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WHAT IS THE RECOVERY PROBLEM?

Using observed cross-section(s) of prices (of Arrow–Debreu securities), infer

• preference parameters
• investors’ beliefs

imposing ‘as little structure as possible’. Only:

• Markovianity
• time invariance
• minimal restrictions on preferences

This is an identification problem.
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A FINITE STATE SPACE FRAMEWORK

Physical environment

• X — a discrete-time stationary and ergodic Markov chain with n states

Investor beliefs and preferences

• P = [pij] — transition matrix — investors’ beliefs (here identical to DGP)

pij = P (Xt+1 = j | Xt = i)

• Ψ = [ψij] — stochastic discount factor

ψij — state-specific discount rate between states i and j

Asset prices

• V = [vij] — matrix of prices of one-period Arrow securities

vij — price in state i of one unit of state-j cash flow next period
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AN IDENTIFICATION PROBLEM

Arrow prices encode both beliefs and preferences:

vij = pijψij

Suppose we observe asset prices [vij].

• Identification problem: Can we separately identify [pij] and [ψij]?

vij︸︷︷︸
n× n equations

= pij︸︷︷︸
n× (n− 1) unknowns

ψij︸︷︷︸
n× n unknowns

Underidentification!!!
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HANSEN–SCHEINKMAN DECOMPOSITION

An SDF can be factored as

ψij = exp (−δ) ϕi
ϕj
mij

• M = [mij] forms a martingale, ϕ strictly positive
• consequence of the Perron–Frobenius Theorem
• unique if V is irreducible (e.g., has strictly positive entries)

Accumulation over time[
Ψ(n)

]
ij
= exp (−δn)︸ ︷︷ ︸

long run
discount

ϕi
ϕj︸︷︷︸

stationary
part

[
M(n)

]
ij︸ ︷︷ ︸

martingale
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WHAT IS IDENTIFIED?

vij = exp (−δ) ϕi
ϕj︸ ︷︷ ︸

identified
from asset
prices

mijpij︸ ︷︷ ︸
‘recovered’
measure pϕij
(as a residual)

We identified

• long-run discount δ and stationary component ϕ of the SDF
• long-run risk neutral measure Pϕ as a residual

We did not identify

• martingale component M or true belief/DGP P
• since M can be arbitrary, the cross-section of asset prices on its own
does not contain any information about beliefs/DGP P

6/17



HOW CAN THE LACK OF IDENTIFICATION BE ADDRESSED?

1) Make assumptions on M

• Ross (2015) M = 1
• This assumption then fully identifies P

2) Use time series evidence to identify P directly

• Conventional time series econometrics approaches
• Caveat: P represents agents’ belief, we need to impose that this belief is
correct to identify P with the DGP.

• If not, we need additional source of data, like investor surveys

3) Impose more structure on the problem (preferences, functional forms on
DGP, model of belief formation, …)

Researchers typically use combinations of all these approaches.
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CONTRIBUTION OF THIS PAPER

Theoretical: Generalizations of the recovery results to continuous state
spaces

• Perron–Frobenius Theorem for positive matrices generates unique
decomposition

• non-uniqueness issues may arise in continuous state spaces

Empirical: Apply the theorem and study the recovered Pϕ

• numerical procedure based on approximation of the state price density
in a class of B-spline based finite-rank operators

• smoothing needed due to inherent fragility of the numerical problem
• the finite-rank operators satisfy derived theoretical restrictions
• within this class, the eigenfunction ϕ can be computed analytically
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CONTRIBUTION OF THIS PAPER: THEORY

In continuous state spaces, additional restrictions need to be imposed to
extract a unique pair (δ, ϕ)

• This problem is distinct from the identification problem above.
• Perhaps more technical in nature?

Hansen and Scheinkman (2009), BHS (2016)

• Acknowledge potential multiplicity but pick a solution that satisfies
economically appealing conditions.

• The Markov process X should retain a form of stationarity under the
recovered measure.

• Approach motivated by the fact that many valuation operators in the
literature lead to multiple solutions of the decomposition.

Other assumptions used in the existing literature

• boundary behavior (Carr and Yu (2012), Dubynskiy and Goldstein (2013)),
recurrence (Walden (2016), Park (2016), Qin and Linetsky (2016, 2017))
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CONTRIBUTION OF THIS PAPER: THEORY

Dillschneider and Maurer (2019)

• Restrict attention to a class of valuation operators that guarantee a
unique decomposition

• Jentzsch theorem as the generalization of Perron–Frobenius to general
linear spaces

• Assume valuation operators are compact
• Compactness in a sense means ‘close to behaving like on a finite set’

Is this a useful approach?

• Checking compactness is very hard in existing asset pricing models
(Borovička, Stachurski (2019))

• But the authors choose to approximate density using a class of
functions that satisfy compactness

• Also need to compactify the state space
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CONTRIBUTION OF THIS PAPER: EMPIRICS

Paper finds a very convenient approximation technique

• once the B-spline surface is fitted, eigenfunction in closed form

Recovery approach is fragile to discretization and truncation errors

• especially when the underlying Markov process is very persistent
• Walden (2016), Tran and Xia (2014), …

P33: “our functional approach features much fewer degrees of freedom
when fitting the state price density”

• this is a double-edged sword

It would be useful to have some test examples comparing accuracy of
different methods.

• hard to do with actual data, method exhausts overidentifying
restrictions
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DILLSCHNEIDER AND MAURER (2019) VS AUDRINO ET AL. (2019)
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Figure 3: Recovered and risk-neutral moments

Each plot shows the time series of the corresponding recovered moment (black) and risk-neutral
moment (grey) of log excess total returns. Recovered moments are computed from the recovered

transition density p̂φt,τ̄ (· | xt = 1) in equation (4.11). Risk-neutral moments are computed from

the first-stage approximant V̂ (1)(·, τ̄ ; θ̂
(1)
t ), after normalization. Moments are annualized using the

factors 1/τ̄ for the mean, 1/
√
τ̄ for standard deviation,

√
τ̄ for skewness, and τ̄ for excess kurtosis

(e.g., Aı̈t-Sahalia and Lo (1998)).
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3.3 Risk Premia

Figure 3 shows the evolution of risk premia computed as differences between the recovered

and the risk neutral moments for a maturity of 30 days, while Tables 3 and 4 report the

summary statistics and correlations. As expected, the recovered equity premium is positive

and exhibits significant time-variation with countercyclical behavior, while the variance

risk premium is negative throughout and procyclical. The negative of the variance risk pre-

mium is similar to the equity risk premium with a correlation of 0.92. These findings are in

line with recent studies, for example, Bollerslev, Tauchen, and Zhou (2009) and Martin

(2013). The increase in the equity risk premium during downturns highlights the fact that

the average investor requires higher returns to compensate for an increase in return vari-

ance. The negative variance risk premium, on the other hand, indicates a preference for

lower variance on average to compensate for a higher variance of return variance (see, e.g.,

Carr and Wu, 2009).

Consistent with the reasoning behind the equity and variance risk premium, we find

that the skewness risk premium is higher during periods in which skewness exhibits a

higher variance. For the kurtosis risk premium, we observe the same pattern. The higher

the variance of kurtosis, the stronger the risk adjustment. The skewness premium closely

tracks movements in the index, but precedes the sharp drop in 2008. Interestingly, just be-

fore the peak of the S&P 500 in 2007, the real-world density exhibits fatter tails than the

Figure 2 Risk-neutral and recovered moments. For each Wednesday between January 5, 2000 and

December 26, 2012, Figure 2 contrasts the evolution of the S&P 500 (shaded) with that of the risk-neu-

tral (light) and recovered (dark) mean, volatility, skewness, and kurtosis for a constant maturity of 30

days.
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RECOVERED EIGENFUNCTIONS (IN LOGARITHMS)
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Figure 1: Recovered pricing kernels

Each plot shows the logarithm of the pointwise time series median (solid line) and range (dotted

lines) of pricing kernel functions ψ̂φt,τ̄ (· |xt = 1) plotted against forward moneyness (horizontal axis)

for the given sample year. An estimate ψ̂φt,τ̄ of the recovered pricing kernel function is obtained

from equation (4.10) using the pair (δ̂t, φ̂t) at date t.
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• Recovered eigenfunction should be identical at every date!
• Constant interest rates (2011–2014?) consistent with a constant
eigenfunction
=⇒ evidence of misspecification
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TAKEAWAYS

Two contributions

• theory: new conditions for uniqueness of the Hansen–Scheinkman
decomposition

• numerical/empirical: extraction of measure Pϕ with the help of B-spline
fitting

What to do with these results?

• Combine with other (time series or even survey) data and/or more
theory

• Acknowledge Pϕ ̸= P and use Pϕ and ϕ for pricing of relevant cash flows
• How much additional information does Pϕ bring relative to Q?

• ϕ does absorb some risk adjustments but how much?
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