exactly match the mean
and variance of Q∆t or its logarithm. However, the small ∆t limit still holds with the above
choice, and

lim
∆t→0

1
∆t

Ê∗
0

[
Q∆t − Q0

Q0

]
= r

lim
∆t→0

1
∆t

V̂ar
∗
0

[
Q∆t

Q0

]
= σ2.

as in the continuous-time model.

Once the tree is constructed, valuation proceeds as in Figure 5.6. For terminal nodes
(i, J), determine the payoff of the derivative security as gi,J = G (Qi,J). The price of the
derivative security is then determined by iterating backward, using the risk-neutral pricing
formula

gi,j−1 = exp (−r∆t) Ê∗
j−1
[
g·,j | Q·,j−1 = Qi,j−1

]
= exp (−r∆t)

[
qgi+1,j + (1 − q) gi.j

]
.

The valuation scheme in the form of the binomial tree is rather flexible and can be used
to price more complicated derivative securities than just those with a terminal payoff. For
example, American options allow for early exercise before the maturity date T. Investors
will choose to exercise early if the current payoff from exercising is larger than the value
of the option if it held further. Using the binomial tree, we can set the value at terminal
payoff date gi,J = max (0, Qi,J − K) and then take early exercise into account by using the
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1 − q
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Figure 5.6: Valuation using a binomial tree

valuation formula

gi,j−1 = max
(

Qi,j−1 − K, exp (−r∆t) Ê∗
j−1
[
g·,j
])

= max
(
Qi,j−1 − K, exp (−r∆t)

[
qgi+1,j + (1 − q) gi.j

])
.
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Chapter 6

Q-learning in decision problems

Textbook: Reinforecement learning: Sutton and Barto (2018). Other learning methods in
economics: Sargent (1993), Sargent (1999), Evans and Honkapohja (2001)
QuantEcon: Quantitative Economics with Python, Topic 40 (worker search problem).

In this chapter, we discuss a method of learning that is substantially distinct from the
Bayesian approach that we employed when constructing the Kalman filter in Section 4.
A Bayesian learner starts with a prior probability distribution over unknown objects of
the model, and uses available information that comes in the form of signals with well-
described probabilistic structure to update the prior using Bayes’ law.

Instead, we model an agent who learns ‘optimal’ actions by experimentation. The
method combines aspects of Monte Carlo simulation methods with ideas from dynamic
programming. Specifically, the agent learns the value of taking alternative actions in given
states of the world by ‘experiencing’ the consequences of these actions in terms of utility
flow and subsequent continuation values.

Q-learning is thus an instance of reinforcement learning, a class of algorithms in which
actions are deemed to be good and thus more likely to be chosen if they lead to desirable
consequences, while actions with undesirable consequences are corrected. The term Q-
learning probably comes from the fact that the object to be learned in this method is a
function denoted originally Q, and sometimes called the ‘quality’ function.

We first provide background and a general description of the method, and then apply
it in the context of a worker in the McCall (1970) search problem which we modify to make
the worker learn the optimal action in the form of a rule that accepts or rejects available
wage offers. The application is based on the QuantEcon lecture

https://python.quantecon.org/mccall q.html.

https://python.quantecon.org
https://python.quantecon.org/mccall_q.html
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6.1 Monte Carlo methods

Monte Carlo methods are techniques used for approximation of distributions of random
variables using simulations of pseudo-random draws from those distributions. These sim-
ulated distributions can then be used to evaluate moments and other statistics of those
random variables. We encountered an application of the Monte Carlo method in Sec-
tion 2.4.3 when we discussed the approximation of an expectations operator. Monte Carlo
techniques can be advantageously used in particular in high-dimensional spaces where an
explicit description of the distribution can be complicated and other numerical techniques
too costly to be applied.

Consider a random variable y with distribution given by a cdf F (y). If we want to
numerically evaluate the expectation E [y], we can create a large sample of independent
draws yi, i = 1, . . . , I, from the distribution F (y), and then approximate

E [y] =
∫

ydF (y) ≈ 1
I

I

∑
i=1

yi.

Laws of large numbers state assumptions under which the sum converges to the expecta-
tion, and central limit theorems characterize the distributional properties of the sum.

This method can be naturally extended to dynamic environments. Consider a Markov
stochastic process st, t = 0, 1, 2, . . . that is stationary and ergodic, with values st ∈ S , tran-
sition probability P (st+1|st), and unconditional distribution P (st). We are interested in
evaluating the present value of income yt = y (st) with unconditional mean E [yt], condi-
tional on an initial state s0 = s ∈ S ,

V (s) = E

[
∞

∑
t=0

βty (st) |s0 = s

]
.

One challenge when evaluating the expectation in the value function is the infinite sum.
We could, for example, proceed as follows. Pick a large T and split the sum as

V (s) = E

[
T

∑
t=0

βty (st) |s0 = s

]
+ E

[
∞

∑
t=T+1

βty (st) |s0 = s

]
.

Since the process st is stationary and ergodic, the conditional distribution of st converges
to the unconditional one as t → ∞. This allows us to approximate the last term in the
above expression with the unconditional expectation

E

[
∞

∑
t=T+1

βty (st) |s0 = s

]
≈ βT+1

1 − β
E [y (st)] .

We can then proceed as follows. First, draw a large sample of paths si
t, t = 0, 1, 2, . . .,

i = 1, . . . I initiated at s0 = s, using transition probabilities P (st+1|st) for drawing si
t+1 ∼

P
(
st+1|si

t
)

to form each path i. Second, generate a large number of draws sj, j = 1, . . . J,
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from the unconditional distribution P (st). Then we can approximate

V (s) ≈
I

∑
i=1

T

∑
t=0

βty
(

si
t

)
+

βT+1

1 − β

1
J

J

∑
j=1

y
(

sj
)

.

6.2 Q-learning

We now combine the ideas underlying Monte Carlo simulation methods with dynamic
programming concepts to recursify the calculations. For now, assume that the state space
S is finite.

The value function can be represented recursively using the Bellman equation

V (s) = y (s) + βE [V (s1) |s0 = s] . (6.1)

We encountered this recursive representation in Chapter 1 when we studied recursive val-
uation of cash flows, and in Chapter 2 when we formulated the recursive problem of the
McCall (1970) worker.

In both cases, we approached to problem using backward iterations. This procedure
requires the evaluation of the expectation on the right-hand side of the Bellman equation
(6.1) in every step of the iteration.

This expectation can be approximated using Monte Carlo draws. Generate a large
number of draws si, i = 1, . . . I, from the conditional distribution P (s1|s0 = s), and con-
struct

y (s) + βE [V (s1) |s0 = s] ≈ y (s) + β
1
I

I

∑
i=1

V
(

si
)

. (6.2)

Then the backward iteration algorithm can proceed as usual. Since the draws are generated
from P (s1|s0 = s), the right-hand side of (6.2) is an unbiased estimate of the left-hand side:

y (s) + βE [V (s1) |s0 = s] = y (s) + βE

[
1
I

I

∑
i=1

V
(

si
)
|s0 = s

]
.

In general, drawing a larger number of samples si increases the accuracy of the approxi-
mation. Instead of doing that, we now consider a conceptually different idea, and choose
I = 1. We therefore generate a single draw of the next-period state s1, denoted s′. With
this draw, we form the so-called temporal difference

TD
(
s, s′
)
= y (s) + βV

(
s′
)
− V (s) . (6.3)

This temporal difference approximates the difference between the right- and left-hand side
of the Bellman equation (6.1). Since y (s)+ βV (s′) is an unbiased estimate of the right-hand
side of (6.1), we have

E
[
TD

(
s, s′
)
|s
]
= y (s) + βE

[
V
(
s′
)
|s
]
− V (s) = 0.
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With these observations, we devise the following algorithm. Given a conjectured value
function Vn (s) and current state s, draw s′ from P (s′|s). Then construct the next iteration
of the value function as Vn+1 (s̃) as

Vn+1 (s) = Vn (s) + α
[
y0 + βVn (s′)− Vn (s)

]︸ ︷︷ ︸
TDn (s, s′)

(6.4)

Vn+1 (s̃) = Vn (s̃) , s̃ ̸= s.

The parameter α ∈ (0, 1) is the learning rate. Once updated, repeat the iterations with s′ as
the new state.

The intuition behind the algorithm is as follows. If Vn (s) is too low relative to the
correct value, then TD (s, s′) will be on average positive, and the value will be on average
updated upward, Vn+1 (s) > Vn (s). When Vn (s) is too high, then, correspondingly, the
value will be updated downward on average. In this way, the iterations will tend, under
appropriate conditions, toward the correct value function.

If Vn = V, then E [TD (s, s′) |s] = 0, and the value Vn (s) will on average not change.
However, due to the stochastic nature of the iterations, the sequence Vn never converges
to a deterministic function. To assure deterministic convergence, the learning rate α has to
converge to zero as n → ∞ at an appropriate rate, a question we return to later.

6.2.1 Adding decision-making

The simulation algorithm for the approximation of the value function has not involved any
active choice. We now extend the recursive problem to include such a possibility, which
yields the Q-learning algorithm.

Consider a situation where in every state s ∈ S , there is a set of available actions
a ∈ A. Both S and A are finite. The set of currently available actions A can depend on
s but we suppress this in the notation, and the distribution of the next period state s′ can
also depend on the current action a.

We then define the so-called state-action value function Q : S ×A → R as

Q (s, a) = y (a) + βE
[

max
a′∈A

Q
(
s′, a′

)
|s, a

]
. (6.5)

The state-action value function is tightly related to the value function V (s) through

V (s) = max
a∈A

Q (s, a) .

This reveals that the recursion for the state-action value function (6.5) is equivalent to

V (s) = max
a∈A

y (a) + βE
[
V
(
s′
)
|s, a

]
.

We can now combine the temporal difference algorithm with optimal choice. For a given
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state s and state-action value function Qn, draw s′ (a) from the distribution P (s′|s, a) for
all a ∈ A. With these draws, define Qn+1 as

Qn+1 (s, a) = Qn (s, a) + α

[
y (a) + β max

a′∈A
Qn (s′ (a) , a′

)
− Qn (s, a)

]
︸ ︷︷ ︸

temporal difference TDn (s, a, s′ (a))

(6.6)

Qn+1 (s̃, a) = Qn (s̃, a) , s̃ ̸= s.

When Qn = Q, then the conditional expectation of the temporal difference is again equal
to zero, E [TDn (s, a, s′ (a)) |s, a] = 0. Using the same intuition as in (6.4), the algorithm in
(6.6) will tend to stochastically approximate the state-action value function Q (s, a).

The updating rule can also be written in the form

Qn+1 (s, a) = (1 − α) Qn (s, a) + α

[
y (a) + β max

a′∈A
Qn (s′ (a) , a′

)]
which indicates that the updated function is constructed as a weighted average of the old
iteration and the forward-simulated continuation value, taking the next-period optimal
choice a′ according to the current estimate Qn.

Once the algorithm for the approximation of the state-action value function converged
to some limit Q̄, we can obtain optimal value and policy as

a∗ (s) = arg max
a∈A

Q̄ (s, a) V (s) = Q̄ (s, a∗ (s)) .

6.2.2 Interpretation

The Q-learning algorithm learns the function Q, sometimes called the quality function,
via simulation. The method is an example of so-called reinforcement learning, a class of
methods in which actions that lead to high realized values or rewards are ‘reinforced’ as
good choices by increasing their current state-action values Q (s, a).

Notably, while the algorithm requires draws from the transition probabilities of the
underlying state, it does not involve an explicit formation of agent’s beliefs. Instead, the
agent is presented with draws from the conditional distribution of the state, and learns
how to take optimal action conditional on the state. The distribution of the next-period
state conditional on current state and action is reflected indirectly, by more likely states
being drawn more frequently.

One interpretation of Q-learning is as a computational algorithm for solving rational
expectations problems. We are interested in solving problem (6.5) but evaluation of the
expectations operator or the maximization operator is hard. This is advantageous when
the description of the probability distribution is too complex or in situations where uncer-
tainty is not essential but actions are complex, like in strategic games. Once the problem
has converged, we obtain optimal policy under the data-generating process.

The other interpretation of the algorithm is as a description of actual behavior under
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reinforcement learning. This form of learning appears markedly different from forms
of learning where agents use information to update beliefs either in a Bayesian or non-
Bayesian way. This requires disciplining the structure of the updating of the state-action
value function and the learning rate in a behaviorally plausible way. However, the crucial
question is to which extent the model of reinforecement learning leads to novel testable
predictions that can be compared with data and help distinguish the model from other
forms of learning.

An associated question is the embedding of the individual decision problem in an equi-
librium model of market interaction. While the simulation approach appears to simplify
individual decision problems by allowing to sidestep explicitly forward-looking behavior,
aggregation and market clearing bring many of these considerations back into play.

6.2.3 Implementation details

There is a range of other aspects that require consideration when implementing the Q-
learning algorithm.

First, the algorithm in the form (6.6) requires the state space S and action space A
to be finite. This form of the algorithm is known as tabular Q-learning, since it relies on
updating individual values in the matrix Q (s, a) organized in a table. If S or A are infinite,
for example, continuous, then it must be discretized to turn the problem into the tabular
form.

Alternative methods for continuous state spaces use projection methods for the func-
tions Vn and iterate on corresponding projection coefficients. The machine learning liter-
ature sometimes utilizes neural networks for complex projection problems, and calls the
algorithm deep Q-learning.

Second, the rate of convergence of the learning rate α toward zero as n → ∞ involves
the tradeoff between computational costs and ability to converge to the correct solution.
When α vanishes to zero too slowly, computational costs will be high. On the other hand,
if it vanishes too quickly, the solution may not converge to the true solution. For more
detail on these convergence results, see Sutton and Barto (2018) or Li et al. (2023).

Third, algorithms of the form (6.6) applied to complex problems can get stuck in local
maxima when Qn leads to suboptimal actions that are self-confirming because optimal
actions have lower state-action values and are thus not explored. This is a problem also
known from Markov chain Monte-Carlo methods in econometrics. A solution to such
a problem involves experimentation in which values determined by actions chosen via
maxa′∈A Qn (s′, a′) are occasionally replaced by Qn (s′, ã) with ã drawn randomly. As with
the learning rate, the experimentation rate must ultimately decay to zero for the algorithm
to converge deterministically, and the decay rates of the experimentation rate and learning
rate toward zero must be suitably balanced.

Fourth, updating will be infrequent and hence slow for parts of the state spaces that
are only infrequently visited. Learning the value function in such parts of the state space
may benefit from re-starting the simulations in these states.
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Fifth, initialization of the Q-learning algorithm requires a suitable choice of the function
Q0 (s, a), especially in a situation when the algorithm is meant to describe actual behavior
under reinforcement learning.

Sixth, when Qn is not the correct state-action value function, the algorithm in (6.6) will
tend to overstate the updates due to the convexity of the max operator, yielding an upward
bias in the value function. To understand this, consider a Qn for which each of the value
Qn (s, a) are given by

Qn (s, a) = Q (s, a) + ε (s, a)

where ε (s, a) is zero-mean noise. Then maximization of Qn (s, a) over a will typically lead
to larger values than maximization of Q (s, a). As above, the convergence rate of learning
must be balanced to make this bias vanish in the limit n → ∞.

6.3 Q-learning in the worker search problem

We now implement the Q-learning algorithm in a simple application based on the McCall
(1970) worker search model. The application utilizes the corresponding QuantEcon lec-
ture

https://python.quantecon.org/mccall q.html.

The model environment is the same as studied in Section 2.1, and we briefly review it here.

The worker lives in an infinite-horizon economy, with discrete time t = 0, 1, 2, . . .. Ev-
ery period t, an iid wage offer w is drawn from distribution F (w), with F (0) = 0, F (B) = 1
for some B > 0. Since the baseline tabular Q-learning algorithm requires a finite state
space, we will assume throughout that the support of the wage offer distribution is finite,
given by a discrete grid wi, i = 1, . . . , I, with probability distribution f̂ i, i = 1, . . . , I. To
keep notational consistency, we continue writing

E [v] =
∫ B

0
v (w) dF (w) =

I

∑
i=1

v
(

wi
)

f̂ i.

This discrete distribution could have been constructed from an underlying continuous dis-
tribution using quadrature methods described in Section 2.4.3. Alternatively, we could rely
on projection methods applied to the state-action value function and iterations based on a
‘deep Q-learning’ algorithm to update the projection coefficients.

The worker chooses to accept or reject the offer, at ∈ {accept, reject}. Acceptance
means that the worker receives income yt = w forever. Rejection implies that the worker
receives unemployment benefit yt = c and moves to next period where a new offer is
drawn. Time is discounted at rate β ∈ [0, 1).

The worker hence solves the sequence problem

V∗
0 = max

{at}∞
t=0

E0

[
∞

∑
t=0

βtyt

]
(6.7)

https://python.quantecon.org/mccall_q.html
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where at ∈ {accept, reject} if the worker has not yet accepted any earlier offer, and at ∈ {}
otherwise. V∗

0 denotes the value function, and we assume that V∗
0 conditions on the initial

offer w0 being observed.

Every decision at is made conditional on the time-t information set, which contains the
history of all offers up to time t, wt = (w0, . . . , wt). The problem of a worker with current
offer w at hand can be formulated recursively as

V (w) = max
{accept, reject}

{
Va (w) , c + β

∫ B

0
V
(
w′) dF

(
w′)}

where Va (w) is the value of accepting the offer.

In this formulation, we assumed that once an offer w is accepted, the worker works at
that wage forever. The value of accepting an offer thus is

Va (w) =
w

1 − β
.

However, as we have seen in Section 2.2.1, in this iid environment this assumption can
be dropped without any consequence, and the problem modified as follows. In every
period, the worker can decide whether to continue working at the same wage w or leave
to unemployment, in which case a new wage offer arrives in the next period. This is
equivalent to offering to the worker the same wage contract at wage w every period.

The value of accepting an offer can then be written as follows

Va (w) = w + β max
{accept, reject}

{
Va (w) , c + β

∫ B

0
V
(
w′) dF

(
w′)}

Since the wage draws are iid, the outside option is constant over time. Hence, even if the
worker is allowed to leave the current job that guarantees wage w which was previously
accepted, such an option would never be exercised. In other words, if the wage was suffi-
ciently high to be accepted in one period, it is sufficiently high to be accepted in any other
period.

This conclusion would be different in a model with an additional persistent state vari-
able that affects the outside option, for example in the form of a predictable distribution
of future offers or their frequency. It is also worth stressing that this option to leave is
distinct from a model of search on the job in which the worker samples new wage offers
while continuing to work in the existing job, and only accepts an offer if it is better than
the current wage.

6.3.1 Implementing Q-learning

In the McCall (1970) model, the worker understands the probabilistic structure of the
model, which allows to form expectations (subjective or objective) over the next-period
offers.

Instead, we now implement the Q-learning approach described earlier. Under this
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approach, the worker does not have available the probability distribution of next-period
offers. Instead, the worker observes realized wage offer draws and makes accept or reject
decisions. The Q-learning algorithm is an example of reinforcement learning algorithms in
which the worker is rewarded for making decisions that, over time, lead to high payoffs.
Through this process, the worker learns the value of alternative actions in a given state,
which then allows to deduce optimal action.

We start by rewriting the problem in the form of the state-action value function, defined
in its general form in (6.5). In our context, the function Q (w, a) is given by

Q (w, accept) = w + β max
{accept, reject}

{Q (w, accept) , Q (w, reject)}

Q (w, reject) = c + β
∫ B

0
max

{accept, reject}

{
Q
(
w′, accept

)
, Q
(
w′, reject

)}
dF
(
w′) .

The equations highlight the distinction between w and w′ in the next-period offers. The
first line is the value of accepting an offer, which results in working for one period, and
then an option to continue at the same wage w or leaving to unemployment. The second
line is the value of rejecting the offer, which results in receiving the unemployment benefit
c and then drawing a new wage w′ from the distribution F (w′) at the beginning of next
period.

This state-action value function maps to the value functions Va(w) and V(w) as fol-
lows:

Va (w) = Q (w, accept) V (w) = max
{accept, reject}

{Q (w, accept) , Q (w, reject)} .

Let us simplify the notation for the state-action value function and write it as

Q (w, accept) = w + β max
a′∈A

Q
(
w, a′

)
Q (w, reject) = c + β

∫ B

0
max
a′∈A

Q
(
w′, a′

)
dF
(
w′)

for A = {accept, reject}.

Recall that the problem for the state-action value function requires the evaluation of an
integral. As indicated earlier, one possibility is to apply a Monte-Carlo approach, draw a
large number I of offers wj, j = 1, . . . , J from the distribution F (w′), and then approximate

∫ B

0
max
a′∈A

Q
(
w′, a′

)
dF
(
w′) ≈ 1

J

J

∑
i=1

max
a′∈A

Q
(
w′, a′

)
.

Because the integral is an expectation over the distribution F (w′), the right-hand side is
an unbiased estimate of the integral, for any value of I. A law of large numbers then
guarantees convergence of the sum to the integral.

If we solved the problem numerically using backward iteration, we would aim at
choosing at high I to get an accurate evaluation of the integral. Instead, we do the op-
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posite, choose I = 1, and denote the single draw of the next period wage w′. Then the
sum, now consisting of a single summand, is still an unbiased, albeit a very inaccurate,
estimate of the integral. Then we have

Q (w, accept) = w + β max
a′∈A

Q
(
w, a′

)
Q (w, reject) ≈ c + β max

a′∈A
Q
(
w′, a′

)
where the second equation holds in expectation.

Following equation (6.3), we form the termporal differences for accept and rejet deci-
sions

TDn (w, accept) = w + β max
a′∈A

Qn (w, a′
)
− Qn (w, accept)

TDn (w, reject) = c + β max
a′∈A

Qn (w′, a′
)
− Qn (w, reject) .

If the candidate solution Qn (w, a) is the correct state-action value function Q (w, a), then
we must have TDn (w, accept) = 0 and E [TDn (w, reject)] = 0.

The intution underlying the construction of the temporal differences is the same as
in the general case. For example, when the function Qn (w, accept) for the current state
and action (w, accept) on the left-hand side is too low relative to the continuation policy
w + β maxa′∈A Qn (w, a′) on the right-hand side. Then the temporal difference is positive,
TDn (w, accept) > 0. Similarly, if TDn (w, reject) is too low relative to the continuation
policy c + β maxa′∈A Qn (w′, a′), then the temporal difference TDn (w, reject) is positive at
least on average, E [TDn (w, reject)] > 0.

Choosing a learning rate parameter α ∈ (0, 1), the Q-learning algorithm updates the
state-action value function in tabular form as follows:

Qn+1 (w, a) = Qn (w, a) + αTDn (w, a)

Qn+1 (w̃, a) = Qn (w̃, a) , w̃ ̸= w.

The updating algorithm relies on the above-described intuition. If Qn (w, a) is too low,
then the updating algorithm updates the value upward, and vice versa if Qn (w, a) is too
high. Hence on average, the algorithm should converge in a stochastic sense to the correct
state-action value function.

6.3.2 Implementation details

An implementation of the algorithm requires taking care of additional aspects of the nu-
merical algorithm which me mention here without providing details or proofs.

First, when the distribution of wage offers w ∈ [0, B] has a continuous support, then for
the purposes of the algorithm, it must be discretized to a finite grid with nodes wi, . . . , wI .
The distribution F (w) is then replaced with its discrete counterpart with probabilities f̂ i =

f
(
wi), i = 1, . . . , I. The state-action value function is then defined on the grid points
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Q
(
wi, a

)
. An alternative is to use a projection method to approximate the function Q (w, a)

using a set of basis functions, and use the Q-learning algorithm to update the projection
coefficients. Methods based on this idea are sometimes called deep Q-learning methods.

Second, the temporal differences TDn (w, a) are random because they depend on the
sequential draws of w′ ∼ F (w′). This means that for a fixed α ∈ (0, 1), the sequence
Qn (w, a), n,= 1, 2, . . . only converges in a stochastic sense. To obtain a sequence that con-
verges deterministically, we must choose αn → 0 as n → ∞. The rate at which αn vanishes
to zero cannot be too high, otherwise the algorithm would not have time to converge.

Third, algorithms of this type can get stuck in local maxima for which the state-action
value function is such that it dictates the incorrect action and the benefits of the correct
action that would lead to a higher value function then would never be explored. For this
reason, it is sensible to add to the algorithm an aspect of experimentation. Specifically, in
every step n choose εn ∈ (0, 1) such that the temporal difference TDn (w, a) is constructed
as above with probability 1− εn. With probability εn, the worker ’experiments’ and chooses
the alternative action, so that

TDn (w, accept) = w + β min
a′∈A

Qn (w, a′
)
− Qn (w, accept)

TDn (w, reject) = c + β min
a′∈A

Qn (w′, a′
)
− Qn (w, reject) .

This modification allows exploration of alternative options that may be left out otherwise.
Again, for the algorithm to ultimately converge, the rate of experimentation has to vanish
to zero as n → ∞.

We refer to the textbook treatment in Sutton and Barto (2018) for additional discussion
of these implementation details.

6.3.3 Results

We study an implementation in a particular calibrated version of the McCall (1970) econ-
omy. Wage offers are drawn from the distribution Beta (1.2, 1.2), discretized to N = 30
nodes. The value of unemployment is c = 0.1, and the time preference parameter is
β = 0.96. We choose exponential decay rates for learning and experimentation

αn = ᾱ0e−nᾱ εn = ε̄0e−nε̄

with ᾱ0 = 1, ᾱ = 10−4, ε̄0 = 0.1, ε̄ = 10−3. A worker who accepts a wage offer is allowed
to quit later.

The results for the baseline model are presented in Figure 6.1. The black squares show
the true value function V (w) in the left panel and decision rule a (w) in the right panel
obtained by solving the recursive equation for the present value of the reservation wage
(2.20) in Section 2.4.1. The value a (w) = 1 corresponds to the acceptance decision. As
expected, the optimal policy is characterized by a reservation wage w̄ above which the
wage offers are accepted. The grey area in the left panel depicts the shape of the wage
offer distribution.
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Figure 6.1: Results for the Q-learning algorithm in the worker search model for the baseline pa-
rameterization. The left panel shows the value function Vn(w), the right panel the policy choice
an(w).
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Figure 6.2: Results for the Q-learning algorithm in the worker search model for the case when
leaving an accepted job is not possible.

The left panel of Figure 6.1 displays the convergence of the value function iterates
Vn (w) = maxa Qn (w, a) as n increases. After 104 iterations, the value function overshoots,
a mechanismn described in Section 6.2.3. Then, as the learning rate vanishes to zero, the
value function Vn (w) converges to the true value function. The decisions in the right panel
also converge. However, even after 104 iterations, there are plenty of errors in the decision
rule.
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Figure 6.3: The effect of option to leave an accepted job on the values of accepting and rejecting an
offer.

Figure 6.2 shows that when the option to leave an accepted job is not available, the
convergence in the value function Vn (w) is initially slower but without the subsequent
overshooting, and the decision rules an (w) become more accurate sooner.

The reason for the faster convergence of the decision rule under the no-quitting rule is
explained in Figure 6.3. When the worker is allowed to quit, then the value of accepting
the offer is

Q (w, accept) = w + β max
a′∈A

Q
(
w, a′

)
while when the quit option is not available, the value of accepting is

Q (w, accept) = w + βQ (w, accept) =
w

1 − β
.

This means that with the option to quit, incorrectly accepting an offer that should have
been rejected is only a one-period mistake that can be corrected next period. This means
that for offers that should be rejected, i.e., those with w < w̄, the values Q (w, accept) and
Q (w, reject) are close to each other, reflecting the fact that welfare consequences of such a
mistake are small. Due to the stochastic nature of the iterations, it is therefore more likely
to happen that Qn (w, accept) > Qn (w, reject) even for wages w < w̄. The differences in
Qn (w, a) for n = 105 are shown in the left panel of Figure 6.3.

On the other hand, the welfare consequences of accepting a job with w < w̄ when the
option to quit is not present are large, as depicted in the right panel of Figure 6.3. Due to
the large distance between the values Qn (w, accept) and Qn (w, reject), it is less likely that
these will be ranked incorrectly in the stochastic iterations, and the decision rule is more
accurate.

Figure 6.4 depicts the learning dynamics for the case when wage offers are Beta (5, 2)
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Figure 6.4: Learning the state-action value function for a skewed offer distribution.

distributed. The wage offer distribution are negatively skewed, and there is very little mass
in the distribution below w = 0.2. Consequently, that part of the state space is visited only
infrequently, and learning for those wage offers proceeds only very slowly, not reaching
meaningful accuracy even after 106 iterations.

6.4 Summary

Q-learning and other forms of reinforcement learning is a fundamentally different ap-
proach to learning compared to learning based on Bayesian and non-Bayesian updating
of beliefs. It sets aside the probabilistic structure of the problem and stipulates that agents
should choose actions that had positive utility consequences in the past. High rewards
reinforce choices leading to those rewards. The absence of a probabilistic model for the
exogenous state dynamics also leads this algorithm to be called ‘model-free’, despite the
preserved dynamic structure of the problem.

Under suitable assumptions on the model structure, decisions can converge to those
obtained under rational expectations. The process of learning can be very slow, which is
the consequence of the unstructured form of learning, as well as emerging from the fact
that the learning process has a local character. Observing a random draw of the next-period
state for the given current value of the state variable and observing the consequence of an
action updates the state-action value function locally for that value of the current state or
in its vicinity if a projection method is used to update the state-action value function. This
is distinct from Bayesian learning in which the agent can understand the consequences of
the learned information for the decision-making in other parts of the state space.

The presented Q-learning abstracts from many interesting related aspects. One cate-
gory is computational, and relates to characterization of the speed of convergence of learn-
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ing, choice of state space or the choice of projection method. The theoretical literature pro-
viding such results is growing quickly. The Sutton and Barto (2018) ‘Reinforcement Learning’
textbook provides useful starting points to such analysis. The other is more economic, and
involves embedding of the individual decision problem into models of strategic interaction
and equilibrium dynamics, and studying policy implications.

Ultimately, the success of this form of learning will be deemed either in terms of its
ability to approximate and solve economic models, for example with rational expecta-
tions, that are not tractable with existing methods, or in terms of its ability to deliver novel
predictions for choice behavior that are distinct from the existing forms of learning, be it
Bayesian or non-Bayesian.

In this respect, the existing literature on learning in economics, including non-Bayesian
models, is very large. For insights into the intellectual history of non-Bayesian learning in
macroeconomics, it is useful to start with Sargent (1993) ‘Bounded Rationality in Macroeco-
nomics’, Sargent (1999) ‘The Conquest of American Inflation’, or Evans and Honkapohja (2001)
‘Learning and Expectations in Macroeconomics’. Evans et al. (2005) provide an inspiring in-
terview.
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Appendix A

Elements of probability theory

In this appendix, we provide foundations to the theory of stochastic processes that will be
particularly useful in the framework of macroeconomic modeling and asset pricing. We
therefore proceed by setting up a specific environment suitable for our purposes, and then
fill in the theory. The central goal is to study the class of Markov processes which is closely
related to problems solved using dynamic programming methods. Some of the concepts
introduced in this section are more comprehensive than what we will subsequently need.

A.1 States, paths, partial histories and probabilities

We consider an infinite-horizon discrete-time environment with time indexed by t ∈ T =

{0, 1, 2, . . .}. Finite-horizon setups can be constructed by simply truncating the set of time
indices at T < ∞. In every period t, the economy will find itself in state st drawn from a
finite set S = {1, 2, . . . , S}, i.e., st ∈ S . The states can be completely abstract descriptions of
the world like ‘rainy day’, ‘sunny day’, ‘expansion’, ‘recession’, and so on. The assumption
of a finite state space is made here for simplicity but can be directly extended to infinite
state spaces, at the cost of increasing the mathematical and notational complexity.

An infinite-horizon sequence of these states constitutes a path s∞ .
= (s0, s1, s2, . . .), i.e.,

a particular trajectory along which the economy evolves. We will denote the set of all such
paths Ω and call it the sample space (and denote generic elements of this sample space
ω ∈ Ω). The truncated sequence of states st .

= (s0, s1, . . . st) constitutes a partial history
for the economy. Observe that at time t, there are St+1 such distinct partial histories that
can potentially be realized.

We now want to assign probabilities to paths. Observe that there are infinitely many
paths s∞, so typically each individual path will have probability zero of occurring. How-
ever, by assigning each individual path a zero probability, we do not get very far. Consider
the following simple example. Imagine that the realization of each state every period is
equally likely (i.e., P (st = s) = S−1, ∀s ∈ S) and independent over time, then each path
s∞ is also ‘equally likely’ to occur. Since we know that one path has to be realized for sure,
the probabilities of each one of the paths occurring have to sum up to one. However, there



194 Elements of probability theory

are infinitely many of them, so we are facing a “0 · ∞” problem (infinitely many paths each
occurring with probability zero). Clearly, this is not well defined and this construction is
therefore not useful.

Instead, we will assign probabilities to sets of paths. In order to do that, we need to
decide which sets we can assign probabilities to. There are various ways of doing that, and
certain rules need to be followed for probabilities to be consistent but one secure way in
our environment is the following. Let F

(
st) be the set of paths s∞ that share the common

partial history st, formally

F
(
st) = {s̃∞ = (s̃0, s̃1, s̃2, . . .) ∈ Ω : (s̃0, s̃1, . . . , s̃t) = st} .

Observe that for a given t, there are St+1 such distinct sets (one for each distinct partial
history), and these sets are disjoint. We say that st+j is a continuation of st is the first t + 1
states (s0, s1, . . . st) of st+j are the same as st.

We now define a set of all sets of paths to which we can assign probabilities, called a
σ-algebra and denoted F , according to the following definition:

Definition A.1. Let Ω be a given set. Then a σ-algebra F on Ω is a family F of subsets of Ω
that satisfies:

1. ∅ ∈ F , i.e., the empty set belongs to F

2. if a set F ∈ F , then its complement FC ∈ F (closure to complements)

3. if sets F1, F2, . . . ∈ F , then
⋃∞

i=1 Fi ∈ F (closure to countable unions).

The σ-algebra F that interests us is built in the following way. First include all sets of
the form F

(
st) for all t and all st, i.e., all sets of paths that share a common partial history

st. The rest consists of applying the three rules from Definition A.1. We first include the
empty set. Then we include complements of all sets that are already in F , and countable
unions of all sets that are already in F , and repeat the application of rules 2. and 3. until
we cannot add anything else. Observe that each element F of an (arbitrary) σ-algebra F is
a subset in Ω but not necessarily vice versa. Set F ∈ F are called events, while elements
ω ∈ Ω (in our case, these are the paths s∞) are called outcomes.

We can now assign to each set F ∈ F the unconditional probability P (F). A probabil-
ity measure P is a function that takes elements F from F (i.e., specific sets in Ω) and assigns
to each F a number in [0, 1]. In order for the probability measure to be well-defined, it must
satisfy certain elementary rules:

Definition A.2. A probability measure P on (Ω,F ) is a function P : F → [0, 1] such that

1. P (∅) = 0, P (Ω) = 1

2. If F1, F2, . . . ∈ F and {Fi}∞
i=1 are disjoint (i.e., Fi ∩ Fj = ∅ for i ̸= j) then P (

⋃∞
i=1 Fi) =

∑∞
i=1 P (Fi) .
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For the sets F
(
st) of all paths with common partial history st, we will use the shorthand

notation P
(
st) instead of P

(
F
(
st)). Since sets F ∈ F can be assigned probabilities (can be

‘measured’) we call them measurable sets.

We can use the Bayes theorem to construct conditional probabilities from uncondi-
tional ones. Specific examples that interest us condition on individual partial histories. In
particular, let st be a time-t partial history that has a positive unconditional probability
P
(
st), and st+j a time t + j partial history. Then, if st+j is a continuation of st, we have

P
(

F
(

st+j
)
|F
(
st)) =

P
(

F
(
st+j) ∩ F

(
st))

P (F (st))
=

P
(

F
(
st+j))

P (F (st))

or, in shorthand notation,

P
(

st+j|st
)
=

P
(
st+j)

P (st)
.

On the other hand, if st+j is not a continuation of st, we obtain

P
(

st+j|st
)
=

P
(

F
(
st+j) ∩ F

(
st))

P (F (st))
=

P (∅)

P (F (st))
= 0.

We will be particularly interested in cases when probabilities conditional on partial histo-
ries st are equivalent to those conditional only on current state st.

Remark A.1. Occasionally, we will want to represent the probability P
(
st) by explicitly integrat-

ing across all paths s∞ ∈ F
(
st). Formally, we cannot simply sum up the probabilities of individual

paths s∞ because generically, P (s∞) = 0. We will therefore use the notation

P
(
st) .

= P
(

F
(
st)) = ∫

ω∈F(st)
dP (ω)

where we properly integrate over the set of paths F
(
st).

A.2 Filtration

Since we are interested in building dynamic models in which uncertainty is revealed over
time, we need to build a proper information structure. Mathematically, this information
structure will be constructed using a sequence of σ-algebras {Ft}∞

t=0, called a filtration.

The σ-algebra Ft contains all information available up to time t, i.e., information con-
tained in the partial histories st. We will therefore also refer to Ft as an information set.
Remember that a σ-algebra is a collection of sets of paths. There is a simple test to decide
whether a set of paths F ⊆ Ω belongs to the σ-algebra Ft. We will have F ∈ Ft if, and only
if, for every path s∞ ∈ Ω, we can decide, using information available up to time t only,
whether s∞ ∈ F or s∞ ̸∈ F.

There is a straightforward procedure how to build Ft. First, include in it all sets F
(
st),

i.e., sets whose partial history up to time t is st, for every st. Then apply rules from Defi-
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nition A.1 to add all the other required sets. Observe that the set F
(
st) certainly belongs

to Ft because we can decide, using information up to time t, whether partial history st has
been realized or not. On the other hand, a set F

(
st+1) does not generically belong to Ft

because at time t we do not have information about the realized state st+1.

We now defined all the components of the space on which we construct stochastic
processes:

• sample space Ω, containing all infinite-horizon paths s∞,

• σ-algebra F , containing all measurable sets on Ω,

• filtration {Ft}∞
t=0, defining the process of revealing information over time, and

• P, the probability measure over sets in F .

Definition A.3. A filtered probability space is the quadruplet
(
Ω,F , {Ft}∞

t=0 , P
)
.

A.3 Random variables and stochastic processes

The state space S and hence the sample space Ω can be abstract and inconvenient for
mathematical operations. For instance, paths s∞ (which are in our case elements of Ω)
can be sequences of coin flips, weather patterns, periods of recessions and expansions, etc.
This leads us to define the concept of random variables. A random variable is a mapping
from the sample space to Rn that provides some information about the path s∞. This will
allow us to transfer probabilistic relationships from the abstract space Ω to a metric space
with convenient properties, in which rules of calculus apply.

A casual definition of a random variable is simple: a random variable x is a function
x : Ω → Rn, i.e., a function that assigns to every path in Ω a real vector from Rn. However,
there are some important details. In particular, we want to make sure that the random
variable preserves information structure, i.e., it does not reveal more information than
what the underlying σ-algebra F reveals.

In order to formalize this, we need to define another σ-algebra, this time on Rn. A
natural one will be the so-called Borel σ-algebra B. This σ-algebra is constructed by first
including into B all open sets in Rn and then again, as usual, repeating the application
of the rules in Definition A.1. The sets in the Borel σ-algebra are called Borel sets. This
σ-algebra is incredibly rich and contains almost all thinkable sets (go to Wikipedia and
search for ‘non-measurable set’ to learn more).

We can now proceed with the formal definition of the random variable.

Definition A.4. A random variable is a function x : Ω → Rn that is measurable with respect
to a given σ-algebra, say F , i.e., for every Borel set B ⊆ Rn, the preimage x−1 (B) is in F :

x−1 (B) = {ω ∈ Ω : x (ω) ∈ B} ∈ F .

We will denote xt a random variable that is measurable with respect to Ft.
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For example, when paths s∞ are infinite paths of coin flip realizations, then we could
define xt (s∞) = 1 if the state st from the path s∞ is equal to ‘heads’, and 0 otherwise. Or,
xt (s∞) could be the sum of all ‘heads’ in the partial history st of the path s∞. When there
is no confusion given the context, we may also denote x the realization of the random
variable.

It is instructive to carefully investigate what Definition A.4 states. Consider, for in-
stance, a random variable xt measurable with respect to the σ-algebra Ft. Now take a set
F
(
st) of all paths s∞ with common history st. Notice that this set cannot be further subdi-

vided into two or more nontrivial smaller sets that also belong to Ft. We say that F
(
st) is

an element of the finest cover of Ω constructed using sets from Ft.

We want to argue that the random variable xt : Ω → Rn that is measurable with
respect to Ft must be constant on F

(
st), and that this property illustrates the notion of

preservation of information.

To show this, take two paths s∞, s̃∞ ∈ F
(
st), i.e., two paths that share the common

partial history st and assume that xt (s∞) ̸= xt (s̃∞). Since individual points in Rn are Borel
sets, then xt (s∞) and xt (s̃∞) are two distinct Borel sets. Hence, according to Definition A.4,
the preimages of these sets (formally denoted x−1

t (xt (s∞)) and x−1
t (xt (s̃∞)), have to form

two disjoint sets, both belonging to Ft and both being nontrivial subsets of F
(
st). But this

is a contradiction, because F
(
st) cannot be further subdivided into nontrivial subsets from

Ft.

Notice that this is an expected outcome. Imagine that the random variable xt would
indeed assign two different values xt (s∞) ̸= xt (s̃∞) to the paths s∞, s̃∞ ∈ F

(
st). This

means that this random variable is able to distinguish s∞ and s̃∞. However, these two paths
have an identical partial history st and hence cannot be distinguished using information
available at time t. Hence xt would not be measurable with respect to Ft.

To summarize, a random variable xt measurable with respect to Ft reveals some in-
formation available up to time t, but it cannot have ‘precognition’, i.e., it cannot reveal
information that will only be learned after time t.

Since xt (s∞) is constant on the set of all paths s∞ with a common partial history st, we
will also use the notation xt

(
st) to denote the value of the random variable for an arbitrary

s∞ ∈ F
(
st).

We can now move to the definition of a stochastic process.

Definition A.5. A stochastic process {xt}∞
t=0 on the filtered probability space

(
Ω,F , {Ft}∞

t=0 , P
)

adapted to {Ft}∞
t=0 is a sequence of random variables xt, each of which is Ft-measurable.

The sequence of random variables that forms the stochastic process {xt}∞
t=0 therefore

over time reveals progressively more information about the path s∞. Notice the following:

• xt (s∞) is a vector in Rn that is the realized value of the stochastic process at time t
on path s∞,

• xt (·), viewed as a function of s∞ ∈ Ω for a fixed t, is a random variable measurable
with respect to Ft that assigns a vector in Rn to each s∞,
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• x· (s∞), viewed as a function of time (x· (s∞) : T → Rn) for a fixed s∞ is a determin-
istic function that assigns to every time t ∈ T a vector in Rn, and is called the path
of the stochastic process.

A.4 The Radon–Nikodým derivative

We are interested in ways how to relate two probability measures defined on the same
sample space. This is done using a random variable called the Radon–Nikodým deriva-
tive. This random variable is utilized in many situations, for example to define conditional
expectations, changes of measure or probability densities from distributions. We first need
to define a property that relates two measures called absolute continuity.

Definition A.6. A probability measure P̃ is absolutely continuous with respect to P if for every
measurable set F ∈ F , P (F) = 0 implies P̃ (F) = 0. Measures P̃ and P are equivalent if P̃ is
absolutely continuous with respect to P and P is absolutely continuous with respect to P̃.

In words, when P̃ is absolutely continuous with respect to P, then P̃ cannot assign
a positive probability to a set to which P assigns a zero probability. For example, when
P̃ is the subjective probability measure of the agent, and P is the probability measure of
the data-generating process, then the agent cannot assign a positive probability to a set of
paths that has a zero probability according to the data-generating process.

We now state the formal theorem and then provide an intuitive construction.

Theorem 1.1 (Radon–Nikodým). Let P̃ be absolutely continuous with respect to P. Then there
exists a measurable function h : Ω → R+ such that

P̃ (F) =
∫

F
h (ω) dP (ω) . (A.1)

The function f is called the Radon–Nikodým derivative and commonly denoted as h = dP̃/dP.

The integral in (A.1) is taken in the sense of Remark A.1. Notice that Theorem 1.1 can
be applied in two ways. Either we know P and P̃ and the theorem gives us a way how
to infer the function h, or we know P and the function h, and construct P̃ using equation
(A.1).

Also notice that h is a random variable measurable with respect to F , assigning non-
negative numbers to each path s∞. It will be useful to define restrictions of h to individual
σ-algebras Ft, denoted ht. For a path s∞ ∈ F

(
st), define

ht (s∞)
.
=

P̃
(
st)

P (st)
=

∫
ω|st h (ω) dP̃ (ω)∫

ω|st dP (ω)
.

where ω|st denotes all paths ω ∈ Ω that are continuations of the partial history st. Notice
that ht (s∞) has the same value for all s∞ with the same partial history st. Therefore, if there
is no ambiguity, we will use the notation ht (s∞) = h

(
st), ∀s∞ ∈ F

(
st).
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Since the Radon–Nikodým derivative can be interpreted as the ratio of two probabil-
ity measures, h and its restrictions have to satisfy certain consistency requirements. In
particular, we have the following relationship between restrictions of h to Ft and Ft+j:

h
(
st) =

P̃
(
st)

P (st)
=

∑st+j|st P̃
(
st+j)

P (st)
= ∑

st+j|st

h
(

st+j
) P

(
st+j)

P (st)

= ∑
st+j|st

h
(

st+j
)

P
(

st+j|st
)

.

In line with these definitions, we can also define the restriction of the Radon–Nikodým
derivative to conditional probabilities. In particular, let st+j be a continuation of st and
s∞ ∈ F

(
st+j). Then notice that

P̃
(

st+j|st
)
=

P̃
(
st+j)

P̃ (st)
=

h
(
st+j) P

(
st+j)

h (st) P (st)
=

h
(
st+j)

h (st)
P
(

st+j|st
)

and therefore we can define

ht+j
(
s∞|st) .

= h
(

st+j|st
) .
=

P̃
(
st+j|st)

P
(
st+j|st

) =
h
(
st+j)

h (st)
.

A.5 Expectations

Before we define the expectations operator for a random variable x, we define a probability
measure µx that will represent the distribution of x. This distribution will allow us to
compute moments of x by integrating over Rn, rather than over the abstract set of paths Ω.
We will do so by taking every Borel set B ⊂ Rn, and obtaining its preimage x−1 (B) ⊂ Ω.
Since this preimage is measurable with respect to the relevant σ-algebra, i.e., x−1 (B) ∈ F ,
it has been assigned a probability P

(
x−1 (B)

)
. We then assign the same probability to the

Borel set B, and denote it µx (B). Formally:

Definition A.7. Associated with the random variable x : Ω → Rn is the probability measure that,
to each Borel set B ⊂ Rn, assigns the probability

µx (B) = P
(

x−1 (B)
)

. (A.2)

µx is called the distribution of x. If x : Ω → R, then the cumulative distribution function of
x is the function Gx : R → [0, 1]

Gx (x) = µx ((−∞, x])

Further, the function gx : R → R+, if it exists, defined as

gx (x) =
∂

∂x
Gx (x)
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is called the probability density function.

The definition of the cumulative distribution function and probability density function
can be extended to the multivariate case as well. We can now define the expectation of x,
either by integrating over Ω using P, or integrating over Rn using µx.

Definition A.8. The expectation of a random variable is

E [x] =
∫

Ω
x (ω) dP (ω) =

∫
Rn

xdµx (x) .

Observe that the two integrals are over different spaces, and use different probability
measures but by equation (A.2), they must yield the same results. Finally, we can provide
a simple definition of the conditional expectation conditional on an information set (σ-
algebra) Ft as follows (there is a more formal and more general definition that uses the
Radon–Nikodým derivative).

Definition A.9. The conditional expectations operator for a random variable x measurable with
respect to F , conditional on information set Ft, is a function

E [x | Ft] : Ω → Rn

such that for any s∞ ∈ Ω with partial history st, we have

E [x|Ft] (s∞) =

∫
F(st) x (ω) dP (ω)

P (st)
=
∫

F
x (ω) dP

(
ω|st) .

This expression simplifies if we know that x = xt+j, i.e. it is measurable with respect
to the information set Ft+j. Then

E
[
xt+j|Ft

]
(s∞) = ∑

st+j|st

xt+j

(
st+j
)

P
(

st+j|st
)

. (A.3)

Notice that any xu measurable with respect to Fu for any u ≤ t is constant on any F
(
st),

so that E [xu|Ft] (s∞) = xu (s∞).

Remark A.2. When there is no ambiguity, we will use the notation Et [x] for the conditional expec-
tation, and Pt for the conditional probability measure conditional on an event from Ft. Similarly,
for an s∞ ∈ F

(
st), we will write E

[
xt+j|st] instead of E

[
xt+j|Ft

]
(s∞).

From (A.3), we can also define conditional expectations conditional on a different set of
paths than F

(
st). In particular, for a conditioning set H ∈ Ft, we can define the conditional
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expectation as

E
[
xt+j|H

] .
= ∑

F(st)∈H
E
[
xt+j|st] P

(
st|H

)
=

1
P (H) ∑

F(st)∈H
E
[
xt+j|st] P

(
st)

=
1

P (H) ∑
F(st+j)∈H

xt+j

(
st+j
)

P
(

st+j
)

= ∑
F(st+j)∈H

xt+j

(
st+j
)

P
(

st+j|H
)

where the third equality follows from substituting in the expression from (A.3). This result
will be particularly useful when we condition on realizations of a random variable, rather
than partial histories st.

A.6 Martingales

An important class of processes are processes that on average neither grow nor decay,
called martingales.

Definition A.10. An n-dimensional process {xt}∞
t=0 on

(
Ω,F , {Ft}∞

t=0 , P
)

is a martingale
with respect to the filtration {Ft} and the probability measure P if:

1. xt is Ft-measurable (i.e., the process {xt}∞
t=0 is adapted),

2. E [|xt|] < ∞ for all t ∈ T ,

3. E [xs|Ft] = xt for all s ≥ t.

A supermartingale is a process for which condition 3. is replaced by E [xs|Ft] ≤ xt, and a
submartingale is a process for which condition 3. is replaced by E [xs|Ft] ≥ xt.

The martingale property is always defined with respect to a particular filtration and
a probability measure. A process that is a martingale under a given filtration and proba-
bility measure will typically not be a martingale under a different filtration or a different
probability measure.

A.7 The Markov property

“We may regard the present state of the universe as the effect of its past and
the cause of its future.” Marquis de Laplace

We want to impose several properties on stochastic processes that will interest us:
Markovianity, time-invariance, stationarity and ergodicity. The following properties are
important when we want to compare predictions of our models with time series observa-
tions in the data.
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Definition A.11. A process {xt}∞
t=0 on

(
Ω,F , {Ft}∞

t=0 , P
)

is said to be Markov if ∀t, s ≥ 0 and
for every Borel set B ∈ B

P (xt+s ∈ B|Ft) = P (xt+s ∈ B|xt) . (A.4)

A Markov process is time-invariant if the conditional distribution P (xt+s ∈ B|xt = x) only
depends on x and not on t.

A process (not necessarily Markov) is stationary if its joint distribution does not depend on
time, i.e.,

∀k, h ∈ N, ∀ (t1, . . . tk) ∈ Nk, ∀ Bti ∈ B

we have
P (xt1 ∈ Bt1 , . . . , xtk ∈ Btk) = P

(
xt1+h ∈ Bt1 , . . . , xtk+h ∈ Btk

)
. (A.5)

Definition A.12. A stationary distribution of a Markov process is the marginal distribution
over the state xt such that ∀t, h ∈ N

P (xt ∈ B) = P (xt+h ∈ B) . (A.6)

We postpone an exact definition of ergodicity until we discuss Markov chains. The
above definitions can be verbally interpreted as follows.

• A process {xt}∞
t=0 is Markov if the distribution of its future realizations conditional

on all information available up to time t is the same as if we conditioned on xt only.
Hence xt summarizes all information needed to describe the future distribution of
the process, and therefore the realization of xt can serve as a state vector.

When the information set is generated only by the history of realizations of {xt}∞
t=0,

then we can write (A.4) as

P (xt+s ∈ B|xt, xt−1, xt−2, . . .) = P (xt+s ∈ B|xt) .

• A Markov process is time-invariant when its transition density (i.e., the conditional
distribution) does not depend on calendar time.

• A (general) process is stationary when the joint distribution of its realizations (not
conditional!) stays the same over time. Notice that for a time-invariant Markov
process to be stationary, it suffices to show property (A.6).

• A process is ergodic when its stochastic properties can be deduced from one suffi-
ciently long (in principle infinite) observed path of realizations.

Ljungqvist and Sargent (2018), Chapter 2, discuss extensive applications of the above
properties in the context of Markov chains.

The Markov property is central to our modeling approach based on dynamic program-
ming. Since the Markov state summarizes all information available at time t relevant for
the future evolution of the stochastic process, it will play the role of a state variable in
the dynamic recursive program. Finding the right vector of state variables that leads to a
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Markov representation of an economic problem is often nontrivial (“finding the state is an
art”) but macroeconomists found many creative ways how to set up recursive represen-
tations using suitable state variables for problems that have been previously considered
intractable.

A.8 Macroeconomic models and parameters

At this stage, we can return to the general discussion from the introduction to this chapter.
We built the filtered probability space

(
Ω,F , {Ft}∞

t=0 , P
)

and defined a Markov process
{xt}∞

t=0, and we will now associate these Markov processes with solutions to macroeco-
nomic models. A model is therefore a probability distribution over {xt}∞

t=0.

Macroeconomic models that we are interested in are parameterized by a vector of struc-
tural parameters θ ∈ Θ that are presumed to be known to the agents in the model and the
theorist building the model takes them as given, but are unknown to the econometrician.
These parameters include preference and technology parameters, parameters describing
the information structure, market interaction, or the distribution of structural shocks. Each
θ thus represents an alternative macroeconomic model, and hence an alternative probabil-
ity distribution P (θ) that determines the distribution of the stochastic process {xt}∞

t=0. The
role of the econometrician is to collect data that are informative about {xt}∞

t=0 and infer
which θ from the parameter set Θ is the most likely candidate for the ‘true’ model that
generated these data.

More formally, we can imagine that the model generates predictions for data yt that are
functions of the current state xt given by the observation or measurement equation

yt = f (xt, vt)

where {vt}∞
t=0 represents noise or measurement errors. We thus have a probability dis-

tribution P
(
yt|θ

)
for the data yt = (y0, . . . , yt). The direct problem (faced by a macroe-

conomist) consists of solving the macroeconomic model for a given parameter vector θ and
obtaining the distribution P

(
yt|θ

)
. The inverse problem (faced by an econometrician) is

to take observed data ŷt = (ŷ0, . . . , ŷt) and infer which probability distribution P
(
yt|θ

)
from the family indexed by θ ∈ Θ do the data come from.

We will briefly discuss some methods how to approach this inverse problem in this
chapter. In particular, we will discuss the maximum likelihood approach, generalized
method of moments due to Hansen (1982), a Bayesian approach to estimation, as well as
calibration of macroeconomic models. It is important to stress that there is no uniquely
preferred approach here, and there are substantial differences of opinion concerning the
appropriate balance between emphasis put on theory and modeling on one side, and em-
pirics and data. In reality, the right approach is driven by the economic problem itself.

An excellent introduction into these concepts and various perspectives that relate to
macroeconomic modeling is a series of papers by Hansen and Heckman (1996), Sims
(1996), and Kydland and Prescott (1996) published as a symposion in Journal of Economic
Perspectives.
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