YIZHOU XIAO INFORMED TRADING AND INTERTEMPORAL SUBSTITUTION: THE LIMITS OF THE NO-TRADE THEOREM

Discussion by **Jaroslav Borovička (NYU)** May 2016 No-trade theorem(s) (*Milgrom and Stokey (1982*) and subsequent extensions) show that

- $\cdot\,$ when preferences are separable
- $\cdot\,$ and we start from a Pareto-optimal allocation

No-trade theorem(s) (*Milgrom and Stokey (1982*) and subsequent extensions) show that

- \cdot when preferences are separable
- $\cdot\,$ and we start from a Pareto-optimal allocation

then subsequent release of (private or public) information cannot lead to retrading.

Separable preferences

$$U^{i} = E\left[\sum_{t=0}^{\infty} \beta^{t} u^{i}\left(c_{t}^{i}; \theta_{t}\right)\right]$$

Separable preferences

$$U^{i} = E\left[\sum_{t=0}^{\infty} \beta^{t} u^{i}\left(c_{t}^{i}; \theta_{t}\right)\right]$$

Planner's problem

$$\max \sum_{i} \lambda^{i} U^{i} \qquad \text{subject to } \sum_{i} c_{t}^{i} \leq Y_{t} \left(\theta^{t} \right)$$

- · optimal consumption allocation only depends on $Y_t(\theta^t)$ (and $u^i(\cdot; \theta_t)$)
- $\cdot\,$ not on any other aspects of the history or future

Separable preferences

$$U^{i} = E\left[\sum_{t=0}^{\infty} \beta^{t} u^{i} \left(c_{t}^{i}; \theta_{t}\right)\right]$$

Planner's problem

$$\max \sum_{i} \lambda^{i} U^{i} \qquad \text{subject to } \sum_{i} c_{t}^{i} \leq Y_{t} \left(\theta^{t} \right)$$

- · optimal consumption allocation only depends on $Y_t(\theta^t)$ (and $u^i(\cdot; \theta_t)$)
- $\cdot\,$ not on any other aspects of the history or future

First-order conditions

$$\sum_{i} \lambda^{i} (u')' (c_{t}^{i}; \theta_{t}) = \mu_{t} (Y_{t} (\theta^{t})) \qquad \mu \text{ is the L.M. on the constraint}$$

· completely static, separable problem.

Imagine release of additional private or public information $x^{i,t}$.

Imagine release of additional private or public information $x^{i,t}$. Potential retrading would have lead to an allocation that depends

- \cdot not only on θ_t and $Y_t(\theta^t)$
- · but also on other information $c_t^i = c_t^i \left(\theta_t, \mathsf{Y}_t, \mathsf{x}^{i,t} \right)$

Imagine release of additional private or public information $x^{i,t}$. Potential retrading would have lead to an allocation that depends

- \cdot not only on θ_t and $Y_t(\theta^t)$
- · but also on other information $c_t^i = c_t^i \left(\theta_t, Y_t, \mathbf{x}^{i,t} \right)$

but then each risk-averse agent would prefer $E\left[c_{t}^{i} \mid \theta_{t}, Y_{t}\right]$ to c_{t}^{i}

which is also feasible

Imagine release of additional private or public information $x^{i,t}$. Potential retrading would have lead to an allocation that depends

- \cdot not only on θ_t and $Y_t(\theta^t)$
- · but also on other information $c_t^i = c_t^i \left(\theta_t, \mathsf{Y}_t, \mathsf{x}^{i,t} \right)$

but then each risk-averse agent would prefer $E\left[c_{t}^{i} \mid \theta_{t}, Y_{t}\right]$ to c_{t}^{i}

· which is also feasible

which could have been chosen by the planner

 \cdot but wasn't \implies contradiction

Incomplete markets

- \cdot starting from a non-Pareto optimal allocation \implies re-trading possible
- \cdot (note: this is different from dynamically complete markets)

Incomplete markets

- \cdot starting from a non-Pareto optimal allocation \implies re-trading possible
- \cdot (note: this is different from dynamically complete markets)

Non-separable preferences

- \cdot this paper
- · habit formation, Epstein–Zin, ...

$$C = (C_0, C_1, \ldots, C_t, \ldots) \preceq (C_0, C_1, \ldots, E[C_t \mid \theta_t], \ldots)$$

$$C = (C_0, C_1, \ldots, C_t, \ldots) \preceq (C_0, C_1, \ldots, E[C_t \mid \theta_t], \ldots)$$

Notice that this is exactly what is needed in the no-trade theorem

· "... each risk-averse agent would prefer $E\left[c_{t}^{i} \mid \theta_{t}, \mathsf{Y}_{t}\right]$ to c_{t}^{i} ..."

$$C = (C_0, C_1, \ldots, C_t, \ldots) \preceq (C_0, C_1, \ldots, E[C_t \mid \theta_t], \ldots)$$

Notice that this is exactly what is needed in the no-trade theorem

- \cdot "... each risk-averse agent would prefer $\textit{E}\left[\textit{c}_{t}^{i} \mid \theta_{t}, \textit{Y}_{t}\right]$ to \textit{c}_{t}^{i} ..."
- $\cdot\,$ satisfied by risk-averse separable preferences

$$C = (C_0, C_1, \ldots, C_t, \ldots) \preceq (C_0, C_1, \ldots, E[C_t \mid \theta_t], \ldots)$$

Notice that this is exactly what is needed in the no-trade theorem

- · "... each risk-averse agent would prefer $E\left[c_{t}^{i} \mid \theta_{t}, Y_{t}\right]$ to c_{t}^{i} ..."
- $\cdot\,$ satisfied by risk-averse separable preferences

It does not need to hold for non-separable preferences anymore

- · ct impacts marginal utility of consumption in other states and periods
- \cdot it may make sense to correlate c_t with consumption in other periods

$$C = (C_0, C_1, \ldots, C_t, \ldots) \preceq (C_0, C_1, \ldots, E[C_t \mid \theta_t], \ldots)$$

Notice that this is exactly what is needed in the no-trade theorem

- · "... each risk-averse agent would prefer $E\left[c_{t}^{i} \mid \theta_{t}, Y_{t}\right]$ to c_{t}^{i} ..."
- $\cdot\,$ satisfied by risk-averse separable preferences

It does not need to hold for non-separable preferences anymore

- · ct impacts marginal utility of consumption in other states and periods
- \cdot it may make sense to correlate c_t with consumption in other periods
- · additional information (e.g., about future states) can lead to retrading

Non-separable, recursive (dynamically consistent) preference structure.

$$U_{t} = \left[C_{t}^{1-\rho} + \beta E \left[U_{t+1}^{1-\gamma} \mid \mathcal{F}_{t} \right]^{\frac{1-\rho}{1-\gamma}} \right]$$

- $\cdot ~\gamma$ risk aversion, ρ IES, β time preference
- \cdot An example of the Kreps–Porteus recursive preferences

Non-separable, recursive (dynamically consistent) preference structure.

$$U_{t} = \left[C_{t}^{1-\rho} + \beta E \left[U_{t+1}^{1-\gamma} \mid \mathcal{F}_{t} \right]^{\frac{1-\rho}{1-\gamma}} \right]$$

- $\cdot \ \gamma$ risk aversion, ho IES, eta time preference
- \cdot An example of the Kreps–Porteus recursive preferences

Kreps–Porteus: preference for timing of information

 \cdot The above is a special case of the aggregator (after a transformation)

 $V_t = f(c_t, E[V_{t+1} \mid \mathcal{F}_t])$

Kreps–Porteus recursive preferences

 $V_t = f(c_t, E[V_{t+1} \mid \mathcal{F}_t])$

 \cdot when *f* is concave in its second argument then

 $f(c_t, E[V_{t+1} \mid \mathcal{F}_t]) \leq E[f(c_t, V_{t+1}) \mid \mathcal{F}_t]$

 \implies preference for early resolution of uncertainty

Kreps–Porteus recursive preferences

 $V_t = f(c_t, E[V_{t+1} \mid \mathcal{F}_t])$

 \cdot when *f* is concave in its second argument then

 $f(C_t, E[V_{t+1} \mid \mathcal{F}_t]) \leq E[f(C_t, V_{t+1}) \mid \mathcal{F}_t]$

 \implies preference for early resolution of uncertainty

 \cdot when *f* is convex in its second argument then

 $f(c_t, E[V_{t+1} \mid \mathcal{F}_t]) \geq E[f(c_t, V_{t+1}) \mid \mathcal{F}_t]$

 \implies preference for late resolution of uncertainty

Recall the concept of the no-trade theorem experiment

First open an ex-ante complete market where period *t* consumption claims can be traded conditional on the history θ^t .

- Filtration $\{\mathcal{F}_t\}$.
- $\cdot\,$ Agents will trade to a Pareto-optimal allocation

Recall the concept of the no-trade theorem experiment

First open an ex-ante complete market where period *t* consumption claims can be traded conditional on the history θ^t .

- Filtration $\{\mathcal{F}_t\}$.
- · Agents will trade to a Pareto-optimal allocation

Then provide additional (private or public) information about which state will be realized.

- Filtration $\{\mathcal{F}_t^*\}$.
- $\cdot\,$ Under assumptions of the no-trade theorem, no retrading.
- · All trade-relevant information already summarized in $(\theta_t, \mathsf{Y}^t(\theta^t)) \in \mathcal{F}_t$.

Recall the concept of the no-trade theorem experiment

First open an ex-ante complete market where period *t* consumption claims can be traded conditional on the history θ^t .

- Filtration $\{\mathcal{F}_t\}$.
- · Agents will trade to a Pareto-optimal allocation

Then provide additional (private or public) information about which state will be realized.

- Filtration $\{\mathcal{F}_t^*\}$.
- $\cdot\,$ Under assumptions of the no-trade theorem, no retrading.
- · All trade-relevant information already summarized in $(\theta_t, \mathsf{Y}^t(\theta^t)) \in \mathcal{F}_t$.

In a dynamic environment, we need to specify how we got to the initial Pareto optimal allocation.

 Let the agents trade in a complete state-contingent market with information {*F*_t}.

$$V_{1} = \left[c_{1}^{1-\rho} + \beta E\left[c_{2}^{1-\gamma} \mid \mathcal{F}_{1}\right]^{\frac{1-\rho}{1-\gamma}}\right]$$

 Let the agents trade in a complete state-contingent market with information {*F*_t}.

$$V_{1} = \left[c_{1}^{1-\rho} + \beta E\left[c_{2}^{1-\gamma} \mid \mathcal{F}_{1}\right]^{\frac{1-\rho}{1-\gamma}}\right]$$

2. After trading, **unexpectedly** announce new information $\{\mathcal{F}_t^*\}$

$$\mathcal{F}_1^*=\mathcal{F}_2.$$

 Let the agents trade in a complete state-contingent market with information {*F*_t}.

$$V_{1} = \left[c_{1}^{1-\rho} + \beta E\left[c_{2}^{1-\gamma} \mid \mathcal{F}_{1}\right]^{\frac{1-\rho}{1-\gamma}}\right]$$

2. After trading, **unexpectedly** announce new information $\{\mathcal{F}_t^*\}$

$$\mathcal{F}_1^* = \mathcal{F}_2.$$

3. New preferences

$$V_1^* = \left[c_1^{1-\rho} + \beta E \left[c_2^{1-\gamma} \mid \mathcal{F}_1^* \right]^{\frac{1-\rho}{1-\gamma}} \right]$$

 Let the agents trade in a complete state-contingent market with information {*F*_t}.

$$V_{1} = \left[c_{1}^{1-\rho} + \beta E\left[c_{2}^{1-\gamma} \mid \mathcal{F}_{1}\right]^{\frac{1-\rho}{1-\gamma}}\right]$$

2. After trading, **unexpectedly** announce new information $\{\mathcal{F}_t^*\}$

$$\mathcal{F}_1^* = \mathcal{F}_2.$$

3. New preferences

$$V_{1}^{*} = \left[c_{1}^{1-\rho} + \beta E\left[c_{2}^{1-\gamma} \mid \mathcal{F}_{1}^{*}\right]^{\frac{1-\rho}{1-\gamma}}\right] = \left[c_{1}^{1-\rho} + c_{2}^{1-\rho}\right]^{\frac{1}{1-\rho}}$$

 Let the agents trade in a complete state-contingent market with information {*F*_t}.

$$V_{1} = \left[c_{1}^{1-\rho} + \beta E\left[c_{2}^{1-\gamma} \mid \mathcal{F}_{1}\right]^{\frac{1-\rho}{1-\gamma}}\right]$$

2. After trading, **unexpectedly** announce new information $\{\mathcal{F}_t^*\}$

$$\mathcal{F}_1^* = \mathcal{F}_2.$$

3. New preferences

$$V_{1}^{*} = \left[c_{1}^{1-\rho} + \beta E \left[c_{2}^{1-\gamma} \mid \mathcal{F}_{1}^{*} \right]^{\frac{1-\rho}{1-\gamma}} \right] = \left[c_{1}^{1-\rho} + c_{2}^{1-\rho} \right]^{\frac{1}{1-\rho}}$$

4. Now retrading can occur: Second round of trading is under different preferences.

· First round of trading under preference ranking V_1 .

- · First round of trading under preference ranking V_1 .
- · Second round of trading under preference ranking V_1^* , with $V_1 \neq E[V_1^* \mid \mathcal{F}_1]$

- · First round of trading under preference ranking V_1 .
- · Second round of trading under preference ranking V_1^* , with $V_1 \neq E[V_1^* \mid \mathcal{F}_1]$
- · Dynamic inconsistency

- · First round of trading under preference ranking V_1 .
- · Second round of trading under preference ranking V_1^* , with $V_1 \neq E[V_1^* | \mathcal{F}_1]$
- Dynamic inconsistency

If agents in round 1 knew that additional information would arrive before second round:

 \cdot First round of trading under preference ranking E [V_1^* \mid \mathcal{F}_1]

- · First round of trading under preference ranking V_1 .
- · Second round of trading under preference ranking V_1^* , with $V_1 \neq E[V_1^* | \mathcal{F}_1]$
- Dynamic inconsistency

If agents in round 1 knew that additional information would arrive before second round:

- \cdot First round of trading under preference ranking $\textit{E}\left[\textit{V}_{1}^{*} \mid \mathcal{F}_{1}\right]$
- \cdot Second round of trading under preference ranking V_1^*

- · First round of trading under preference ranking V_1 .
- · Second round of trading under preference ranking V_1^* , with $V_1 \neq E[V_1^* | \mathcal{F}_1]$
- Dynamic inconsistency

If agents in round 1 knew that additional information would arrive before second round:

- \cdot First round of trading under preference ranking $\textit{E}\left[\textit{V}_{1}^{*} \mid \mathcal{F}_{1}\right]$
- \cdot Second round of trading under preference ranking V_1^*
- \cdot Dynamically consistent \implies no retrading.

- · Agents can contract in markets that are complete wrt to $\theta^t \in \mathcal{F}_t$
- · Cannot contract on signals $x_t \in \mathcal{F}_{\tau}$ about future states in periods $\tau > t$.

- · Agents can contract in markets that are complete wrt to $\theta^t \in \mathcal{F}_t$
- · Cannot contract on signals $x_t \in \mathcal{F}_{\tau}$ about future states in periods $\tau > t$.

Under separable preferences, *x*_t contracts are irrelevant ex ante.

- $\cdot x_t$ is irrelevant for time-*t* consumption allocation
- $\cdot \,$ contracting upon θ^{τ} is sufficient for time- τ consumption allocation

- · Agents can contract in markets that are complete wrt to $\theta^t \in \mathcal{F}_t$
- · Cannot contract on signals $x_t \in \mathcal{F}_{\tau}$ about future states in periods $\tau > t$.

Under separable preferences, *x*_t contracts are irrelevant ex ante.

- $\cdot x_t$ is irrelevant for time-*t* consumption allocation
- $\cdot \,$ contracting upon θ^{τ} is sufficient for time- τ consumption allocation

Under non-separable preferences, *x*_t contracts matter.

 \cdot optimal time-*t* consumption allocation is a function of the whole history

Under separable preferences

- $\cdot\,$ neither of the experiments leads to retrading
- $\cdot\,$ ex post changes in information structure are irrelevant
- \cdot trading on payoff-nonrelevant signals does not occur

Under separable preferences

- \cdot neither of the experiments leads to retrading
- \cdot ex post changes in information structure are irrelevant
- · trading on payoff-nonrelevant signals does not occur

Under non-separable preferences

- · these two experiments are distinct
- \cdot the paper uses the incomplete market interpretation

1. Paper defines risk-aversion dominating preferences, which, $\forall C$,

$$C = (C_0, C_1, \ldots, C_t, \ldots) \preceq (C_0, C_1, \ldots, E[C_t \mid \theta_t], \ldots)$$

1. Paper defines risk-aversion dominating preferences, which, $\forall C$,

$$C = (C_0, C_1, \ldots, C_t, \ldots) \preceq (C_0, C_1, \ldots, E[C_t \mid \theta_t], \ldots)$$

Which preference specifications satisfy this condition (\forall C)?

- · Apart from separable preferences?
- · E.g., within the class of Epstein–Zin preferences?

1. Paper defines risk-aversion dominating preferences, which, $\forall C$,

$$C = (C_0, C_1, \ldots, C_t, \ldots) \preceq (C_0, C_1, \ldots, E[C_t \mid \theta_t], \ldots)$$

Which preference specifications satisfy this condition (\forall C)?

- · Apart from separable preferences?
- · E.g., within the class of Epstein–Zin preferences?
- 2. Why cannot we complete the markets to news signals x_t ?
 - · Agents would want to trade such contracts. What prevents it?

This is a challenging task.

 $\cdot\,$ Many degrees of freedom that are hard to discipline.

This is a challenging task.

- $\cdot\,$ Many degrees of freedom that are hard to discipline.
- Quantification of 'news shocks' (Barsky and Sims (2011), Sims (2012)) that cannot be contracted upon ex ante.

Right now the quantitative model can generate large amount of retrading (volume).

- · Proof of concept?
- · Complete markets in payoff-relevant states.
- · Perfect signal about next period state that is not contractible.

A more serious exercise should look at

- $\cdot\,$ Precision of signals about the future (news shocks)
- Empirical evidence on (non)contractability of these shocks (derivative markets).