LEONID KOGAN, DIMITRIS PAPANIKOLAOU, NOAH STOFFMAN WINNERS AND LOSERS: CREATIVE DESTRUCTION AND THE STOCK MARKET

Discussion by **Jaroslav Borovička (NYU)** January 2017

Aggregate shocks

- · neutral TFP x_t
- · **'embodied' shock** ξ_t that improves new vintages of capital

Idiosyncratic shocks

- · Households: uninsurable innovation risk $dN_{i,t}^{l}$
 - \cdot embodied shock ξ_t amplifies idiosyncratic risk
 - $\cdot\,$ similar to Constantinides and Duffie
- · Firms: time-varying ability to turn innovation into projects
 - · generates cross-sectional firm heterogeneity

Preferences

- · Epstein–Zin (high estimated IES and risk aversion)
- · preference for relative consumption
 - $\cdot\,$ magnifies SDF exposure to redistributive shocks
- $\cdot \,$ random death shocks at rate δ^h

Preferences

- · Epstein–Zin (high estimated IES and risk aversion)
- · preference for relative consumption
 - $\cdot\,$ magnifies SDF exposure to redistributive shocks
- $\cdot \,$ random death shocks at rate δ^h

Wealth accumulation

· wealth share $w_{n,t} = W_{n,t}/W_t$ conditional on survival

- · dN^I_{it} counts innnovation arrivals
- $\cdot v_t$ value of a newly created project (function of ξ_t)
- $\cdot \,\,\eta$ share of project value retained by innovator
- \cdot wealthy households lived long and innovated a lot

Tradable household wealth $W_t = V_t + G_t + H_t$ (traded in complete markets)

• V_t market value of existing projects in firms

$$V_t = \int_0^1 E_t \left[\sum_{j \in \mathcal{I}_{f,t}} \int_t^\infty \frac{\Lambda_s}{\Lambda_t} \pi_{j,s} ds \right] df$$

 \cdot G_t market value of investment opportunities that accrues to shareholders

$$G_{t} = (1 - \eta) \int_{0}^{1} E_{t} \left[\int_{t}^{\infty} \frac{\Lambda_{s}}{\Lambda_{t}} \lambda_{f,s} \nu_{s} ds \right] df$$

 \cdot *H*_t market value of human capital

$$H_t = E_t \left[\int_t^\infty e^{-\delta^h(s-t)} \frac{\Lambda_s}{\Lambda_t} w_s ds \right]$$

Incomplete markets for value of new projects $\eta \nu_t$ retained by innovators

A firm is a collection of projects with different vintages

 \cdot profit flow for project *j*

$$\pi_{j,t} = \max_{L_{j,t}} \left(u_{j,t} \exp \left(\xi_{\tau(j)} \right) k_{j,t} \right)^{\phi} \left(e^{x_t} L_{j,t} \right)^{1-\phi}$$

 $\cdot \tau(j)$ is the inception time of project j

A firm is a collection of projects with different vintages

 \cdot profit flow for project *j*

$$\pi_{j,t} = \max_{L_{j,t}} \left(u_{j,t} \exp\left(\xi_{\tau(j)} \right) k_{j,t} \right)^{\phi} \left(e^{x_t} L_{j,t} \right)^{1-\phi}$$

 $\cdot \tau(j)$ is the inception time of project j

Project size $k_{j,\tau(j)}$ chosen at project inception

$$\nu_{\tau(j)} \doteq \max_{k_{j,\tau(j)}} \left\{ E_t \left[\int_{\tau(j)}^{\infty} \frac{\Lambda_s}{\Lambda_t} \pi_{j,s} ds \right] - k_{j,\tau(j)}^{1/\alpha} \right\}$$

- $\cdot \,$ convex cost
- \cdot once project created, capital only depreciates
- \cdot the only dynamic decision related to innovation in the model

Probability of receiving a project varies over time

 \cdot 2-state Markov chain, arrival intensities $\lambda_H > \lambda_L$, transition probability

$$\left(egin{array}{cc} -\mu_{ extsf{L}} & \mu_{ extsf{L}} \ \mu_{ extsf{H}} & -\mu_{ extsf{H}} \end{array}
ight)$$

Probability of receiving a project varies over time

· 2-state Markov chain, arrival intensities $\lambda_H > \lambda_L$, transition probability

$$\left(egin{array}{cc} -\mu_{ extsf{L}} & \mu_{ extsf{L}} \ \mu_{ extsf{H}} & -\mu_{ extsf{H}} \end{array}
ight)$$

This generates 'growth' and 'value' firms

- \cdot growth firms are those with **high arrival intensity** λ_f
 - $\cdot\,$ high chance of getting new project is insurance against ξ shock
- \cdot also those will **small existing size** k_f
 - $\cdot\,$ a new project in a large firm makes less of a difference

Risk premia are generated by interaction of

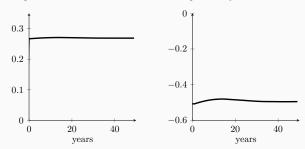
- exposures of cash flows to risk
- · investor compensations for these exposures
- $\cdot\,$ e.g., linear factor models

$$E\left[R_{t}^{i}-R_{t}^{f}\right]=\sum_{k}\beta_{k}^{i}\lambda_{k}$$

 $\cdot\,$ in a nonlinear model, this is a complicated object

Risk premia are generated by interaction of

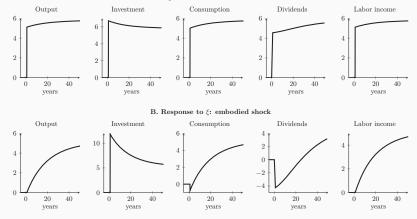
- exposures of cash flows to risk
- · investor compensations for these exposures
- · e.g., linear factor models


$$E\left[R_{t}^{i}-R_{t}^{f}\right]=\sum_{k}\beta_{k}^{i}\lambda_{k}$$

 $\cdot\,$ in a nonlinear model, this is a complicated object

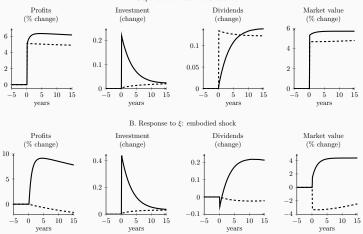
Borovička, Hansen and Scheinkman (2011, 2014)

- · shock-exposure elasticities: sensitivities of expected cash flows to shocks
- · shock-price elasticities: compensations per unit of exposure
- \cdot functions of cash flow maturity \implies term structure of risk


SHOCK-PRICE ELASTICITIES AND TERM STRUCTURE OF RISK PREMIA

A. Response to x: disembodied shock B. Response to ξ : embodied shock

- term structure of risk prices essentially flat
 - · frequent outcome under recursive preferences
- · slope in term structure of risk premia must arise from shock exposures


AGGREGATE SHOCK-EXPOSURE ELASTICITIES

A. Response to x: disembodied shock

- · dividend exposure to ξ_t increases, interacting with negative price elasticity
- $\cdot \implies$ downward sloping term structure of risk premia

SHOCK-EXPOSURE ELASTICITIES AND VALUE PREMIUM

A. Response to x: disembodied shock

- · growth firms (solid) less exposed to disembodied shock x_t
- · ... and more exposed to the embodied shock ξ_t (negative price!)
- · **CAPM failure**: difference mainly in ξ_t (risk premium generated by x_t)

Generating the value premium

- · heterogeneous exposures to the embodied shock ξ_t
- $\cdot\,$ embodied shock must carry a meaningful price of risk

Generating the value premium

- · heterogeneous exposures to the embodied shock ξ_t
- $\cdot\,$ embodied shock must carry a meaningful price of risk

Exposure of the SDF to ξ_t

- · aggregate consumption not sufficiently exposed
 - $\cdot \xi_t$ is partly a redistribution shock
- \cdot interaction of **uninsurable idiosyncratic shocks** with ξ_t needed
- · amplification through keeping-up-with-the-Joneses preferences

Median/mean consumption generated by the mechanism

- $\cdot\,$ these households are likely not the innovators
- · rather look at inequality in the right tail (exclude non-innovators)
- \cdot median/mean perhaps more related to human capital (job polarization)

Median/mean consumption generated by the mechanism

- \cdot these households are likely not the innovators
- · rather look at inequality in the right tail (exclude non-innovators)
- \cdot median/mean perhaps more related to human capital (job polarization)

Persistence μ_L of high innovation state and arrival intensity λ_H

- \cdot strong asymmetry in persistence $\mu_L=$ 0.283, $\mu_H=$ 0.015
- \cdot strong asymmetry in arrival intensity $\lambda_{H} =$ 8.588, $\lambda_{L} =$ 0.122
- \cdot support in the data on persistence of growth/value sorting?

Median/mean consumption generated by the mechanism

- $\cdot\,$ these households are likely not the innovators
- · rather look at inequality in the right tail (exclude non-innovators)
- \cdot median/mean perhaps more related to human capital (job polarization)

Persistence μ_L of high innovation state and arrival intensity λ_H

- \cdot strong asymmetry in persistence $\mu_L=$ 0.283, $\mu_H=$ 0.015
- \cdot strong asymmetry in arrival intensity $\lambda_{H} =$ 8.588, $\lambda_{L} =$ 0.122
- \cdot support in the data on persistence of growth/value sorting?

Size v market-to-book

- \cdot In the model, high k_j firms should have higher expected returns
 - \cdot arrival of a new (small) project matters less for a large firm \implies less insurance
- · test on the 3-factor model?