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OUTLINE

1. Beliefs, risk adjustments and asset prices
• information in no-arbitrage restrictions

2. Summary of the paper methodology and results
• martingale restrictions on beliefs
• localization of state prices
• implied slopes of the SDF

3. Role of assumptions
• key assumption: constant SDF slope

4. Questions and suggestions
• are we testing for rational expectations?
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BACKGROUND

High volatility in prices of risky securities

• high frequency (intraday, daily returns)
• business cycle frequency (monthly, quarterly returns)

Are these asset price fluctuations ‘rational’?

• i.e., can they be explained by a plausible model of investors’
preferences, market constraints, and investors’ beliefs that are correct
(in line with the data-generating process (DGP))?
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BACKGROUND

Abstract from market constraints, assume no arbitrage.

• then, for any investor’s subjective belief P̂, there exists an SDF mt+1 that
prices financial assets

1 = Êt [mt+1Rt+1] . (1)

• but of course, defining h = dP̂/dP, we can write

1 = Et[mt+1ht+1︸ ︷︷ ︸
m̂t+1

Rt+1] (2)

Which is the right model of the SDF, mt+1 or m̂t+1?

• that depends on what is plausible =⇒ impose structure on the SDF
• asset price data alone cannot tell (1) and (2) apart

• even if we perfectly know the DGP measure P

4/21



BACKGROUND

Abstract from market constraints, assume no arbitrage.

• then, for any investor’s subjective belief P̂, there exists an SDF mt+1 that
prices financial assets
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SDF RESTRICTIONS

Information from no-arbitrage restrictions

1 = Et[mt+1ht+1︸ ︷︷ ︸
m̂t+1

Rt+1]

• Time series information identifies the DGP measure P.
• Data on returns Rt+1 together with no-arbitrage restrictions inform m̂t+1.
• We must impose additional restrictions to separately infer something
about mt+1 and ht+1.
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SDF RESTRICTIONS

This paper
1 = Et[mt+1ht+1︸ ︷︷ ︸

m̂t+1

Rt+1]

• imposes the zero of correct beliefs =⇒ ht+1 ≡ 1
• restricts the class of SDFs (conditional transition independence (CTI))
=⇒ restriction on mt+1

• uses martingale restrictions under DGP (time series information) to
deduce whether ∃mt+1 in the given class that also prices returns

Outcomes

• if ∃ such mt+1, characterize the minimum needed local risk aversion
consistent with ht=1 ≡ 1

• if @ such mt+1, conclude that ht+1 ̸= 1.
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MARTINGALE RESTRICTIONS

Let Xt be a square-integrable martingale. Then

Et

 T−1∑
j=t

(Xj+1 − Xj)2
 = Et

[
X2T − X2t

]

• restriction on quadratic variation of a martingale

‘Beliefs are martingales’ (under their own measure)

• apply the above result to a two-state outcome =⇒ localization
• πt — probability of the low state realization at T

Et [mT]
.
= Et

 T−1∑
j=t

(πj+1 − πj)
2

 = Et [(1− πt)πt − (1− πT)πT]
.
= Et [rT]

• if we could measure beliefs, this would constitute a test of rational
expectations (Augenblick and Rabin (2018))

• restriction on how much beliefs can vary over time
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ARROW–DEBREU PRICES

Instead, we observe risk-neutral (Arrow–Debreu) prices π∗
t . Then

Et [m∗
T ]

.
= Et

 T−1∑
j=t

(
π∗
j+1 − π∗

j
)2 ̸= Et [(1− π∗

t )π
∗
t − (1− π∗

T )π
∗
T ]

.
= Et [r∗T ]

Relationship between π∗
t and πt

π∗
t ∝ Et [MT/Mt | sT = low]πt

• reflects risk adjustment and normalization by the risk-free rate
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RESTRICTING THE SDF SLOPE

Rewrite relation between π∗
t and πt in terms of odds ratio

π∗
t

1− π∗
t︸ ︷︷ ︸

risk-neutral
prices

=
Et [MT/Mt | sT = low]
Et [MT/Mt | sT = high]︸ ︷︷ ︸

SDF slope ϕ

πt
1− πt︸ ︷︷ ︸
beliefs

If we observe (a lot of) variation in π∗
t over time, what can we infer about

variation in πt?

• we must restrict movements in the SDF slope ϕ over time
• ϕ can differ across terminal state realizations
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RESTRICTING THE SDF SLOPE

Assumption: Conditional transition independence (CTI)

• ϕ is constant over time (it can also follow a martingale)

π∗
t

1− π∗
t︸ ︷︷ ︸

risk-neutral
prices

=
Et [MT/Mt | sT = low]
Et [MT/Mt | sT = high]︸ ︷︷ ︸

SDF slope ϕ

πt
1− πt︸ ︷︷ ︸
beliefs

Idea: A high ϕ translates large variation in π∗
t into modest variation in πt,

which can then satisfy the martingale restriction on correct beliefs.

Et [m∗
T − r∗t ] ≤ (π∗

t )
2
(
1− 1

π∗
t + ϕ (1− π∗

t )

)
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IMPLEMENTATION

Define states: Terminal values of a market index RmT = sT at some date T.

Extract Arrow–Debreu prices (Breeden, Litzenberger (1978))

Construct sample averages for Et [m∗
T − r∗t ]

• daily, weekly, monthly frequencies
• conditional on terminal returns for various adjacent payoff states
RmT ∈ {sj, sj+1} =⇒ localization of the return distribution

Infer the required ϕ’s to satisfy inequality

Et [m∗
T − r∗t ] ≤ (π∗

t )
2
(
1− 1

π∗
t + ϕ (1− π∗

t )

)
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SUMMARY OF THE RESULTS

Required SDF slopes ϕ need to be very high to rationalize correct beliefs.

• Consequence of high volatility in π∗
t .

Higher ϕ needed to rationalize higher frequency (daily) variation.

• Is there more ‘unexplained’ variation at higher frequencies? Unclear,
only a necessary bound.

High risk aversion needed across all terminal payoff states.

• Informative about the type of risks faced by investors (e.g., tail risk).
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SUMMARY OF THE RESULTS

Figure 5: Estimates of Relative Risk Aversion: Splits by Time to Expiration
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Notes: Estimates are constructed using the bound in Proposition 4, converted to relative risk aversion values us-
ing Proposition 5. Within each time-to-expiration subset, each point shows estimate for state pair (sj, sj+1) plot-
ted at the excess return at the midpoint of those two states, (sj + sj+1)/2, where sj and sj+1 are in the state space
Salt = exp({(−∞,−0.225),−0.175,−0.125, . . . , 0.125, 0.175, (0.225, ∞)}). Each estimate in the 6 2 weeks series uses
risk-neutral belief movement and uncertainty resolution observations from t = Ti − 10 to t = Ti, or m∗Ti−10,Ti ,i,j and
r∗Ti−10,Ti ,i,j, respectively, and similarly for the remainder of the series. Gray band indicates break in the y-axis. Estimates
aggregated across all state pairs (excluding the extreme state pairs (s1, s2) and (sJ−1, sJ )) for each series: γ̂ = 0 for 6 2
weeks (95% confidence interval: [0, ∞)); γ̂ = 250 for 3–4 weeks (CI: [170, ∞)); γ̂ = ∞ for 5–8 weeks (CI: [3980, ∞));
γ̂ = ∞ for > 9 weeks (CI: ∞). CIs calculated using block bootstrap with blocks of 45 days, 5,000 draws.

pooling data across the interior return-state pairs to estimate the average required risk-aversion
value across both dates and states (not shown), we obtain an estimate γ̂ = 0.

As we move up the chart, each successive series of risk-aversion estimates for more-distant
horizons from expiration is weakly greater than the preceding series at every point in the return
distribution. The estimates using data for trading dates between three and four weeks from expi-
ration (blue circles) are large or infinite for negative excess-return states, and around γ̂j = 50 for
positive states; using data from the second-to-last month from expiration (light blue diamonds)
yields slightly greater estimates exhibiting a similar pattern; and using data from trading dates
more than two months from expiration (green squares) yields γ̂j = ∞ for almost all return states.
The pooled estimates are γ̂ = 250 for the three-to-four-week data (with one-sided 95 percent con-
fidence interval lower bound of 170), and γ̂ = ∞ for the last two sets of data (with confidence
interval lower bounds of 3,980 and ∞, respectively). Each successive pooled estimate is also sig-
nificantly greater than the previous value at the 95 percent level, with the exception of the last two
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SUMMARY OF THE RESULTS

Figure 6: Estimates of Relative Risk Aversion: Splits by Sampling Frequency
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Notes: Estimates are constructed using the bound in Proposition 4, converted to relative risk aversion values using
Proposition 5. Within each sampling-frequency subset, each point shows estimate for state pair (sj, sj+1) plotted at the
excess return at the midpoint of those two states, (sj + sj+1)/2, where sj and sj+1 are in the state space Sbaseline =

exp({(−∞,−0.11),−0.09,−0.07, . . . , 0.07, 0.09, (0.11, ∞)}). Each estimate in the monthly series uses risk-neutral beliefs
π̃∗t,i,j sampled only on the second Wednesday of each month; the biweekly series samples beliefs on the Wednesdays of
the evenly-numbered weeks of the year; the weekly series samples beliefs every Wednesday; and the daily series every
trading day. Gray band indicates break in the y-axis. Estimates aggregated across all state pairs (excluding the extreme
state pairs (s1, s2) and (sJ−1, sJ )) for each series: γ̂ = 123 for monthly (95% confidence interval: [97, ∞)); γ̂ = 425
for biweekly (CI: [228, ∞)); γ̂ = ∞ for weekly (CI: [4950, ∞)); γ̂ = ∞ for daily (CI: ∞). CIs calculated using block
bootstrap with blocks of 45 days, 5,000 draws.

which are all mutually statistically different at the 95% level aside from the daily versus weekly
estimates. The lower bound of the confidence interval for monthly data is 97. Separately, the
return-state-specific monthly estimates also exhibit a roughly decreasing pattern across possible
return values.

We thus find that the monthly belief variation can be explained with finite but nonetheless still
quite large risk-aversion values. Further, this monthly variation masks additional volatility and
required risk aversion at higher sampling frequencies, and so any RE model capable of matching
the moments of the risk-neutral belief process at a monthly horizon would seem to possess what
might be thought of as incorrect statistical microfoundations.

There are, however, two additional possibilities that may account for the differences between
the estimates for the more- versus less-frequently-sampled series. First, it is possible that the
greater measured belief volatility at higher sampling frequencies is a result of measurement er-
ror, as Figure 6 again does not account for such noise. But in this case, the fact that required

43

Required SDF slopes ϕ need to be very high to rationalize correct beliefs.

• Consequence of high volatility in π∗
t .

Higher ϕ needed to rationalize higher frequency (daily) variation.

• Is there more ‘unexplained’ variation at higher frequencies? Unclear,
only a necessary bound.

High risk aversion needed across all terminal payoff states.

• Informative about the type of risks faced by investors (e.g., tail risk).

12/21



SUMMARY OF THE RESULTS

Required SDF slopes ϕ need to be very high to rationalize correct beliefs.

• Consequence of high volatility in π∗
t .

Higher ϕ needed to rationalize higher frequency (daily) variation.

• Is there more ‘unexplained’ variation at higher frequencies? Unclear,
only a necessary bound.

High risk aversion needed across all terminal payoff states.

• Informative about the type of risks faced by investors (e.g., tail risk).

12/21



SUMMARY OF THE RESULTS

Figure 6: Estimates of Relative Risk Aversion: Splits by Sampling Frequency

0

200

400

600

800 Daily
Weekly
Every 2 Weeks
Monthly

∞

-10% -8% -6% -4% -2% 0 2% 4% 6% 8% 10%

Excess-Return State sj

Lo
w

er
Bo

un
d

fo
r

R
is

k
A

ve
rs

io
n

γ
j

Notes: Estimates are constructed using the bound in Proposition 4, converted to relative risk aversion values using
Proposition 5. Within each sampling-frequency subset, each point shows estimate for state pair (sj, sj+1) plotted at the
excess return at the midpoint of those two states, (sj + sj+1)/2, where sj and sj+1 are in the state space Sbaseline =

exp({(−∞,−0.11),−0.09,−0.07, . . . , 0.07, 0.09, (0.11, ∞)}). Each estimate in the monthly series uses risk-neutral beliefs
π̃∗t,i,j sampled only on the second Wednesday of each month; the biweekly series samples beliefs on the Wednesdays of
the evenly-numbered weeks of the year; the weekly series samples beliefs every Wednesday; and the daily series every
trading day. Gray band indicates break in the y-axis. Estimates aggregated across all state pairs (excluding the extreme
state pairs (s1, s2) and (sJ−1, sJ )) for each series: γ̂ = 123 for monthly (95% confidence interval: [97, ∞)); γ̂ = 425
for biweekly (CI: [228, ∞)); γ̂ = ∞ for weekly (CI: [4950, ∞)); γ̂ = ∞ for daily (CI: ∞). CIs calculated using block
bootstrap with blocks of 45 days, 5,000 draws.

which are all mutually statistically different at the 95% level aside from the daily versus weekly
estimates. The lower bound of the confidence interval for monthly data is 97. Separately, the
return-state-specific monthly estimates also exhibit a roughly decreasing pattern across possible
return values.

We thus find that the monthly belief variation can be explained with finite but nonetheless still
quite large risk-aversion values. Further, this monthly variation masks additional volatility and
required risk aversion at higher sampling frequencies, and so any RE model capable of matching
the moments of the risk-neutral belief process at a monthly horizon would seem to possess what
might be thought of as incorrect statistical microfoundations.

There are, however, two additional possibilities that may account for the differences between
the estimates for the more- versus less-frequently-sampled series. First, it is possible that the
greater measured belief volatility at higher sampling frequencies is a result of measurement er-
ror, as Figure 6 again does not account for such noise. But in this case, the fact that required

43

Required SDF slopes ϕ need to be very high to rationalize correct beliefs.

• Consequence of high volatility in π∗
t .

Higher ϕ needed to rationalize higher frequency (daily) variation.

• Is there more ‘unexplained’ variation at higher frequencies? Unclear,
only a necessary bound.

High risk aversion needed across all terminal payoff states.

• Informative about the type of risks faced by investors (e.g., tail risk).

12/21



DISCUSSION OF ASSUMPTIONS

The whole identification hinges on the choice of class of ‘plausible’ SDFs.

π∗
t

1− π∗
t
=

Et [MT/Mt | RmT = low]
Et [MT/Mt | RmT = high]︸ ︷︷ ︸
constant SDF slope ϕ

ϕ =
u′(RmT =low)
u′(RmT =high)

πt
1− πt

To first-order approximation, this corresponds to constant local relative risk
aversion γ

(
R̄
)

• market risk premium

Et
[
ReT
]
= γ

(
R̄
)
Vart

[
ReT
]

• γ
(
R̄
)
is the local curvature of the utility/value function as a function of

the return realization, by assumption independent of t
• time-variation in market risk premium can only be driven by Vart [ReT]

13/21



WHEN DOES THE ASSUMPTION HOLD?

Separable utility over returns at terminal state

• caveat: if utility is over consumption, then time variation in the mapping
between returns and consumption can lead to violations

Epstein–Zin in iid growth environment

• not very interesting, isomorphic to recalibrated separable CRRA utility

Disaster risk model (Gabaix (2012)) with CRRA utility

• holds for (high) return realizations conditional on which disasters
between today and maturity have a negligible chance

• interesting: utilizes localization to return dynamics of particular AD
securities

• for a rejection of rationality, it requires establishing what negligible
chance means in the model and data

In general, ϕ cannot move systematically with π∗
t .
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DEVIATIONS FROM CONSTANT RISK AVERSION

π∗
t

1− π∗
t
=

Et [MT/Mt | RmT = low]
Et [MT/Mt | RmT = high]︸ ︷︷ ︸
constant SDF slope ϕ

πt
1− πt

Inference with constant ϕ

• bad times =⇒ observed ↑ π∗
t =⇒ infer required increase in πt, given ϕ

Systematic variation in ϕ

• bad times =⇒ observed ↑ π∗
t =⇒ associated increase in ϕ =⇒ lower

required increase in πt

• lower average ϕ needed to dampen implied variation in πt sufficiently to
satisfy the martingale restriction
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WHAT IS OFF THE TABLE?

Nonseparable preferences (Epstein–Zin) with interesting state dynamics

Explicit time-variation in risk aversion

Models with agent heterogeneity (e.g., in risk aversion)

• implied risk aversion a function of wealth distribution
• how to interpret results in models with heterogeneous beliefs?

Models with financial constraints

• implied risk aversion changes with tightness of constraints

Habit formation models (Campbell and Cochrane (1999))

• implied risk aversion function of habit level
• authors show that in CC (1999), the bound still holds approximately

• but SDF slopes implied by the model are trivial for non-extreme states
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A REINTERPRETATION OF THE PROBLEM

π∗
t

1− π∗
t
=

Et [MT/Mt | RmT = low]
Et [MT/Mt | RmT = high]︸ ︷︷ ︸

time-varying SDF slope ϕt

πt
1− πt

Question: How much variation in ϕt is needed such that implied πt satisfy
the martingale restriction?

• a test of a larger class of (more interesting) models

Existing models may well still fail

• many asset pricing models designed to match unconditional risk premia
and the cross-section

• appropriate time-variation harder to achieve
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OTHER CONSIDERATIONS

Implementation relies purely on option prices

• studies option price dynamics (with all their specifics) relative to the
index

• what about correct beliefs in the pricing of the index itself?

Authors relate identified excess belief movement to macro statistics

• why not survey data directly?

Why bounds at all?

• Given the information obtained from localization, one could directly
attempt to estimate the SDF nonparametrically (Christensen (2017))

Approximation details (discretization, etc.)

• authors take these seriously, but details are subtle

Localization

• we do not need to test adjacent states only, additional information in
alternative state combinations
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CONCLUSION I.

Given stated assumptions, the paper is cleanly executed, with a lot of detail.

• robustness checks, careful econometrics
• models could be studied in more detail

Interesting results

• much higher high frequency (daily) variation than variation at ‘macro’
frequencies

• Market microstructure effects in daily data? Different models needed?
• Caution regarding bid-ask bounce? (not covered here)

• localization of return dynamics can discard some models
• high AD price variation for high-return states speaks against disaster-type
models that focus risk adjustments to adverse states
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CONCLUSION II.

A test of rational expectations?

• restricts attention to a class of models that is too narrow
• reverting the problem and studying required variation in implied risk
aversion may be more fruitful

Even if we impose stringent restrictions on SDF and reject correct beliefs, the
puzzle still stands.

• why do beliefs fluctuate so much?
• need to devise interesting models of belief dynamics to make progress …
• … just like interesting models of risk adjustments that go beyond
imposed restrictions …

• … and in some cases, the two cannot be distinguished using asset price
data anyway

• e.g. Epstein–Zin with unitary IES vs. Hansen–Sargent robust preference vs.
ex-post Bayesian worst-case belief
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SIDE NOTE: RELATIONSHIP TO ROSS (2015)

Ross (2015) ‘Recovery Theorem’

• uses only cross-sectional price information, no time series
• imposes separable marginal utility (transition independence (TI))

mt+1 = β
u′ (st+1)
u′ (st)

and stationarity of the state dynamics
• under TI, it recovers subjective belief P̂ (possibly different from P)
• if TI does not hold, it recovers a long-run risk neutral measure (different
from P̂ or P)

This paper

• imposes a restriction based on time-series information in P
(time-variation in prices)

• asks whether imposing P = P̂ can be consistent with SDFs that satisfy CTI
• allows for nonstationarity of the state and hence for some martingale
components in SDF

• both papers assume time-invariant local curvature over terminal states
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