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Abstract
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1 Introduction

We propose a new way to characterize risk price dynamics, and apply these methods to

study several structural asset pricing models. In the methods of mathematical finance, risk

prices are encoded using the familiar risk neutral transformation and the instantaneous risk-

free rate. In structural models of macroeconomic risk, they are encoded in the stochastic

discount factor process used to represent prices at alternative payoff horizons. Our aim is

to reveal the pricing dynamics embedded in risk-neutral transformations or in stochastic

discount factors by extending two types of methods: local risk prices and impulse response

functions. Local risk prices give the reward expressed in terms of expected returns for

alternative local exposures to risk, including shocks to the macroeconomy. Impulse response

functions characterize how shocks today contribute to future values of a stochastic process

such as macroeconomic growth or future cash flows. We develop related constructs, but ones

that are tailored to the pricing of the exposure to macroeconomic risk. We achieve this by

extending the concept of a local risk price by asking how the compensation for exposure

to shocks changes as we alter the terminal or maturity date for the payoff. This leads

us to construct shock-exposure and shock-price elasticities as functions of payoff horizons.

Structural asset pricing models feature state dependence in risk premia as well as sensitivity

to the payoff horizon. These risk premia depend on shock exposures and prices, and the

elasticities we propose reflect both dependencies. Our methods show how state dependence

alters these elasticities when the date of the shocks is shifted to time periods that are further

in the future.

We believe that uncertainty about macroeconomic growth has important welfare impli-

cations and major consequences to market valuations of forward-looking assets. Exploring

these phenomena requires the simultaneous study of stochastic growth and discounting, in

contrast to the extensive literature on fixed income securities and the term structure of in-

terest rates that abstracts from growth. Previous work1 has sought to provide informative

characterizations of risk premia for cash flows that grow stochastically over time and to ex-

tract the distinct contributions of risk exposure (the asset pricing counterpart to a quantity)

and risk prices. We add to this literature by proposing and characterizing the state and

investment horizon dependence of exposure and price elasticities.

While there have been quantitative and empirical successes through the use of ad hoc

models of stochastic discount factors specified flexibly to enforce the absence of arbitrage,

our aim is to reveal the pricing implications of structural models that allow us to truly

answer the question “how does risk or uncertainty get priced?” The promise of such models

1See, for instance, Lettau and Wachter (2007), Hansen and Scheinkman (2009a,b) and Hansen (2009).
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is that they will allow researchers to assign values to the shocks identified in macroeconomic

models and support welfare analyses that are linked to uncertainty. While reduced-form

models continue to provide a convenient shortcut for presenting empirical evidence, we aim to

provide a dynamic characterization of risk pricing that will support structural investigations

that stretch models beyond the support of the existing data.

Many asset pricing models have state dependent movements in both means and volatili-

ties. While Markovian, these models are fundamentally nonlinear. This makes their pricing

implications over extended investment horizon more challenging to extract, but our methods

aim to address this challenge. For example, the local pricing of the commonly used diffusion

model exploits local normality to obtain simple characterizations. As we integrate over time

this model becomes a more complicated “mixture of normals” model with nontrivial state

dependence in the mixing. For typical state realizations, the thin tails of the normal density

can be enlarged by this mixing across normal regimes in nontrivial ways. In our study of

valuation through compounding stochastic growth and discounting, seemingly modest state

dependence that is present over short investment intervals can be magnified over longer time

intervals. While the elasticities we compute continue to exploit the local normality, we show

how their impact can be magnified through this compounding. We also study models that

include jump components to uncertainty.

1.1 Overview of the paper

Section 2.1 starts with the description of the economic environment with Brownian informa-

tion structure. We specify a stationary Markov diffusion process for the underlying dynamics.

This Markov process characterizes the increments of nonstationary functionals that capture

growth and discounting. The paper provides a methodology for studying the impact of small

perturbations of these functionals that are conveniently parameterized. We introduce these

perturbations in Section 2.2 to construct the elasticities that interest us. These perturba-

tions make marginal changes to the exposure of the multiplicative functional to alternative

configurations of economic shocks. Economic motivation for the particular type of elasticities

dictates how we construct these elasticities.

In this paper we construct alternative elasticities indexed by the investment horizon

and the current Markov state. For a fixed investment horizon t and initial state x, we

compute the response of the logarithm of the expected value of the perturbed multiplicative

functional to marginal changes in the exposure. We call such an elasticity, scaled by the

investment horizon, a risk elasticity. By localizing the change in the exposure to focus on the

next instant, we build corresponding shock elasticities. Following Hansen and Scheinkman

(2009b), we show that the shock elasticities are the building blocks for the risk elasticities.

3



A risk elasticity is a distorted expectation of an integral of shock elasticities over time. This

distorted expectation is proposed and justified in Hansen and Scheinkman (2009a). The

essential formula from this section is:

risk elasticity =
1

t

Ê
[

ê(Xt)
∫ t

0
ε(Xu, t− u)du|X0 = x

]

Ê [ê(Xt)|X0 = x]

for investment horizon t where ε is the corresponding shock elasticity. The distorted expec-

tation is captured by the Ê expectation operator that is used along with the scaling by the

random variable ê(Xt). The construction of risk and shock elasticities is reported in Sec-

tion 2 along with a characterization of the dependencies on the Markov state, the exposure

date, and the length of the payoff horizon.

Risk premia depend on both the exposure of a cash flow to risk and the price of that

exposure. The exposure plays the role of a quantity in standard demand theory. Given these

two contributions, we are lead to compute two types of elasticities: an exposure elasticity

and a price elasticity. Using these categories in conjunction with the ones mentioned in the

previous paragraph, we construct the following four types of elasticities in Section 3:

i) risk-price elasticity

ii) shock-price elasticity

iii) risk-exposure elasticity

iv) shock-exposure elasticity

In Section 4, we provide a technical generalization of our analysis by using the Malliavin

derivative from stochastic calculus.

We compute risk and shock elasticities with a series of examples in Sections 5, 6 and 7.

Each of these sections can be read independently of the others. In Section 5 we display

elasticities for a model with recursive utility preference in the spirit of Bansal and Yaron

(2004) using a parameterization in Hansen et al. (2007). This model is a restricted version

of a pricing model with affine dynamics in which both conditional means and conditional

variances are linear in Markov states. The recursive utility model contributes a forward-

looking component to the stochastic discount factor process represented using continuation

values. We characterize the impact of this forward-looking component on price elasticities

for alternative investment horizons. In Section 6 we contrast two specifications of models in

which investors confront consumption externalities in their preferences, the so-called external

habit models of Campbell and Cochrane (1999) and Santos and Veronesi (2008). These
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models are known to induce nonlinearity in risk pricing. We document substantive differences

in the shock and risk price elasticities across investment horizons.

We construct elasticities for models with discrete shifts in the conditional means and

conditional volatilities in Section 7. These shifts are modeled as evolving according to a

finite-state Markov chain specified in continuous time. In our computations with this spec-

ification, we use an estimated model of consumption dynamics from Bonomo and Garcia

(1996) in conjunction with a recursive utility model of preferences. The recursive utility

model is known to induce nonzero local prices of regime-shift risk. We extend this insight

by studying the risk and shock price dynamics. For the three types of example economies,

we use counterpart model economies in which investors have power utility preferences as

benchmarks.

2 Markov pricing with Brownian information

We follow the construction in Hansen and Scheinkman (2009a,b) and Hansen (2009). Con-

sider a Markov diffusion that solves:

dXt = µ(Xt)dt+ σ(Xt)dWt.

whereW is a multivariate standard Brownian motion. In this model nonlinearity is captured

by the specification of µ and σ. While the state variable X may well be stationary, we will

use it as a building block for processes that grow or decay over time.

2.1 Growth and discounting

In econometric practice we often build models for the logarithms of processes. An example

of such a model is

At =

∫ t

0

β(Xu)du+

∫ t

0

α(Xu) · dWu.

We call the resulting process, denoted by A, an additive functional because it depends

entirely on the underlying Markov process and it is constructed by integrating over the time

scale. Nonlinearity may be present in the specification of β and α.

While it is convenient to take logarithms when building time series models, to represent

values and prices it is necessary to study levels instead of logarithms. Thus to represent

growth or decay, we use the exponential of an additive functional, Mt = exp(At). We will

refer to M as a multiplicative functional parameterized by (β, α). Ito’s Lemma guarantees
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that the local mean of M is

Mt

[

β(Xt) +
|α(Xt)|2

2

]

.

The multiplicative functional is a local martingale if its local mean is zero:

β(Xt) +
|α(Xt)|2

2
= 0.

There are two types of multiplicative functionals that we feature: we use one to represent

stochastic growth and another for stochastic discounting. For future reference, let G be a

stochastic growth functional parameterized by (βg, αg). The second will be a stochastic

discount functional S parameterized by (βs, αs). The stochastic growth functional captures

the evolution of cash flows or other macroeconomic quantities of interest and usually grows

exponentially over time. The stochastic discount functional represents marginal valuation

and typically decays exponentially.

2.2 Perturbations

To compute elasticities we evaluate expectations of perturbations to multiplicative function-

als. The perturbations alter the paths of the functionals while retaining the multiplicative

Markov structure and will be used in Section 3 to compute exposure and price elasticities.

A perturbation toM isMH(r), where we parameterize H(r) using a pair (βh(x, r), rαd(x))

with βh(x, 0) = 0. The function αd(x) defines the direction of risk exposure. Thus

logHt(r) =

∫ t

0

βh(Xu, r)du+ r

∫ t

0

αd(Xu) · dWu.

In Section 3 we discuss economic motivation that guides the choice of the drift term βh. As

r declines to zero, the perturbed process MH(r) converges to M. Let

βd(x) =
d

dr
βh(x, r)

∣

∣

∣

∣

r=0

.

Construct the additive functional:

Dt =

∫ t

0

βd(Xu)du+

∫ t

0

αd(Xu) · dWu,

which we use to represent the derivative of interest via:

d

dr
logE [MtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=
E [MtDt|X0 = x]

E [Mt|X0 = x]
. (1)
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Hansen and Scheinkman (2009b) provide a formal derivation including certain regularity

conditions that justify this formula. Formula (1) gives an additive decomposition through its

use of the additive functional D. It what follows we will exploit this additive structure to

characterize the contributions of shock exposures at intermediate dates between zero and t.

Recall that an elasticity is the derivative of the logarithm of the outcome with respect to

the logarithm of the argument. Our use of the logarithm outside of the expectation is part of

the reason we refer to the resulting object as an “elasticity”. We achieve appropriate scaling

that supports this interpretation by suitably restricting the magnitude of the direction αd(x)

to satisfy:

E
[

|αd(Xt)|2
]

= 1.

2.3 Initial construction of shock elasticities

The perturbation functionalH applies to all points in time in the investment horizon between

date zero and t. We are also interested in contributions that are localized in time. To

accomplish this we seek an integral representation for the derivative:

d

dr
logE [MtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

While the additive functionalD has an integral representation including a stochastic integral,

we now show how to replace this stochastic integral with a standard integral by computing

conditional covariances between M and the stochastic integral component of D.

Given the Brownian information structure we represent M as a stochastic integral:

Mt =

∫ t

0

χu,t · dWu + E(Mt|X0 = x) (2)

which shows how the multiplicative functional is updated in response to shocks.2 The coef-

ficients χ give one generalization of an impulse response function familiar from linear time

series. For instance, χ0,t when viewed as a function of t gives the (random) expected response

of future values of M to a shock in the next instant conditioned on current information. Of

particular interest to us is that

E

[

Mt

∫ t

0

αd(Xu) · dWu|X0 = x

]

= E

[
∫ t

0

αd(Xu) · χu,t du|X0 = x

]

. (3)

Asset valuation is often represented in terms of covariances and in this case the essential

2See Theorem 3.4 in Chapter 5 of Revuz and Yor (1991).

7



covariance is between M and
∫ t

0
αd(Xu). Our aim is to produce a more convenient represen-

tation for this term.

By construction (X, logM) is a Markov process. We use the Markov structure of logM

to obtain a formula for the coefficients χ. For a small interval of length h, write

E [Mt|Fu+h]− E [Mt|Fu] =Mu+hE

[

Mt

Mu+h
|Xu+h

]

−MuE

[

Mt

Mu
|Xu

]

(4)

where we are exploiting the multiplicative construction of M as a function of the Markov

process X . When E
[

Mt

Mu

|Xu = x
]

is twice continuously differentiable with respect to x we

may appeal to Ito’s formula in conjunction with the Markov structure to show that the local

counterpart to (4) is

χu,t · dWu

where

χu,t = E [Mt|Mu, Xu] [ψ(Xu, t− u) + α(Xu)]

ψ(x, v) = σ(x)′
(

∂

∂x
logE [Mv|X0 = x]

)

. (5)

Section 4 provides an alternative justification based on Malliavin calculus used to implement

what is known as the Haussman-Clark-Ocone formula. Substituting formula (5) into (2) and

applying the Law of Iterated Expectations gives us the following integral representation of

a risk elasticity:

Result 2.1.

1

t

d

dr
logE [MtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=
1

t

E
[

Mt

∫ t

0
ε(Xu, t− u)du|X0 = x

]

E [Mt|X0 = x]
.

where

ε(x, v)
.
= αd(x) · [ψ(x, v) + α(x)] + βd(x) (6)

and ψ(x, v) is defined in (5).

We refer to ε as a shock elasticity function. From Result 2.1 a risk elasticity over a given

investment horizon is an integral over time and a weighted average over states of a shock

elasticity function, and thus the shock elasticities are the fundamental building block for

risk elasticities. We scale the time integral by the investment horizon t in order to achieve

comparability when we explore what happens when we alter t.

In formula (6), αd parameterizes the local exposure to risk that is being explored and βd
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is determined as a consequence of the nature of the perturbation. In Section 3 we show how

economic considerations can guide us in choosing βd. The coefficient α is the local exposure

to risk of the baseline multiplicative functional. Recall that to interpret the logarithmic

derivative as an elasticity, we restrict |αd(Xt)|2 to have a unit expectation so that αd(Xt)·dWt

has a unit standard deviation scaled by dt. The dependence of ε on the horizon to which

the perturbation pertains, that is the dependence on t, is only manifested in the function

ψ. The shock elasticity function includes a direct effect captured by α which is the local

exposure of logM to the Brownian increment, and an indirect effect captured by ψ which is

constructed from the impulse response function for M .

2.4 Martingale decomposition

We obtain an alternative and convenient representation of (1) by applying a change of

measure. This change of measure gives us a characterization of elasticities as the invest-

ment horizon becomes large by identifying the long-term shock exposure of M through its

martingale component. We construct the change of measure by factoring the multiplica-

tive functional, and we show how to apply this change to our calculations. Our use of a

multiplicative factorization differentiates this from commonly used methods of identifying

permanent shocks.

Hansen and Scheinkman (2009a) provide sufficient conditions for the existence of a fac-

torization of a multiplicative process M :

Mt = exp(ηt)M̂t
e(X0)

e(Xt)
(7)

where M̂ is a multiplicative martingale and e is a strictly positive, smooth function of

the Markov state. This function represents the most durable dominant component of the

transient dynamics of M . The parameter η is a long-term growth or decay rate. We use the

martingale M̂ to define a new probability measure on the original probability space. The

multiplicative property of M̂ ensures that X remains Markov in the new probability space.

While this factorization may not be unique, there is only one such factorization in which the

change in measure imposes stochastic stability.3

Our factorization is distinct from that of Ito andWatanabe (1965). The Ito andWatanabe

(1965) factorization for a multiplicative supermartingale results in the product of a local

martingale and a decreasing functional. This factorization delivers the Markov counterpart

to the risk neutral transformation used extensively in mathematical finance when it is applied

3The notion of stochastic stability that interests us is that conditional expectations of functions of the
Markov state converge to their unconditional counterparts as the forecast horizon is increased.
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to a stochastic discount factor functional. In this case the decreasing functional Md is

Md
t = exp

[

−
∫ t

0

%(Xu)du

]

where % is the instantaneous interest rate. State dependence in the decreasing component

makes it less valuable as a device to characterize risk price dynamics because even locally

deterministic variation in instantaneous interest rates induces risk adjustments for cash flows

over finite time intervals. This leads us instead to extract a long-term growth or discount

rate η as in (7).

Parameterizing M by (β, α), Girsanov’s Theorem ensures the increment dWt can be

written as:

dWt = [α(Xt) + ν(Xt)] dt+ dŴt. (8)

Here ν(x) is the exposure of log e(x) to dWt:

ν = σ′
[

∂ log e

∂x

]

and Ŵ is a Brownian motion under the alternative probability measure ·̂. Alternatively, α+ν
is the shock exposure of the logarithm of martingale M̂ .

To use this factorization in practice, we must compute e and η. Hansen and Scheinkman

(2009a) show how to accomplish this. Solve

E [Mte(Xt)| X0 = x] = exp(ηt)e(x)

for any t where e is strictly positive. This is a (principal) eigenfunction problem, and since

it holds for any t, it can be localized by computing

lim
t→0

E [Mte(Xt)| X0 = x]− exp(ηt)e(x)

t
= 0

which gives an equation in e and η to be solved. The local counterpart to this equation is

Be = ηe (9)

where

Be(x) =
d

dt
E [Mte(Xt)| X0 = x]

∣

∣

∣

∣

t=0
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It can be shown that for a diffusion model, if f is smooth,

Bf =

(

β +
1

2
|α|2

)

f + (σα + µ) · ∂f
∂x

+
1

2
trace

(

σσ′ ∂
2f

∂x∂x′

)

.

2.5 Elasticities under the change of measure

We use the alternative probability measure to absorb the martingale component of the mul-

tiplicative functional in our formula (7). Under the change of measure, the drift component

of the additive functional D picks up the diffusion term of this martingale component

β̂d = βd + αd · (α + ν) . (10)

In Section 3, we provide economic motivation for the choice of the perturbation H and thus

for the coefficients (βd, αd) that restricts specific functionals to be martingales under the

original measure. Equation (10) shows how the change of measure is compensated in the

drift term of the perturbation.

Writing Ê for the expectation operator under the change in measure induced by M̂ , we

obtain:

d

dr
logE [MtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=
Ê
[

ê(Xt)
∫ t

0
ε(Xu, t− u)du|X0 = x

]

Ê [ê(Xt)|X0 = x]

where ê = 1
e
. Using the alternative probability measure we find that

ψ(x, v) = σ(x)′
(

∂

∂x
logE [Mv|X0 = x]

)

= φ(x, v)− φ(x, 0)

where

φ(x, v) = σ(x)′
(

∂

∂x
log Ê [ê(Xv)|X0 = x]

)

. (11)

This leads us to reformulate Result 2.1 under the alternative probability measure:

Result 2.2.

1

t

d

dr
logE [MtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=
1

t

Ê
[

ê(Xt)
∫ t

0
ε(Xu, t− u)du|X0 = x

]

Ê [ê(Xt)|X0 = x]
.

where

ε(x, v)
.
= αd(x) · [φ(x, v) + ν(x) + α(x)] + βd(x) (12)
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and φ(x, v) is defined in (11).

In this formula we use the fact that ν(x) = −φ(x, 0) where ν captures how the dominant

eigenfunction e is exposed to shocks. The shock elasticity ε(x, t) is unaffected by the change

of measure but the contribution αd · (ν + α) coming from the martingale component M̂ is

singled out to the drift term of the additive functional D, as shown in formula (10).

The limiting shock elasticities are given by

lim
v↓0

ε(x, v) = αd(x) · α(x) + βd(x)

lim
v↑∞

ε(x, v) = αd(x) · [ν(x) + α(x)] + βd(x)

where the latter formula follows from the fact that X is stochastically stable under the

change of measure. In this formula αd defines the direction for the exposure to be valued, α

is the local exposure of logM to the shock increment dW (and to the increment dŴ ), and

as we remarked earlier, ν+α is the exposure of logM to the shock increments. We will have

more to say about the role of βd later in our analysis. The dependence on the investment

horizon is captured by φ(x, v).

To interpret the contribution φ to ε at intermediate dates, note that

ê(Xt) =

∫ t

0

Ê [ê(Xt−u)|X0 = x]φ(x, t− u)dŴu + ê(X0),

which gives a moving-average representation with state dependent coefficients. In particular

the contribution

Ê [ê(Xt)|X0 = x]φ(x, t)

gives a measure of the response of ê(Xt) to a shock at date zero.

Result 2.2 also has implications for the valuation of the exposure to shocks that occur

in the future. Our shock elasticities exploit the local normality built into the diffusion

specification, but as we shift the date of the shock forward in time, there is an additional

role for the distribution of the state dynamics. Consider the exposure to a shock at date τ ,

which has implications for valuation of payoffs maturing from date τ forward. Its impact

will be realized through a distorted conditional expectation. For the current state x and the

investment horizon t+ τ we construct:

ε(x, t; τ) =
Ê [ê(Xt+τ )ε(Xτ , t)|X0 = x]

Ê [ê(Xt+τ )|X0 = x]
(13)

Since the process X is stochastically stable under the change of measure, the limiting version

12



of formula (13) as the shock date τ is shifted to the future is

ε(t;∞) =
Ê [ê(Xt)ε(X0, t)]

Ê [ê(Xt)]
(14)

which is independent of τ and x but continues to depend on t, the time between the shock

and the payoff horizon.

3 Price and exposure elasticities

Risk premia come from two sources, exposure to risk and the price of that exposure. This

leads us to construct two types of elasticities: exposure and price elasticities. Consider a

parameterized family of cash flows GH(r) to be valued. Exposure elasticities measure how

changes in an expected growth functional GH(r) are altered as we change the exposure

parameterized by r. Price elasticities measure how changes in a corresponding expected

return are altered as we change r and include a contribution from the stochastic discount

factor functional S. In this section we define both elasticities and specify formally the

perturbations used in the constructions. Consistent with our development in Section 2 we

distinguish between risk elasticities and their instantaneous counterparts, shock elasticities.

3.1 Risk-price elasticity

Consider the expected return over an investment horizon t subject to a perturbation to the

cash flow:
E [GtHt(r)|X0 = x]

E [StGtHt(r)|X0 = x]
.

Taking logarithms, scaling by the payoff horizon, and differentiating with respect to r gives

π(x, t) =
1

t

d

dr
logE [GtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

− 1

t

d

dr
logE [StGtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

, (15)

which is the risk-price elasticity associated with direction αd(x) that is implied by the con-

struction of the perturbation H . By using expected returns to measure a risk price, we follow

an approach that is typical in one-period (in discrete time) or instantaneous (in continuous

time) valuation problems. The returns are themselves constructed to have a unit price in

terms of a consumption numeraire, but their expectations are sensitive to changes in the risk

exposure.

The risk-price elasticity consists of two components. We call the first term a risk-exposure

elasticity because it captures the sensitivity of expected cash flows to risk exposure. The
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second term, which we call the risk-value elasticity, includes the sensitivity of the cash

flow value to changes in the risk exposure.4 In contrast to familiar risk premia, the risk

price elasticities express the rewards to marginal changes in risk exposure in a particular

direction. In the special case of lognormal models, marginal and average rewards to risk

exposure coincide, and the risk premium can be expressed as the risk-price elasticity in the

direction G multiplied by the appropriate quantity of risk exposure, but nonlinearity in the

Markov evolution typically overturns this result as we illustrate in the examples in Section 5.

3.2 Martingale perturbations

One convenient choice of the perturbation H(r) for building elasticities is to restrict it to

be a (local) martingale. In this way we deliberately abstract from augmenting the cash-flow

dynamics by the choice of the perturbation. To impose the martingale restriction we set

βh(x, r) = −1

2
r
2|αd(x)|2.

In this case βd = 0 and

β̂d = αd · (α + ν) .

The input in formula (1) then becomes an additive (local) martingale under the original

probability measure:

Dt =

∫ t

0

αd(Xu) · dWu.

With martingale perturbations, we essentially recover impulse responses as shock elas-

ticities. One construction of an impulse response function is χ0,t used to represent Mt as

Mt =

∫ t

0

χu,t · dWu + E [M0|X0 = x]

where χ0,t measures how Mt responds to a shock modeled as a Brownian increment at date

zero conditional on date zero information. Then

1

t

d

dr
logE [MtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=
1

t

E
[

∫ t

0
αd(Xu) · χu,t du|X0 = x

]

E [Mt|X0 = x]
. (16)

The term αd(x)·χ0,t measures the expected response ofMt to a shock αd(x)·dW0. Formula (5)

4This approach to pricing risk of cash flows with stochastic growth components follows Hansen et al.
(2008), Hansen and Scheinkman (2009a), and Hansen (2009). The priced cash flows are sometimes referred
to as zero coupon equity (see Wachter (2005) or Lettau and Wachter (2007)), that is a claim to a single
random payoff at a point in time t.
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in Section 2 represents χ0,t as:

χ0,t = E [Mt|X0 = x] [ψ(x, t) + α(x)]

ψ(x, t) = σ(x)′
(

∂

∂x
logE [Mt|X0 = x]

)

where the scale factor E [Mt|X0 = x] is also present in the denominator of the right-hand

side of (16). Later we will draw connections to other ways of constructing impulse response

functions.

Recall from formula (15) that the risk-price elasticity has two components, which we now

consider in turn. The first term uses the multiplicative functional M = G and results in

a risk-exposure elasticity. The second one uses M = V = SG and results in a risk-value

elasticity. The value component interacts the exposure of the cash flow to risk and the price

of that risk as reflected by the marginal investor. By forming the difference we obtain a

risk-price elasticity.

We use Result 2.2 to represent the risk-exposure elasticity as:

1

t

d

dr
logE [GtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=
1

t

Êg

[

êg(Xt)
∫ t

0
εg(Xu, t− u)du|X0 = x

]

Êg [êg(Xt)|X0 = x]
.

We obtain the distorted expectation and the function ê subscripted by g from the multi-

plicative factorization of G and

εg(x, t) = αd(x) · [ψg(x, t) + αg(x)] .

We repeat this calculation for M = V and construct the risk-value elasticity

1

t

Êv

[

êv (Xt)
∫ t

0
εv(Xu, t− u)du|X0 = x

]

Êv [êv (Xt) |X0 = x]

with the corresponding the shock-value elasticity function

εv(x, t) = αd(x) · [ψv(x, t) + αg(x) + αs(x)] .
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Thus using Result 2.2, we rewrite the risk-price elasticity (15) as

π(x, t) =
1

t

Êg

[

êg (Xt)
∫ t

0
εg(Xu, t− u)du|X0 = x

]

Êg [êg (Xt) |X0 = x]
− (17)

−1

t

Êv

[

êv (Xt)
∫ t

0
εv(Xu, t− u)du|X0 = x

]

Êv [êv (Xt) |X0 = x]

where the subindices g and v index terms obtained in the martingale factorizations of the

functionals G and V , respectively. Equation (17) is an integral representation of the risk-

price elasticity.

Collecting the two shock elasticities, we define the shock-price elasticity function as

εp(x, t) = εg(x, t)− εv(x, t) = αd(x) · [ψg(x, t)− ψv(x, t)− αs(x)] . (18)

While this construction is of interest for studying the impact of a shock over the next instant,

the two components must be treated separately when studying the impact of shocks in the

future dates. While the exposure and value elasticities over an investment interval t are

distorted expectations of integrals of the corresponding shock elasticities, this is not the case

for the price elasticity once we change measures. The multiplicative functionals M = G

and M = SG will typically have different martingale components so two different changes

of measure come into play in the construction of risk-price elasticities. Following Hansen

(2009), we consider next an alternative approach that avoids this complication.

3.3 Martingale growth functionals

The alternative approach suggested by Hansen (2009) avoids the construction of two separate

components. Instead we build G to be a multiplicative martingale. To enforce this restriction

we set

βg(x) = −1

2
|αg(x)|2.

The functional G could be the martingale component of a baseline macroeconomic growth

functional or of some other multiplicative cash flow. By construction, the expected cash flow

is identically one and the source of the risk price dynamics is the stochastic discount factor

functional. Further suppose that GH(r) is also a martingale implying that:

E [GtHt(r)|X0 = x] = 1

16



for all r. This martingale restriction is satisfied when

βh(x, r)−
1

2
|αg(x)|2 = −1

2
|αg(x) + rαd(x)|2.

Differentiating with respect to r yields

βd(x) =
d

dr
βh(x, r)

∣

∣

∣

∣

r=0

= −αd(x) · αg(x).

As a consequence, the additive functional D now contains a drift term

Dt = −
∫ t

0

αd(Xu) · αg(Xu)du+

∫ t

0

αd(Xu) · dWu.

This results in the following measure for the risk-price elasticity

π(x, t) = −1

t

E [StGtDt|X0 = x]

E [StGt|X0 = x]

because of the martingale construction of the cash-flow dynamics. The exposure elasticities

for the cash flow are zero by construction. The shock-price elasticity function is now given

by:

εp(x, t) = −εv(x, t) = −αd(x) · [ψv(x, t) + αs(x)]

and the risk-price elasticity for investment horizon t is

π(x, t) =
1

t

Êv

[

êv(Xt)
∫ t

0
εp(Xu, t− u)du|X0 = x

]

Êv [êv(Xt)|X0 = x]
.

3.4 Limiting elasticities

To relate our analysis to previous pricing characterizations consider the local and long-

horizon limits of the shock price elasticity function. Since ψ(x, 0) = 0 by construction, the

local price elasticity is

π(x, 0) ≡ εp(x, 0) = −αd(x) · αs(x)

which implies that−αs is the local price vector for exposure αd. This reproduces the standard

continuous-time pricing of Brownian increments by the exposure of the stochastic discount

factor to shocks. The change of measure allows us to conveniently represent the long-horizon

elasticities as featured by Hansen (2009). Since the Markov process is stochastically stable
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under the change of measure, φ(x, t) in equation (11) vanishes as t → ∞, and the large t

limit for the price elasticity is:

εp(x,∞) = αd(x) · [νg(x)− νv(x)− αs(x)] .

This limit includes contributions from the exposure of the dominant eigenfunctions ν for

growth and valuation to the Brownian increment. Due to the permanent nature of the

shocks to growth rates and discount rates, this long-horizon elasticity does not vanish and

in general still depends on x.

4 Haussmann-Clark-Ocone formula

In our initial development we built a moving-average representation for the multiplicative

functional with state-dependent coefficients. This formula can be viewed as a special case

of the Haussmann-Clark-Ocone formula because the latter formula can be justified under

weaker smoothness conditions. For example see Haussmann (1979). In this section provide

an explicit discussion of the Haussman-Clark-Ocone formula and its relation to Malliavin

calculus. This digression is not essential to follow the remainder of our paper. We include it

for readers familiar with the continuous-time tools used in mathematical finance including

the Malliavin derivative.

Following the seminal paper Ocone and Karatzas (1991), results from Malliavin calculus

have been used to derive expressions for asset prices, their volatilities, optimal allocations

or portfolios, in particular in models with more sophisticated intertemporal dependencies.5

Consider the following perturbations to the Brownian motion between date zero and date t.

Let q be a function in Lk
2[0, t], that is

∫ t

0

|q(v)|2dv <∞.

The perturbed process is:

Wu + rQu, 0 ≤ u ≤ t

where Qu =
∫ u

0
q(v)dv, and r ∈ R. Recall that we can identify each path of a Brownian

motion in [0, t] with an element of Ω = C0([0, t],R
k), the set of continuous Rk-valued functions

starting at 0. Given a random variable Φ defined on Ω with a finite second moment, we are

interested in the derivative of Φ(W + rQ) with respect to r. The Malliavin derivative is a

5See Detemple and Zapatero (1991) for another early example of this literature.
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process DuΦ(W ) in L2(Ω× [0, t]) that is motivated by the following representation:6

lim
r→0

Φ(W + rQ)− Φ(W )

r
=

∫ t

0

DuΦ(W ) · q(u)du. (19)

The value of the Malliavin derivative at u quantifies the contribution of dWu to Φ. This

contribution will, in general, depend on the entire Brownian path from 0 to t.

Fix an initial condition x and a time t and consider the random variable Φ defined by

Φ(W ) =Mt

where (X, logM) solves

dXu = µ(Xu)du+ σ(Xu)dWu

d logMu = β(Xu)du+ α(Xu) · dWu.

Here, X is an n-dimensional process, W is a k-dimensional Brownian motion, and M a

multiplicative functional. Given that the multiplicative functional is built from the Markov

process, it is convenient to construct the Malliavin derivative in three steps. In the first step

we compute the R
n×k-valued process DuXτ = Yτ . If the functions µ and σ are smooth and

with bounded derivatives then the random variable Xτ is in the domain of the Malliavin

derivative. This derivative is defined by the solution to:

dYτ = ∂µ(Xτ )Yτdτ +
∑

i

∂σ·i(Xτ )YτdW
[i]
τ

for τ ≥ 0 with the initial condition Y0 = I. Here, ∂F denotes the n× n Jacobian matrix of

an R
n-valued function F , σ·i is the i-th column of the matrix σ and W

[i]
τ is the i-th entry of

Wτ . Then

DuXτ = Yτ(Yu)
−1σ(Xu).

for τ ≥ u.7

In the second step we compute Du logMt. If the functions β and α are smooth, then the

6The construction of the Malliavin derivative usually starts by considering a subset of random variables
called the Wiener polynomials and defining the Malliavin derivative using equation (19). The Malliavin
derivative is then extended to a larger class of random variables with finite second moments using limits.
Equation (19) does not necessarily hold for every random variable which has a Malliavin derivative.

7The term (Yu)
−1 in effect reinitializes the process Y to be the identity at τ = u and the multiplication

by σ(Xu) accounts for the impact of dWu at τ = u.
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random variable logMt is in the domain of the Malliavin derivative. This derivative

Du logMt =

∫ t

u

∂β(Xτ )DuXτdτ +
∑

i

∫ t

u

∂α[i](Xτ )DuXτdW
[i]
τ + α(Xu)

′

has the same dimension as the vector α′ and α[i] is the i-th element of α. This formula is

justified as an application of the chain rule provided that logMt has a finite second moment

and the right-hand side is in L2(Ω× [0, t]). 8

Finally, in the third step we compute

DuΦ(W ) = DuMt =MtDu logMt

by again applying the chain rule where Mt has a finite second moment and the process

{MtDu logMt : 0 ≤ u ≤ t} is in L2(Ω× [0, t]).

The Haussmann-Clark-Ocone formula provides a representation of the integrator χ in

equation (2) in terms of a Malliavin derivative:9

(χu,t)
′ = E [DuΦ(W )|Fu] ,

and thus10

Mt =

∫ t

0

E [DuΦ(W )|Fu] dWu + E (Mt|X0 = x) .

Furthermore,

(χu,t)
′

E [Mt|Fu]
=
E
[

DuΦ(W )
Mu

|Fu

]

E
[

Mt

Mu

|Fu

] =
E
[

DuMt

Mu

|Xu

]

E
[

Mt

Mu

|Xu

]

where the last equality follows because DuMt

Mu

and Mt

Mu

depend only on the Markov process X

between dates u and t. This leads us to represent the function ψ via11

ψ(x, t− u)′ =
E
[

DuMt

Mu

|Xu = x
]

E
[

Mt

Mu

|Xu = x
] − α(x)′

8See Len et al. (2003) Lemma 2.1.
9For a statement of this formula and the results concerning the Malliavin derivative of functions of a

Markov diffusion see, for instance, Fournié et al. (1999), pages 395 and 396.
10Haussmann (1979) gives formulas for Markov dynamics for more general functions Φ.
11Gourieroux and Jasiak (2005) suggest basing impulse response functions on the pathwise contribution

to changing a shock at a given date. This leads them to explore more general distributional consequences
of a shock. The Malliavin derivative is the continuous-time counterpart and depends on the entire shock
process up to date t.
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In order to replicate formula (5) from Section 2, we exchange orders of differentiation

and expectation:12

E [DuMt|Fu] = DuE [Mt|Fu] = DuMuE

[

Mt

Mu
|Fu

]

=

= E

[

Mt

Mu
|Fu

]

Muα(Xu)
′ +Mu

(

∂

∂x
E

[

Mt

Mu
|Xu

])′

σ(Xu) =

= E [Mt|Fu]

[

α(Xu)
′ +

(

∂

∂x
logE

[

Mt

Mu
|Xu

])′

σ(Xu)

]

.

Thus

E
[

DuMt

Mu

|Xu = x
]′

E
[

Mt

Mu

|Xu = x
] − α(x) = σ(x)′

(

∂

∂x
logE

[

Mt

Mu

|Xu = x

])

which agrees with the right-hand side of formula (5).

In defining the Malliavin derivative, we introduced deterministic drift distortions of Q.

Bismut (1981) uses bounded drift distortions that can be measurable functions of the Brow-

nian path and constructs an alternative proof of a representation like that in (3).13 Our

approach and that of Hansen and Scheinkman (2009b) is very closely related to that of Bis-

mut (1981). Consider first the case in which H(r) is a parameterized martingale perturbation

as in Section 3.2. While we use this parameterized perturbation to change the risk exposure,

it is also associated with a change in probability measure for which W has drift distortion

r
∫ t

0
αd(Xu)du. This is the proof strategy adopted in Bismut (1981).14 For the case considered

in Section 3.3 in which perturbations are restricted so that GH(r) is a parameterized family

of martingales, Hansen and Scheinkman (2009b) use G to change probability measures and

then treat H(r) as a martingale under this change of measure. Thus there is also a close

connection to the approach of Bismut (1981) for our second choice of perturbations. The

restrictions imposed in Bismut (1981) are too stringent for our purposes, but Hansen and

Scheinkman (2009b) give weaker conditions for these results.

5 Recursive utility specifications of investor preferences

In this and the next section, we compute elasticities for model economies taken from the

existing asset pricing literature. Before studying asset pricing implications, we show how

to compute the shock elasticities under an affine model that nests a model with lognormal

12For instance, see Øksendal (1997) Proposition 5.6 in Chapter 5.
13See formula (2.43) in Bismut (1981).
14See equation (2.4) in the proof of Theorem 2.1 in Bismut (1981).
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dynamics commonly used in VAR analysis, but allows for state-dependent volatilities. In

this section we use the affine specification as a reduced form for example economies in which

investors have preferences represented by a power utility function or preferences represented

by a recursive utility function of the type suggested by Kreps and Porteus (1978) and Epstein

and Zin (1989). As in the long-run risk literature (see Bansal and Yaron (2004)), we postulate

consumption dynamics that contain a small predictable component in macroeconomic growth

and stochastic volatility. We study how the consumption dynamics in conjunction with

investor’s preferences influence the risk-price and shock-price dynamics, extending previous

work of Hansen et al. (2008) and Hansen (2009).15

5.1 Affine dynamics with stochastic volatility

Suppose that the state vector is X = (X [1]′, X [2])′ where X [1] is an n-dimensional vector and

X [2] a scalar. Its dynamics are specified by

µ(x) =

[

µ̄11 µ̄12

0 µ̄22

][

x[1] − ι1

x[2] − ι2

]

σ(x) =
√
x[2]σ̄ =

√
x[2]

[

σ̄1

σ̄2

]

, (20)

where µ̄11 and µ̄12 are n×n and n× 1 matrices, µ̄22 is a scalar, and σ̄1 and σ̄2 are n× k and

1× k matrices, respectively. Consider a multiplicative functional parameterized by

β(x) = β̄0 + β̄1 · (x[1] − ι1) + β̄2(x
[2] − ι2) α(x) =

√
x[2]ᾱ. (21)

This specification of the dynamics allows for a predictable component in the multiplicative

functional, modeled by X [1], and for stochastic volatility, modeled by the scalar process X [2].

Our variance process X [2] stays strictly positive; we prevent it from being pulled to zero

by imposing the restrictions ι2 > 0 and µ̄22 +
1
2
|σ̄2|2 < 0. To guarantee the existence of a

stationary distribution, we assume that µ̄11 has eigenvalues with strictly negative real parts.

The parameters ι1 and ι2 are the unconditional means for X [1] and X [2] in the stationary

distribution. Setting σ̄2 = 0 and X [2] ≡ 1 reduces the dynamics to a lognormal model

familiar from the VAR literature.

This model specification implies two useful properties in calculating shock elasticities.

First, conditional expectations are loglinear in the state variables, with time-dependent

coefficients given as solutions to a set of first-order ordinary differential equations. Second,

15Grasselli and Tebaldi (2004) analyze the class of affine term structure models from a related perspective.
They derive explicit formulas for the impulse response function of the factor process under the affine dynamics
by utilizing a link between the known solutions for bond prices and the Malliavin derivative of the factor
process.
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the principal eigenfunction associated with the martingale decomposition is loglinear in the

state variables. In fact, e(x) = exp(λ1 · x[1] + λ2x
[2]).

To find the eigenvalue and eigenfunction for multiplicative functional M of form (21), we

note that equation (9) specialized to this stochastic specification implies a pair of conditions

that determine λ:

0 =β̄1 + (µ̄11)
′λ1

0 =β̄2 + (µ̄12)
′λ1 + µ̄22λ2 +

1

2
|ᾱ′ + (λ1)

′σ̄1 + λ2σ̄2|2 . (22)

Additionally, the associated eigenvalue is given by

η = β̄0 − (ι1)
′ [β̄1 + (µ̄11)

′λ1
]

− ι2
[

β̄2 + (µ̄12)
′λ1 + µ̄22λ2

]

.

Since equation (22) has in general multiple solutions, we follow Hansen and Scheinkman

(2009a) and choose the solution that is associated with the smallest eigenvalue. This solution

is the one that leads to stable dynamics of the Markov process X .

The martingale M̂ is also a multiplicative functional with

α̂(x) =
√
x[2]

[

ᾱ + (σ̄1)
′ λ1 + (σ̄2)

′ λ2
]

β̂(x) = −1

2
|α̂(x)|2.

Under the change of measure

dWt = α̂(Xt)dt+ dŴt,

where Ŵ is a multivariate standard Brownian motion under the probability measure induced

by M̂ . With this change of measure, X remains a Markov process with drift coefficient

µ(x) +
√
x[2]

[

σ̄1

σ̄2

]

α̂(x).

The functional form for the dynamic evolution is the same as the original specification but

the parameter values differ.

By exploiting the calculations from Duffie and Kan (1994), Hansen (2009) shows that for

a multiplicative functional M parameterized by (21),

E [Mt| X0 = x] = exp
[

θ0(t) + θ1(t) · x[1] + θ2(t)x
[2]
]

where the θi(t) coefficients satisfy the following set of ordinary differential equations, each
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with initial condition θi(0) = 0:

d

dt
θ1(t) = β̄1 + (µ̄11)

′θ1(t) (23)

d

dt
θ2(t) = β̄2 + (µ̄12)

′θ1(t) + µ̄22θ2(t) +
1

2
|ᾱ′ + θ1(t)

′σ̄1 + θ2(t)σ̄2|2

d

dt
θ0(t) = β̄0 − (ι1)

′ [β̄1 + (µ̄11)
′θ1(t)

]

− ι2
[

β̄2 + (µ̄21)
′θ1(t) + µ̄22θ2(t)

]

.

Since
∂

∂x
logE [Mt| X0 = x] =

[

θ1(t)

θ2(t)

]

,

it follows from Result 2.1 that the shock elasticity is:

ε (x, t) = βd (x) + αd (x) · [(σ̄1)′θ1(t) + (σ̄2)
′θ2(t) + ᾱ]

√
x[2]

where αd selects the direction of the shock, and βd is a function that is determined according

to the particular application characterized in Section 3. Since X [2] has mean ι2 under the

stationary distribution, we normalize the coefficient vector αd so that

|αd(x)|2 =
1

ι 2
.

Notice that the first two components to equation (22) for λ1 and λ2 give the stationary

levels for θ1(t) and θ2(t). In fact λ1 and λ2 are the limit points of θ1(t) and θ2(t). Thus to

represent large t behavior, we write

ε (x, t) = βd (x) + αd (x) ·
[

(σ̄1)
′[θ1(t)− λ1]

√
x[2] + (σ̄2)

′[θ2(t)− λ2]
√
x[2] + α̂(x)

]

with a large t limit given by

ε (x,∞) = βd (x) + αd (x) · α̂(x).

Thus the drift distortion α̂ in the change of measure is also a central component to the

limiting shock elasticity, consistent with our general analysis. The transient contribution to

the elasticity satisfies

∂

∂x
log Ê

[

exp
(

−λ1 ·X [1]
t − λ2X

[2]
t

)

|X0 = x
]

=

[

θ1(t)− λ1

θ2(t)− λ2

]

,

where the expectation is computed under the change of measure.
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The differential equation for θ1(t) in (23) yields the solution

θ1(t) = (exp [(µ̄11)
′t]− I)

[

(µ̄11)
′]−1

β̄1,

and the limiting value

lim
t→∞

θ1(t) = −
[

(µ̄11)
′]−1

β̄1 = λ1.

In the special case in which X [2] ≡ 1, the dynamics in (20)–(21) reduces to the lognormal

model. The resulting elasticity is

ε(x, t) = βd (x) + αd (x) · [ᾱ+ σ̄′
1θ1(t)] .

The term

ᾱ + (σ̄1)
′ (exp

[

(µ̄11)
′ t
]

− I
) [

(µ̄11)
′]−1

β̄1

gives the vector of impulse responses of logM to the vector of Brownian increments. As is

typical in the VAR literature with linear dynamics, the elasticity function is state-independent.

It is known from the VAR literature that the limiting large t response is the response of

the martingale component of logM to the shock vector, which is given by

ᾱ + (σ̄1)
′ λ1.

In our analysis we relate the limiting shock elasticity to the (proportionate) shock exposure

of the martingale component of M , rather than of logM . In the lognormal model these

two entities coincide because the logarithm of the martingale component of M differs from

the martingale component of the logarithm of M merely by a deterministic time trend.

The time trend reflects the familiar lognormal adjustment for each horizon t. This simple

connection between martingale components vanishes when we introduce nonlinearities in the

drift coefficients and state dependence in the diffusion coefficients.

5.2 Long-run risk in consumption dynamics

We now add some economic structure to our previous example by exploring a “long-run

risk” specification that has received recent prominence in the literature on asset pricing.16

This literature features models with a small predictable component in the growth rate of

consumption and investors endowed with recursive utility preferences for which the intertem-

poral composition of risk matters. Stochastic volatility in the macroeconomy is included in

16For instance see Bansal and Yaron (2004).
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part as a mechanism for risk prices to fluctuate over time.

Hansen et al. (2007) and Hansen (2009) present an example that is the continuous-time

counterpart to the model of Bansal and Yaron (2004). This example utilizes the dynamic

structure introduced in Section 5.1. In particular, consider an aggregate consumption func-

tional C parameterized by (βc, αc) specified as in (21). A scalar process X [1] captures a

statistically small but predictable component in the evolution of aggregate growth in con-

sumption, and X [2] captures fluctuations in macroeconomic volatility. The Brownian motion

is three-dimensional, and we will give an economic interpretation to the three shocks.

5.3 Investors’ preferences

We compare the shock-price elasticities for two specifications of investors’ preferences. In the

Breeden (1979) and Lucas (1978) specification, investors have time-separable power utility

with relative risk aversion coefficient γ. In the second specification, we endow investors

with recursive preferences of the Kreps and Porteus (1978) or Epstein and Zin (1989) type,

analyzed in continuous time by Duffie and Epstein (1992). We refer to the first model as

the BL model and the second as the EZ model.

In the BL model, we immediately have the stochastic discount factor as:

St = exp(−δt)
(

Ct

C0

)−γ

.

In the EZ model the stochastic discount factor requires more calculation. Let U denote

the continuation value for the recursive utility specification and % the inverse of the elasticity

of intertemporal substitution. The continuous-time recursive utility evolution is restricted

by:

0 =
δ

1− %

[

(Ct)
1−% − (Ut)

1−%
]

(Ut)
% +

[

Λt

(1− γ)(Ut)1−γ

]

Ut

where Λt is the local mean:

Λt = lim
ε↓0

E [(Ut+ε)
1−γ − (Ut)

1−γ|Ft]

ε
.

Notice that this recursion is homogeneous of degree one in consumption and the continuation

value process. The limiting version for % = 1 is given as:

0 = δ (logCt − logUt)Ut +

[

Λt

(1− γ)(Ut)1−γ

]

Ut. (24)

In what follows we impose the unitary elasticity of substitution restriction as a device to
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obtain a quasi-analytical solution for the continuation value. In this case, when logCt is an

additive functional of the Markov process translated by an initial contribution logC0, the

continuation value satisfies:

logUt = logCt + υ(Xt).

for some function υ of the Markov state Xt. Specifically let

d logCt = β̄c,0dt+ β̄c,1 ·X [1]
t dt+ β̄c,2(X

[2]
t − 1)dt+

√

X
[2]
t ᾱc ·Wt

where the Markov process X is the one given in Section 5.1. Then it may be shown that

(24) is equivalent to

0 =− δυ(x) +

[

∂υ(x)

∂x

]′
[

µ̄11 µ̄12

0 µ̄22

][

x[1] − ι1

x[2] − ι2

]

+ β̄c,0 + β̄c,1 · (x[1] − ι1) + β̄c,2(x
[2] − ι2)

+
x[2]

2
trace

[

∂2υ(x)

∂x∂x′
σ̄σ̄′

]

+ x[2](1− γ)

[

∂υ(x)

∂x′

]′

σ̄ᾱc +
x[2](1− γ)

2
|ᾱc|2

+
x[2](1− γ)

2

[

∂υ(x)

∂x

]′

σ̄σ̄′
[

∂υ(x)

∂x

]

.

(25)

This equation has a solution of the form:

υ(x) = ῡ0 + ῡ1 · x[1] + ῡ2x
[2].

Our primary interest is in the coefficients of the state vector x. From (25),

0 =− δῡ1 + (µ̄11)
′ῡ1 + β̄c,1

0 =− δῡ2 + (µ̄12)
′ῡ1 + (µ̄22)ῡ2 + β̄c,2 + (1− γ)(ᾱc)

′(σ̄1)
′ῡ1 + (1− γ)(ᾱc)

′(σ̄2)
′ῡ2

+
(1− γ)

2

[

(ῡ1)
′ ῡ2

]

σ̄σ̄′

[

ῡ1

ῡ2

]

+
(1− γ)

2
|ᾱc|2.

We solve the first equation for ῡ1 and substitute this solution into the second equation. The

resulting equation is quadratic in ῡ2 and typically has two solutions for appropriate choices

of parameter values. Only one of these solutions interests us for the reasons discussed in

Hansen and Scheinkman (2009a) and Hansen et al. (2007).
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The resulting stochastic discount factor is:

St = exp(−δt)
(

Ct

C0

)−1

M̃t

where M̃ is the multiplicative martingale from the shock exposure of the forward-looking

logarithm of the continuation value function, log c + υ(x), scaled by 1 − γ. The martingale

is

log M̃t =

∫ t

0

√

X
[2]
u α̃ · dWu −

|α̃|2
2

∫ t

0

X [2]
u du (26)

where

α̃ = (1− γ) [(σ̄1)
′ῡ1 + (σ̄2)

′ῡ2 + ᾱc] .

5.4 Elasticities

The BL and EZ structural specifications that we have just given imply a special case of

the specification in Section 5.1. We use the formulas from that section to represent the

elasticities that interest us. In the calculations that follow, we use parameter values from

Hansen et al. (2007) that by design approximate the discrete-time specification in Bansal

and Yaron (2004). The calculation is parameterized such that the innovations to logC, X [1],

and X [2] are mutually uncorrelated. We label these innovations as consumption, growth-rate,

and volatility shocks, although a more fundamental structural model of the macroeconomy

would, among other things, lead to more interesting labels assigned to shocks. We normalize

the volatility shock so that a positive shock reduces volatility which is a good outcome, as

are positive shocks to consumption and growth rates.

Recall that Section 3.2 presents one approach to computing price elasticities from com-

ponent parts associated with the functionals G and V = GS. When the growth functional

Gt =
Ct

C0

, the product used for valuation is

Vt = GtSt = exp(−δt)M̃t,

where M̃ is the forward-looking martingale component constructed from the value function

in formula (26). The functional M̃ is the martingale component of V, the eigenfunction

e ≡ 1, and the eigenvalue is −δ. As a result, the shock elasticity associated with V does not

depend on the investment horizon and is given by:

εv(x, t) = x[2]α̃ · ᾱd
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x
[2]
25% x

[2]
50% x

[2]
75% x[2] = ι2 x[2] = ι̃2

consumption 0.20 0.24 0.28 0.24 0.27
growth-rate 0.38 0.45 0.53 0.46 0.51
volatility 0.09 0.10 0.12 0.10 0.11

Table 1: Shock-value elasticities scaled by minus one: The state dependence of this con-
tribution is seen across columns, and the rows vary according to the shock chosen by αd.
Parameters are calibrated to monthly frequency, and the elasticities are annualized. The
parameterization is β̄c,0 = 0.0015, β̄c,1 = 1, β̄c,2 = 0, µ̄11 = −0.021, µ̄12 = µ̄21 = 0,
µ̄22 = −0.013, ᾱc = [0.0078 0 0]′, σ̄1 = [0 0.00034 0], σ̄2 = [0 0 − 0.038], ι1 = 0, ι2 = 1,
δ = 0.002, γ = 10.

This elasticity is time-independent, but it does vary with the state x[2].

In what follows we consider three different specifications of ᾱd given by the three co-

ordinate vectors. Table 1 reports the valuation contribution to the shock-price elasticity

for quartiles of the stationary distribution of x[2]. We use the change of measure to ana-

lyze the shifted shock-price elasticities. The martingale M̃ changes the implied stationary

distribution for X , and in particular its distorted mean is

ι̃2 =
µ̄22

µ̄22 + σ̄2α̃
ι2.

Since ε scales with x[2], this distorted mean scales the limiting elasticity function, which is

given by

ι̃2α̃ · ᾱd.

Table 1 also reports this long-run distorted mean along with the mean under the origi-

nal distribution. The shock-value elasticity for the exposure to uncertain macroeconomic

growth is substantially larger than those for the other two elasticities. The elasticity for

macroeconomic volatility uncertainty is the smallest and less than a third of that for growth

uncertainty. The mean under the change of measure is close to the upper quartile of the orig-

inal distribution. Thus the elasticities only show a modest increase relative to the original

mean when we shift forward the exposure date as in (13) and (14).

Given that this construction implies time-independent valuation contributions, the sen-

sitivity of the price elasticities to investment horizon comes from the exposure elasticities.

These elasticities will depend on the investment horizon because consumption growth rates

and volatility are predictable.

Figure 1 displays these shock-exposure elasticities. Notice that under this parameter

configuration the shock-exposure elasticities are larger for exposure to growth rate risk than
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volatility risk. The magnitudes are much smaller than the corresponding shock value elastic-

ities reported in the x[2] column of Table 1. As a consequence, holding fixed the initial state,

the risk-price elasticities will be flat with magnitudes very similar to those reported in the

Table.17 The resulting shock-price elasticities for the EZ model are displayed in Figure 2. For

comparison we also present the shock-price elasticities for the BL model. Since the investor

preferences are time separable in the BL model, the shock-price elasticities have essentially

the same shape as the shock-exposure elasticities reported in Figure 1. The scale difference

between these elasticities reflects our setting of the risk aversion parameter γ = 10.18

Since the consumption shock has only a permanent impact on consumption, the asso-

ciated shock-price elasticities coincide for the two utility specifications. In contrast, local

elasticities for the growth-rate and volatility risk in the BL model are zero, while in the

forward-looking EZ model the elasticities for arbitrarily short investment horizons remain

bounded away from zero. In the EZ model, exposure of future consumption to growth-rate

and volatility risk induces fluctuations in the continuation utility. As a consequence both the

growth-rate state and volatility state evolution directly influence the equilibrium stochastic

discount factor in the model with recursive utility investors. The corresponding shock-price

elasticity function is close to flat for this model with the limit being similar to that for the

BL model with the same value of γ for pricing exposure to the the growth-rate shock.19

Section 3.3 suggests a second approach for computing price elasticities. With this ap-

proach we extract the multiplicative martingale component of consumption to use as our

growth functional G and build perturbations so that GH(r) is also a multiplicative martin-

gale. As a consequence the entire shock price elasticity comes from the study of V = GS

and the associated perturbations. The resulting functional V will not be a discounted mul-

tiplicative martingale and it will contribute to the shock-price dynamics. While βd = 0 for

the first approach, it is not zero for this second approach because the perturbations are no

longer martingales. While conceptually different, this second construction yields in this case

essentially the same numerical values for the shock-price elasticities.

To summarize, the recursive utility (EZ) specification of preferences with a unitary elas-

17The flat nature of risk-price elasticities for the EZ model in contrast to the BL model was featured in
Hansen (2009). Hansen (2009) also studies the impact of changing the intertemporal elasticity of substitution
away from unity. Our paper features shock-elasticities as building blocks for the risk-elasticities, but for
simplicity considers only the case of an elasticity of intertemporal substitution equal to unity.

18We follow Bansal and Yaron (2004) in our choice of γ = 10. Some readers may be concerned with our
large value of γ. Anderson et al. (2003) give a robust utility interpretation for the EZ model with a unitary
elasticity of substitution for which the parameter γ reflects a concern for model specification instead of risk
aversion. They also consider alternative approaches to calibration.

19Hansen (2009) provides results that link the limiting risk prices to the specification of the subjective rate
of discount δ. As δ ↘ 0 the limiting risk prices for the EZ specification and the BL specification converge
to each other.
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Figure 1: Shock-exposure elasticities for the aggregate consumption process: Elasticities for
the three shocks are reported in the respective panels as functions of the forecast horizon.
They condition on x[2] = ι2. Parameter values are given in the caption to Table 1 and the
elasticities are annualized.

ticity of intertemporal substitution and a risk parameter γ = 10 induces flat shock-price

trajectories for growth rate and volatility shocks. This is in contrast to the power utility

(BL) specification for which the shock-price elasticities are initially zero but become size-

able as we extend the investment horizon. In the BL model, the shock price elasticities are

essentially scaled versions of the shock exposure elasticities for consumption.
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Figure 2: Shock-price elasticities: Elasticities for the three shocks are reported in the re-
spective panels as functions of the investment horizon for the Breeden-Lucas (dashed line)
and for the Epstein-Zin (solid line) preference specifications. They condition on x[2] = ι2.
Parameters are given in the caption to Table 1, and the elasticities are annualized.

6 Consumption externalities in investor preferences

In this section we contrast price elasticities of the example economies proposed by Campbell

and Cochrane (1999) and Santos and Veronesi (2008). In these models, investor preferences

include a prominent role for consumption externalities that are highly persistent.

32



6.1 A pricing example with nonlinearity

As a precursor to our study of models with consumption externalities in preferences, we

consider an example with a nonlinearity in the Markov evolution. In this example the

process for X is a member of Wong (1964)’s class of scalar Markov diffusions built to imply

stationary densities that are in the Pearson family.20

Let the univariate Markov state X evolve as:

dXt = −µ̄1(Xt − µ̄2)dt− σ̄XtdWt, Xt > 0 (27)

where µ̄1, µ̄2, and σ̄ are positive constants.

Rather than specifying the multiplicative functional M and then calculating the factor-

ization, we construct the multiplicative components directly as

Mt = exp (ηt) M̂t

(

1 +Xt

1 +X0

)

(28)

M̂t = exp

[

−1

2
α̂2t + α̂(Wt −W0)

]

where α̂ is a constant. By construction, the dominant eigenfunction associated with M is

e(x) = (1 + x)−1 with eigenvalue η. Formula (8) then implies that the evolution of X under

the change of measure is given by

dXt = −µ̂1 (Xt − µ̂2) dt− σ̄XtdŴt

where

µ̂1 =µ̄1 + σ̄α̂

µ̂2 =
µ̄1µ̄2

µ̂1

.

Then ê(x) = 1 + x and

Ê [ê(x) | X0 = x] = 1 + µ̂2 + (x− µ̂2) exp (−µ̂1t) .

As a consequence,

φ (x, t) = −σ̄x exp(−µ̂1t)

1 + µ̂2 + exp(−µ̂1t)(x− µ̂2)
.

Since the exposure of log M̂ to the Brownian shock is the constant α̂, we can write the shock

20See process F in Wong (1964).
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elasticity (12) as

ε(x, t) = φ(x, t) + α̂ + βd(x) =

= −σ̄x exp(−µ̂1t)

1 + µ̂2 + exp(−µ̂1t)(x− µ̂2)
+ α̂ + βd(x)

where we have set αd to unity.

6.2 External habit model

The class of external habit models includes a variety of specifications that strive to explain

empirical characteristics of the asset price dynamics. Important examples in this literature

that we feature in our discussion are given in Campbell and Cochrane (1999) and in Santos

and Veronesi (2008). As is well known in this literature, the local risk prices are systemat-

ically larger than the risk prices of a corresponding model with investors that have power

utility preferences, and they vary over time even when consumption is a geometric Brownian

motion.21 We will investigate the entire term structure of risk-price and shock-price elas-

ticities as we extend the investment horizon. This is motivated in part by the observations

in Santos and Veronesi (2008) and other papers about differences in returns on cash flows

of alternative maturities. We compare these elasticities for the models of Campbell and

Cochrane (1999) and Santos and Veronesi (2008) (abbreviated as CC and SV, respectively)

and highlight important differences. In what follows, we start with the SV model which

employs the dynamic structure we have introduced in Section 6.1 and for which there are

closed-form solutions for the shock-price elasticities. For comparison we use a continuous-

time version of the CC model and rely on numerical calculations similar to those in Wachter

(2005).

Both models specify an aggregate consumption that evolves as a geometric Brownian

motion:

d logCt = β̄cdt+ ᾱcdWt

where W is a scalar Brownian motion.

In addition both models specify the stochastic discount factor as a multiplicative func-

21We will hold the power used in depicting preferences the same across specifications but this comparison
does not attempt to maintain the same degree of investor risk aversion.
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tional

St =exp(−δt)
(

Ct − C∗
t

C0 − C∗
0

)−γ

=exp(−δt)
(

Ct

C0

)−γ

(

1− C∗

0

C0

)γ

(

1− C∗

t

Ct

)γ ,

where C∗ is an external consumption reference (habit). SV and CC each chooses a different

scalar state variable Xt that solves a stochastic differential equation on the Brownian motion

W and where the dynamics guarantee that C∗
t < Ct.

22 In what follows we will make

comparisons between a model with investors that have preferences represented by discounted

time-separable power utility (a Breeden-Lucas model in which C∗ = 0) and a model in which

there is a temporally dependent social externality in the stochastic discount factor for a

decentralized economy. The reference to decentralization is important because internalizing

the social externality would alter the stochastic discount factor. The growth functional G of

primary interest to us is the aggregate consumption process itself:

Gt =
Ct

C0

for t ≥ 0.

6.3 SV model specification

Santos and Veronesi (2008) choose a state variable

Xt =

(

1− C∗
t

Ct

)−γ

− 1

with the law of motion given in equation (27) in the previous Section 6.1. Since the process

Ct is loglinear,

St = exp(−δt)
(

Ct

C0

)−γ
e(X0)

e(Xt)

where e(x) = (1 + x)−1 is a principal eigenfunction. Then M = SG is a multiplicative

functional of the form given in (28), where α̂ = (1− γ)ᾱc. Additionally, the loading of X on

22It is straightforward to allow the Brownian motion W to be multivariate. It could generate a larger
filtration than the underlying Markov process X that will be introduced to model the consumption exter-
nality. What is critical is that the Markov dynamics are not altered with this more refined filtration. As
emphasized to us by Eric Renault, this can be appropriately formulated as a statement that additional
Brownian increments to be priced do not Granger-cause the underlying Markov process.
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the shock, σ̄, is expressed as a factor of ᾱc, σ̄ = χᾱc.

Using the calculations from Section 6.1, the shock-price elasticity function is:

εp(x, t) = χᾱcx
exp(−µ̂1t)

1 + µ̂2 + exp(−µ̂1t)(x− µ̂2)
+ γᾱc

The local risk price (identical to the local shock-price elasticity) is

εp(x, 0) = χᾱc
x

1 + x
+ γᾱc

while the t→ ∞ limit is:

εp(x,∞) = γᾱc.

This latter limit coincides with the shock-price elasticity function if consumption externality

were absent from preferences (e(x) = 1). The impact of the consumption externality vanishes

as the investment horizon increases, but this convergence will be slow when µ̂1 is close to

zero.

6.4 CC model specification

In Campbell and Cochrane (1999), the Markov state X is positive and solves

(

1− C∗
t

Ct

)γ

= exp [−γ (Xt + b)] .

This state evolves as:

dXt = −ξ (Xt − µx) dt+ λ (Xt) ᾱcdWt (29)

with the volatility factor λ(x) = 1−(1+ζx)1/2 and ζ = 2ξ/(γ |ᾱc|2). The functional form for

the volatility factor is judiciously chosen to make the risk-free interest rate constant in much

of their analysis. We provide details on the construction of the CC model in Appendix B.

Hence again,

St = exp(−δt)
(

Ct

C0

)−γ
e(X0)

e(Xt)
,

where the principal eigenfunction e satisfies:

e(x) = exp [−γ (x+ b)]
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This model specification implies the local shock-price elasticity

εp(x, 0) = γᾱc − γλ(x)ᾱc = γ(1 + ζx)1/2ᾱc,

and the t→ ∞ limit

εp(x,∞) = γᾱc.

As in the SV specification, the CC model amplifies the local shock-price elasticities of the

power utility model, γᾱc, by a state-dependent factor.

The shock- and risk-price elasticity functions must be computed numerically for the CC

specification. The limiting elasticities as the payoff horizon t → ∞ are the same for both

specifications and coincide with those from a power utility model parameterized by the same

γ. This simple conclusion masks some important differences, however. First we care about

more than limits, but also about the speed of convergence. We will address this in detail in

the subsequent discussion. Second, we have defined prices by taking derivatives, but there

is an important discontinuity in the limiting risk premia in the CC specification, which we

now investigate.

To see this, consider the limiting risk premium for the growth functional G:

risk premium = lim
t→∞

1

t
(logE [Gt|X0 = x]− logE [StGt|X0 = x] + logE [St|X0 = x])

where the last term is included to adjust for the long-term risk-free rate of interest. Consider

a parameterized family of growth functionals GH(r) built using volatility coefficients α of

the form

αg(x) + rαd(x) = ᾱc + r

with corresponding drift coefficients β given by −1
2
(r+ᾱg)

2. The limiting risk-price elasticity

is the derivative of the risk premium with respect to r. In Appendix B we demonstrate that

the long-term risk-price elasticity for the CC model is the same as that for a BL model with

the same parameters except that e = 1.23 Moreover, we show that the

risk premium = γᾱc(r + ᾱc) + constant, (30)

23We do not mean to imply that an econometrician or calibrator would select the same value of δ for each
model. For instance, Campbell and Cochrane (1999) and Wachter (2005) use values of the subjective rate of
discount that are much larger than would be used if the Breeden (1979) model was calibrated to asset return
data. Even if the subjective rate of discount for the CC model is to fit interest rates, the calculation of r
using this same subjective rate of discount, although counterfactual, is a revealing input into the risk-premia
formula for the CC model.
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where the size of the constant depends almost entirely on γ scaled by the predictability

in consumption. Typically risk premia converge to zero as exposures converges to zero,

but in the CC model there is a discontinuity in the behavior of the long-horizon limit. As

r + ᾱc converges to zero the limiting risk premium converges to a positive constant. At

the parameter values suggested by Campbell and Cochrane (1999), this discontinuity is a

sizable 7%. While this discontinuity is only present in the limit, it is indicative that risk

price elasticities are large near r + ᾱc = 0 for valuation over long investment horizons.

Campbell and Cochrane (1999) show that the conditional second moment of the stochastic

discount factor diverges as the time horizon is extended. Our analysis gives a more refined

characterization of the limiting behavior.24

6.5 Model comparisons

To facilitate comparisons between the SV and CC specifications, we fix γ = 2 for both

models but set the parameters of the SV model so that the distribution of local risk prices is

similar to that in the CC model. Formally, the parameters µ2 and χ are chosen to minimize

the relative entropy of local risk price densities, which is the log-density ratio of local risk

prices integrated with respect to the local risk price density of the SV model.25 This is a

convenient statistical measure of discrepancy constructed from stationary densities of risk

prices.

Figure 3 reports the stationary densities for the local risk prices in the two models. In the

top panel, the dashed curve shows why a recalibration of the SV model is needed to make

meaningful comparisons. The original SV calibration leads to widely differing ranges for the

local risk prices than those from the CC calibration. Even after adjusting the SV parameter

values to try to make the local risk prices as similar as possible, the densities have rather

different shapes. Using the same parameters γ and ᾱc ensures that the long-horizon price

elasticities coincide for the two models and equal to those for the counterpart BL model

specification. Making both short-term and long-term elasticities similar allows us to focus at

the relative differences in the pricing implications of the two models for finite-horizon cash

flows.26 In the comparisons that follow we set ᾱd = 1.

The top panel of Figure 4 displays the shock-price elasticity function for the quartiles

24This discontinuity is absent in the SV specification and the long-term risk premia for the SV model
agree with those of the corresponding BL model.

25For the SV specification, it is tricky to change γ. If the specification of the consumption externality is
held fixed the convenient functional form for the state evolution is lost.

26While the long-term elasticities agree at positive values of ᾱg, as we have already argued the long-term
risk premia are substantially different because of the discontinuity in the long-term risk premia in the CC
model.
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Figure 3: Stationary densities for local risk prices: The top panel displays the stationary
density of local risk prices in the Santos and Veronesi (2008) model. The 25th, 50th, and
75th quantiles are marked with circles. The solid line represents our choice of parameters,
χ = 91.9, µ̄1 = 0.035, µ̄2 = 2.335, ᾱc = 0.0054, γ = 2. The dotted line shows the density
for the original parameterization in the Santos and Veronesi (2008) model, χ = 538.6,
µ̄1 = 0.0325, µ̄2 = 24.878, ᾱc = 0.0075, γ = 1.5. The bottom panel compares with the
model of Campbell and Cochrane (1999) with parameter values ξ = 0.035, µx = 0.4992,
ᾱc = 0.0054, and γ = 2. Parameters are calibrated to quarterly frequency, local risk prices
annualized.

of the stationary distribution of the state variable X in the Santos and Veronesi (2008)

model, and the bottom panel compares with the shock-price elasticity function implied by

Campbell and Cochrane (1999). The elasticity function of the SV model decays relatively

quickly and is near its limiting value by about 50 quarters. On the other hand, that of CC

remains relatively flat for 100 quarters and does not approach its limiting value until about

300 quarters. Thus the SV model implies a much less persistent impact of exposure to a

current shock on the prices of cash flows further in the future.

Recall that the shock-price elasticities depict the impact for valuation of shock exposure

that occurs over the next instant. We now shift forward the date of the exposure to be τ
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Figure 4: Shock-price elasticities: The top panel displays the shock-price elasticity function in
the Santos and Veronesi (2008) model, while the bottom panel compares with the Campbell
and Cochrane (1999) model. The solid curve conditions on the median state, while the dot-
dashed curves condition on the 25th and 75th quantiles. The parameter values are given in
the caption to Figure 3 and elasticities are annualized.

periods into the future. This gives the intermediate contributions to risk-price elasticities

which are constructed in equation (13) as distorted conditional expectations of the shock-

price elasticity function reported in Figure 4:

εp(x, t; τ) = −Ê [ê(Xt+τ ) [αs(Xτ ) + φ(Xτ , t)− φ(Xτ , 0)] |X0 = x]

Ê [ê(Xt+τ )|X0 = x]

where t+ τ is the investment horizon. These curves (indexed by τ) have a well defined limit

as τ → ∞ given by formula (14), which in the case of the SV model is

εp(x, t;∞) = γᾱc + exp (−µ̂1t)
µ̂2

1 + µ̂2

χᾱc.
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For the CC model counterpart we again rely on numerical calculations.

Figure 5 compares the limiting shock-price elasticities in the SV and CC models. Com-

paring the solid lines in the two panels, we see that in the SV model the limiting shock-price

elasticities are much smaller than than those of the CC model when ᾱg = ᾱc. While the SV

limiting elasticities are moderately larger than their instantaneous counterparts (reported in

Figure 4), the CC limiting elasticities are up to thirty times higher than their local coun-

terparts. Evidently this property of the CC elasticities reflects a thick tail behavior of the

distorted distributions for the shock elasticities.

The bottom panel of Figure 5 also depicts the limiting elasticities in the CC model for

alternative exposures ᾱg. Previously we characterized a discontinuity in the long-term risk

premia in the CC model at zero exposure. This plot sheds additional light on the source of

this discontinuity. As we diminish the exposure level, the limiting elasticities become more

substantial as might be expected. For small exposures to consumption risk in the distant

future, the shock-price elasticities become huge in the CC model, especially those close to

the payoff date. Since the shock-price elasticity εp(x, t) converges to a constant γᾱc, so must

the limiting contribution εp(t;∞) as t → ∞, as long as ᾱg > 0. Thus the source of the

discontinuity in the long-term risk premia is the exposure to shocks far in the future and

close to the payoff date.27

So far in this subsection, we have featured shock-price elasticities. We now consider the

risk-price elasticities constructed by changing the exposure to risk to occur over the entire

investment horizon. Recall that these risk-price elasticities are built up in Result 2.2 as

integrals of distorted expectations of the shock-price elasticities over the lifetime of the cash

flow. We depict the risk-price elasticities for the two models in Figure 6 as functions of the

investment horizon. The top panel reports the risk-price elasticities in the SV model. At the

median and higher quantilies of the state distribution, the risk-price elasticities decrease over

all of the investment horizons. The decay rates for the risk-price elasticities are necessarily

smaller than those for the shock-price elasticities because risk-price elasticities are averages

of shock-price elasticities. In the CC model the risk-price elasticities increase with maturity

up until about 200 quarters. This is consistent with the dramatic upward shift in the shock-

price elasticities for the CC model as we move forward the exposure date as reflected in

the bottom panel of Figure 5. It is only after 200 quarters that the risk-price elasticities

begin to decrease in the investment horizon in the CC model, as we start averaging across

27To elucidate the results reported calculation, consider the numerator of the limiting contribution in
formula (14) for t = 0: Ê [ê(Xτ )εp(Xτ , 0)] = −

∫

q̂(x)ê(x)α(x)dx where q̂(x) denotes the stationary density
for the state variable under the change of measure. A large x approximation of q̂(x)ê(x) is exp(−k

√
x)

while −αd(x) behaves as
√
x for large x. In this approximation the coefficient k ↓ 0 when ᾱg ↓ 0, and as a

consequence, Ê [ê(Xτ )εp(Xτ , 0)] diverges.
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Figure 5: Limiting shock-price elasticities: The top panel displays the limiting shock-price
elasticities for the Santos and Veronesi (2008) model. The bottom panel displays the limiting
shock-price elasticity of the Campbell and Cochrane (1999) model for different levels of the
baseline shock exposure ᾱg. The solid line represents ᾱg = ᾱc, the dot-dashed line ᾱg = 0.5ᾱc,
and the dashed line ᾱg = 0.25ᾱc. The horizontal axis represents the distance between shock
exposure and maturity of the cash flow. The parameter values are given in the caption to
Figure 3 and elasticities are annualized.

the contributions of long-horizon shock-price elasticities that have small magnitudes (recall

Figure 4).

In summary, the term structure of shock and risk-price elasticities are very different for

the SV and CC models even though they were both designed to capture a similar empirical

phenomenon, larger local risk prices in bad times than good times.
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Figure 6: Risk-price elasticities: The top panel displays the risk-price elasticities as a function
of investment horizon in the Santos and Veronesi (2008) model. The solid curve conditions on
the median state, while the dot-dashed curves condition on the 25th and 75th quantiles. The
bottom panel reports the counterpart plots for the Campbell and Cochrane (1999) model.
The parameter values are given in the caption to Figure 3 and elasticities are annualized.

7 Incorporating jump risk

Thus far, we have analyzed models with Brownian information structure. In this section, we

develop formulas that incorporate jumps in levels of the stochastic processes. We focus on

a discrete state space specification with a finite number of states, where jumps are modeled

as Poisson arrivals.28 We use the jumps to mix alternative specifications or regimes, each

of which is locally Gaussian and thus we explore pricing in a continuous-time version of

the familiar regime shift model. We apply these results to price shocks associated with

regime changes along with the exposure to Brownian motion. The remainder of this section

is organized as follows. First we extend the construction of elasticities to accommodate a

discrete-state Markov chain model of regimes, and then we illustrate these formulas using a

28Bichteler et al. (1987) analyze jumps with Poisson arrivals on a continuous state space.
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three-state model of consumption dynamics estimated by Bonomo and Garcia (1996).

7.1 Basics

Let W be a k dimensional Brownian motion and consider a functional M of the form

logMt =
∑

0<u≤t

(Zu−)
′κZu +

∫ t

0

(Zu−)
′βdu+

∫ t

0

(Zu−)
′αdWu. (31)

Here Z evolves as an n-state Markov chain with intensity matrix A and the realizations of

Z are identified by a coordinate vector in R
n. We write Zt− for the pre-jump (left) limit at

date t. Abusing notation a bit, we now let β be an n-dimensional vector and α an n × k

matrix. The functional is now parameterized by the triplet (β, α, κ), representing the local

mean conditional on no jumps, the local diffusive volatility, and the jumps in the functional.

In this specification, the local trend and volatility depend (linearly) on the Markov state Z..

In our calculations in this section we use the following notational conventions. dvec{·}
applied to a square matrix returns a column vector with entries given by the diagonal entries

of the matrix, and diag{·} applied to a vector produces a diagonal matrix from a vector by

placing entries of the vector on the corresponding diagonal entries of the constructed ma-

trix. The symbol × used in conjunction with two matrices forms a new matrix by performing

multiplication entry by entry. exp∗(·) when applied to a vector or matrix performs expo-

nentiation entry by entry. Finally, a real-valued function on the state space of coordinate

vectors can be represented as a vector.

7.2 Martingales

In this subsection we show how to construct multiplicative and additive martingale factor-

izations in the presence of jump components jump components.

7.2.1 Multiplicative martingales

We construct a multiplicative martingale factorization by computing an eigenfunction of the

form e · z where the vector e has all positive entries. The vector e must solve the eigenvalue

problem:29

Be = ηe (32)

where

B
.
= diag

{

β +
1

2
dvec {αα′}

}

+ A× exp∗ (κ)

29Details on the construction of the eigenvalue problems can be found in Appendix C.1.
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Then

Mt = exp(ηt)M̂t

(

e · Z0

e · Zt

)

(33)

and we can represent the martingale M̂ as

log M̂t =
∑

0<u≤t

(Zu−)
′κ̂Zu +

∫ t

0

(Zu−)
′βdu+

∫ t

0

(Zu−)
′αdWu − ηt (34)

where

κ̂ = κ+ 1n(log e)
′ − (log e) 1n

′. (35)

We use the multiplicative martingale M̂ to change the probability measure. This measure

change leads to a Brownian motion Ŵ under the new measure that satisfies

dWt = (Zt−)
′ αdt+ dŴt.

Under the new measure, the process Z has intensity matrix

Â = −ηI + diag (ê)Bdiag (e)

where e and η are given by the solution of the eigenvalue problem (32), and ê is the vector

of reciprocals of the entries in e.

7.2.2 Additive martingales

In order to construct perturbations corresponding to permanent shocks, we will extract the

martingale component of an additive functional. Consider the martingale decomposition of

the additive functional logM in (31)

logMt = η̄t+ log M̄t − h · Zt + h · Z0. (36)

To find the martingale component log M̄ , let q denote a vector with positive entries that

sum to one and satisfy

q′A = 0. (37)

The long-run growth trend of the process is then given by

η̄ = q′dvec {κA′}+ q′β. (38)
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The vector h determining the dominant component can be found as the solution to

Ah = −dvec {κA′} − β + 1nη̄. (39)

Notice that the vector on the right-hand side is orthogonal to q, which is consistent with the

fact that vectors in the image of A are orthogonal to q (see (37)). We solve equation (39)

for h restricting ourselves to the n− 1 dimensional subspace of vectors that are orthogonal

to q. The martingale component is then given by

log M̄t =
∑

0<u≤t

(Zu−)
′κ̄Zu +

∫ t

0

(Zu−)
′β̄du+

∫ t

0

(Zu−)
′αdWu (40)

where

β̄ = β − 1nη̄

κ̄ = κ+ 1nh
′ − h1′

n.

Observe that κ̄ has again zeros on the main diagonal. The permanent component of the

jump risk is thus given by

(Zt−)
′κ̄Zt + (Zt−)

′β̄dt.

We will also directly construct martingales. Consider an n × n matrix κ̃ with zeros on

the diagonal, and build the additive martingale

log M̃t =
∑

0<u≤t

(Zu−)
′ κ̃Zu −

∫ t

0

(Zu−)
′ dvec {κ̃A′} du.

For instance, we could specify all of the entries of κ̃ to be zero except for a single one.

Additive martingales scaled by the 1√
t
obey the Central Limit Theorem. To deduce the

variance ς2 associated with the normal approximation, the conditional (on Zt− = z) second

moment of the increment (per unit of time) is:30

z′(κ̃× κ̃)A′z.

Using the stationary distribution to average over alternative realizations of z,

ς2 = q · dvec {(κ̃× κ̃)A′} .
30Locally the second moment and variance coincide.
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By scaling the matrix κ̃ by the scalar 1
ς
, we obtain an additive martingale with a unit

unconditional variance per unit of time.

7.3 Jump-risk perturbations

Our jump-risk perturbations of a functional M are of the form MH (r) where

logHt (r) =
∑

0<u≤t

(Zu−)
′ (rκd)Zu +

∫ t

0

(Zu−)
′ βh (r) du

where the direction matrix, κd, is the appropriately scaled (say 1
ς
κ̃) jump risk component in

the direction of the desired perturbation, and βh (r) is a vector that induces H (r) or GH (r)

to be a martingale, depending on the application. For the former, βh (r) needs to satisfy

0 = βh (r) + dvec {exp∗ (rκd)A
′} .

Defining βd analogously to the diffusion case, we have

βd =
dβh(r)

dr

∣

∣

∣

∣

r=0

= −dvec {κdA′}

For the latter, recall that G is parameterized by (βg, αg, κg). Since the coefficients are

additive, the appropriate martingale restriction determining βh (r) is

0 =
1

2
dvec {αα′}+ β + βh (r) + dvec {exp∗ (κg + rκd)A

′} .

Differentiating with respect to r and evaluating this derivative at zero, we have

βd = −dvec {[exp∗ (κg)× κd]A
′} .

7.4 Shock elasticities

We perform a direct calculation of the state-dependent moving-average coefficients needed

to compute the elasticities that interest us. Recall that ê is the vector of reciprocals of the

entries of e. Then

ê · Zt =
∑

0<u≤t

(Zu − Zu−)
′ exp

[

Â(t− u)
]

ê−
∫ t

0

(Zu−)
′ Â exp

[

Â(t− u)
]

êdu (41)

+ (Z0)
′ exp

(

Ât
)

ê
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where Â is the intensity matrix under the change in measure. The new information at time

u is

(Zu − Zu−)
′ exp

[

Â(t− u)
]

ê− (Zu−)
′ Â exp

[

Â(t− u)
]

êdu,

and the first two terms in the decomposition (41) form a martingale.

Next we scale by ζ(t− u)′Zu− where

ζ(t− u) = exp
[

Â(t− u)
]

ê

and produce a new representation that will be useful in our elasticity calculations. We do

this in two steps:

1. First construct the matrix Ξ(t− u) with (i, j) entry:

Ξij (t− u) =
ζj(t− u)

ζi(t− u)
− 1

where ζi(t− u) is the ith coordinate of ζ(t− u).

2. Second construct the vector ξ(t− u) by dividing each entry of Âζ(t− u) by the corre-

sponding entry of ζ(t− u).

Then write

ê · Zt =
∑

0<u≤t

[ζ(t− u)′Zu−]
[

(Zu−)
′ Ξ(t− u)Zu

]

− (42)

−
∫ t

0

[ζ(t− u)′Zu−] [ξ(t− u)′Zu−] du+ ζ(t)′Z0.

The moving-average representation for ê · Zt derived in Section 7.4 allows us to state a

counterpart of Result 2.2 for the jump risk case.

Result 7.1.

1

t

d

dr
logE [MtHt(r)|Z0 = z]

∣

∣

∣

∣

r=0

= (43)

=
1

t

Ê
[

(ê · Zt)
∫ t

0
(Zu−)

′
(

βd + dvec
{

κdÂ
′
}

+ dvec
{

(Ξ(t− u)× κd) Â
′
})

du|Z0 = z
]

Ê [ê · Zt|Z0 = z]

The proof is deferred to Appendix C.2. Switching the order of integration in the nu-

merator of formula (43), the shock elasticity function for a direction κd is the time u = 0
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contribution to the integral across the time dimension, viewed as a function of the maturity

date t. We write the shock elasticity function as a vector

ε(t) = βd + dvec
{

κdÂ
′
}

+ dvec
{

[Ξ(t)× κd] Â
′
}

.

As in the Brownian case, we define the shock-price and shock-exposure elasticity functions

by appropriately specifying the drift term βd for suitable choices of the martingale M . In

particular, we obtain the shock-price elasticity function as in Section 3.3 in the special case

when M = SG and both G and GH(r) are martingales, attaching a minus sign by signing

convention.

7.5 Growth and discounting

Our construction of the multiplicative functional M in (31) that explicitly allows for jumps

in the levels of the functional is motivated by the implications of continuous-time Markov

switching models for the equilibrium quantity dynamics that interest us. For the sake of

illustration we introduce jumps directly in the growth or consumption processes, but pro-

duction economies are also of interest and can be, and in fact have been, investigated using

computational methods.

There are also other potential sources of jumps. We have already shown that even if a

stochastic growth or discount functional contains no jumps in the sample paths (κ = 0),

its martingale component both in additive and multiplicative form will generically contain

a jump component provided there are jumps in either the conditional mean of the growth

or conditional volatility. As we will see, when consumers have recursive preferences of the

Epstein and Zin (1989) type the forward-looking continuation values may exhibit jumps even

if the consumption process has a continuous sample path.31 Jumps thus become relevant

when pricing permanent components of asset payoffs.

In some models with production and capital accumulation, jumps in the equilibrium

consumption process may arise endogenously. In the Cagetti et al. (2002) model, the dis-

crete Markov state determines the mean growth rate of the technology process, but the

process itself has continuous trajectories. Since a regime shift discretely changes the instan-

taneous mean growth rate of the technology process and the conditional distribution of the

future technology, there is also a discrete adjustment in the consumption and investment

processes.32

31Calvet and Fisher (2008), Chen (2008), and Bhamra et al. (2008) generate stochastic discount factors
with discontinuous trajectories using the continuous-time version of Epstein and Zin (1989) preferences.

32David (1997) produces a model along similar lines with two different linear technologies where jumps
in the mean growth rates of the two technologies exactly offset each other, so that the distribution of
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βc αc A
0.0355 0.0330 -0.4627 0.4627 0
0.0127 0.0484 0.1709 -0.1938 0.0229
0.0193 0.0163 0.0554 0 -0.0554

Table 2: Parameterization of the jump risk example: The intensity matrix is calculated by
taking the matrix logarithm of the transition probability matrix from Bonomo and Garcia
(1996), and setting all negative off-diagonal terms equal to zero. This produces an intensity
matrix with zeros in the same entries as in the original transition probability matrix. Original
parameters estimated using yearly data from 1889–1985 (for details on the data sources, see
Appendix A of the cited paper). Parameters are annualized.

In the following subsections, we construct the stochastic discount factor functional for the

continuous-time version of the Epstein and Zin (1989) preferences when intertemporal elas-

ticity of substitution is equal to one. We will subsequently use the stochastic discount factor

to calculate the shock-price elasticities for consumption dynamics estimated by Bonomo and

Garcia (1996).

7.6 Example economy with jumps

7.6.1 State dynamics

For illustrative purposes, we consider an example of consumption dynamics with three states,

estimated by Bonomo and Garcia (1996). We focus on the pricing of permanent jump shocks

to the equilibrium consumption stream in the Breeden-Lucas (BL) and Epstein-Zin (EZ)

specification of preferences that we outlined in the example in Section 5.2.

Bonomo and Garcia (1996) specify the consumption dynamics as a conditionally Gaussian

discrete-time process with jumps in the conditional growth rate and volatility. This leads

us to parameterize consumption as a multiplicative functional given by (βc, αc, κc) where

κc = 0 and scaled by the initial condition C0. Table 2 provides the parameter values βc and

αc estimated by Bonomo and Garcia (1996). From filtered probabilities reported in that

paper, we know that between 1890 and 1950 the economy spent most of the time switching

between states 1 and 2, with longer spells spent in state 2.33 Volatility is relatively high in

both of these states. After 1950 the economy switched to the highly persistent, low-volatility,

moderate mean-growth rate state 3, where it resides for most of the remainder of the sample

(at least until recent events).

the aggregate production possibility set is independent of the current state. In this case, the equilibrium
consumption process remains continuous.

33See Figure 3 of Bonomo and Garcia (1996).
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7.6.2 Investors’ preferences

As in Section 5.2 we consider two models of preferences. Recall that in model BL the

stochastic discount functional is:

St = exp (−δt)
(

Ct

C0

)−γ

.

In model EZ we use the continuous-time specification of recursive utility preferences given

in Section 5.2. As we saw, when preferences have a unitary elasticity the stochastic discount

functional has a particularly simple structure:

St = exp(−δt)
(

C0

Ct

)

M̃t

where M̃ is the multiplicative martingale from the shock exposure of the logarithm of the

forward-looking continuation value function scaled by 1− γ.

As in Hansen (2007), the logarithm of the equilibrium continuation value is of the form

log Vt = v · Zt + logCt

where v solves the continuous-time discrete-state Bellman equation:

0 = −δv + βc +
1

1− γ
dvec {exp∗[(1− γ)κv]A

′}+ 1− γ

2
dvec {αcαc

′} . (44)

and34

κv = (1nv
′ − v1n

′) + κc.

To construct this martingale component, write

(1− γ)(log Vt − log V0) = (1− γ) [v · (Zt − Z0) + logCt − logC0]

= (1− γ)

[

∑

0<u≤t

Zu−
′κvZu +

∫ t

0

Zu−
′βcdu+

∫ t

0

Zu−
′αcdWu

]

.

34This equation is more general than the corresponding equation in Hansen (2007) because it allows for
jumps in the consumption process and heteroskedasticity in the loading on the Brownian increment.
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Then

log M̃t =(1− γ)
∑

0<u≤t

Zu−
′κvZu −

∫ t

0

dvec {exp∗[(1− γ)κv]A
′} · Zu−du

+ (1− γ)

∫ t

0

Zu−
′αcdWu −

∫ t

0

dvec

{

(1− γ)2

2
αcαc

′
}

· Zu−du.

The coefficients in the stochastic discount functional thus are

βs = −δ1n − βc − dvec {exp∗[(1− γ)κv]A
′} − dvec

{

(1− γ)2

2
αcαc

′
}

= −δ1n − (1− γ)δv − γβc

αs = −αc + (1− γ)αc = −γαc

κs = −κc + (1− γ)κv = −γκc + (1− γ) (1nv
′ − v1n

′) .

where we have used equation (44) for the vector δv.

7.6.3 Shock-price elasticities

We specify the growth functional G as the multiplicative martingale component of the con-

sumption functional C (re-normalized conveniently to be one at date zero), extracted using

the procedure outlined in Section 7.2.1. We illustrate our elasticity calculations by pricing

the jump component of the permanent shock to logC.35 Let κ̄c denote the corresponding

jump matrix, which dictates how the shock is constructed as function of the jumps in Z.

We parameterize the perturbation H(r) using (βh (r) , 0, rκ̄c) where βh (r) makes GH (r) a

martingale, and then we scale the perturbation by the reciprocal of the long-run volatility

as in Section 7.2.2. This scaling normalizes the risk exposure of the shock. The resulting

direction matrix is:

1

ς
κ̄c =







0 -2.1804 -0.1139

2.1804 0 2.0664

0.1139 -2.0664 0







As reflected by the first row of this matrix, a movement from the first state to either of

the other states has an adverse consequence on this permanent shock to consumption. In

contrast movements from the second state to either of the first two states has a positive

impact on the permanent shock. From the third state, a movement to the high-growth first

35Using these same methods, elasticities can be computed for other shocks, including the Brownian in-
crements or surprise movements from any state to another. A more comprehensive set of elasticities are
reported in an earlier draft of this paper. See Borovička et al. (2009).
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Figure 7: Shock-price elasticities for the jump component of the permanent shock to con-

sumption: We constructed the permanent jump component using the Bonomo and Garcia
(1996) consumption dynamics. The elasticities are depicted for the Breeden-Lucas (dot-
dashed lines) and Epstein-Zin (solid lines) specifications of investor preferences. The growth
functional is the martingale component in the multiplicative factorization of aggregate con-
sumption, and the direction of the perturbation is given by the jump component of the
martingale in the additive decomposition of logC. Preference parameters are γ = 10 and
δ = 0.01, and elasticities are annualized.

state has a positive impact and to the low-growth second state a negative impact.

Figure 7 displays the shock-price elasticities for the two utility specifications conditioned

on each of the three states as well as the limiting contribution (14).

The stochastic discount factor in the BL model has continuous sample paths. Since

the diffusion and jump terms have independent increments, the local price elasticities with

respect to the jump component are zero, as shown in Figure 7. The jump shock-price

elasticities are not zero over time investment horizons, and as seen in the figure flatten out

for horizons over five years. In the EZ specification, the elasticity trajectories are almost

flat from the outset, reflecting the dominance in the martingale component of the stochastic

discount factor. Also the price elasticity of this exposure to the permanent jump shock

varies substantially depending upon the current state. While prices in state 1 are sizeable,

the prices in state 3 are tiny. Bonomo and Garcia (1996) report filtered state probabilities
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which indicate that the economy was switching between states 1 and 2 until about 1950,

while in the post-1950 era the economy mostly resided in state 3. The limiting shock-price

trajectory (14) is plotted in the bottom right panel of Figure 7. This curve shows that a

forward shift in the time of exposure in the case of state 3 will substantially increase the

shock-price elasticities while the same shift in case of state 1 leads to a drop by about fifty

percent.

In contrast to the continuous-state specification studied in Section 5, the state dependence

in this regime-shift model is substantial. In this discrete-state example the state evolution

entails simultaneous changes in growth and volatility and is reflected in prices of exposure

to the permanent shock to consumption. In the stochastic volatility model we studied,

the permanent shock would be a combination of the direct shock to consumption and the

shock to the growth rate of consumption.36 Stochastic volatility scales this permanent shock

but the shock to volatility does not contribute directly to the permanent shock. Thus the

regime-shift model not only contributes fundamental discreteness though its use of only three

realized states but it also features simultaneous changes in growth rates and volatility.

36See Hansen (2009).
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8 Conclusion

Stochastic dynamic model economies inform us how alternative shocks influence key eco-

nomic variables at alternative time horizons. Structural models of asset valuation tell us

even more. They inform us how the exposure to nondiversifiable macroeconomic shocks

is compensated over alternative investment horizons. To understand better such implica-

tions, we proposed shock-price elasticities that measure this compensation and are valuation

counterparts to impulse response functions. These price elasticities are also the dynamic

extension of local risk prices familiar from finance by which exposure to shocks are assigned

prices. Similarly, we constructed shock-exposure elasticities which capture the sensitivity of

expected cash flows. We produced tractable continuous-time formulas for structural models

that explicitly account for stochastic discounting and macroeconomic growth. Thus this pa-

per provides an additional tool for analyzing structural models that connect macroeconomics

and asset pricing.

In this paper we deduced price and exposure elasticities by deconstructing the risk premia

of conveniently chosen cash flows. Risk premia on specific assets depend on the exposure

of an underlying cash flow to risk along with the price of that exposure. By design our

elasticity calculations explore marginal changes in exposures in alternative directions, and

in models with nonlinearities these elasticities depend on what benchmark cash flow is used

in their construction and on the evolution of the Markov state. Constructing risk premia

thus requires that we integrate the marginal contributions over the range of the relevant

exposures. This integration is implicit when we confront empirical evidence using a limited

set of asset payoffs and prices. While we have not proposed a new set of statistical procedures

for testing, we believe the deconstruction of risk premia to be of interest in understanding

better the implications of alternative asset pricing models.

In a series of examples, we showed how to construct the shock elasticities in models where

investors’ preferences include recursive utility and external habit specifications, and where

there is consumption predictability and stochastic volatility. We also explored models where

the dynamics are driven, at least in part, by a finite-state Markov chain governing changes in

regimes. We showed examples in which external habit models that have similar implications

for local risk prices have dramatically different implications over long investment horizons,

and examples of models with growth rate and volatility predictability (long-run risk models)

which have similar long-term price implications but substantially different implications for

shorter horizons.

While our examples feature alternative specifications of investor preferences, the starting

point for the methods we develop is a benchmark macroeconomic growth process and a

corresponding stochastic discount factor process. It is well known that models with explicit
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investor heterogeneity in opportunities and limitations to the nature of asset trading can

still be captured by appropriately specified stochastic discount factors. For instance, see

Hansen and Renault (2009). We anticipate that a more comprehensive study of the pricing

implications of these models will reveal interesting comparisons to some of the models that

we have explored in this paper. While we have considered a jump risk models with finite

states, we expect a richer investigation of Levy process within our framework to be a valuable

extension.

Finally, we have abstracted from econometric and empirical challenges. While we leave

this to future work, we do not wish to diminish the importance of these tasks. In regard

to empirical implications, Bansal and Lehmann (1997), Alvarez and Jermann (2005), and

Koijen et al. (2009) use the holding period return on long-term bonds and the maximal

growth portfolio to gain information about the one-period stochastic discount factor in a

discrete-time asset pricing model. The risk premium on the maximal growth portfolio re-

veals information on the volatility of the logarithm of the stochastic discount factor and

the limiting holding-period return on a discount bond reveals the one-period ratio of the

dominant eigenfunction (e(Xt+1)/e(Xt) in our notation) in a multiplicative factorization of

the stochastic discount factor. They construct informative bounds on the logarithm of the

stochastic discount factor and its components. While stochastic growth is not central to

the valuation of fixed income securities, as we have seen the valuation of cash flows exposed

to macroeconomic growth requires characterization of the co-dependence between stochastic

discounting and stochastic growth. Thus empirical extensions of this literature that explic-

itly confront the valuation of stochastic growth are a potentially fruitful direction for future

research. The initial steps by Lettau and Wachter (2007) and Hansen et al. (2008) are

promising starts in this direction.
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A Stochastic discount factor under recursive utility

We follow Duffie and Epstein (1992) in our construction of the stochastic discount factor.

i) Take a monotone transformation of the utility index:

U∗
t = (Ut)

1−γ

For γ > 1, the case that interests us, this transformation is decreasing, so we will have

to make an appropriate sign adjustment.

ii) Notice that Λ is the local mean for U∗. Solve (24) for Λ:

Λt = δ(γ − 1)

[

logCt +

(

1

γ − 1

)

logU∗
t

]

U∗
t

.
= Ψ(Ct, U

∗
t ).

Let Ψi denote the partial derivative of Ψ with respect to its ith argument. Compute:

Ψ1(Ct, U
∗
t ) = δ(γ − 1)

[

U∗
t

Ct

]

Ψ2(Ct, U
∗
t ) =

Λt

U∗
t

+ δ.

iii) Following Duffie and Epstein (1992) (see their formula (35)),

St =
Ψ1(Ct, U

∗
t )

Ψ1(C0, U∗
0 )

exp

[

−
∫ t

0

Ψ2(Cτ , U
∗
τ )dτ

]

= exp(−δt)
(

C0

Ct

)(

U∗
t

U∗
0

)

exp

[

−
∫ t

0

(

Λτ

U∗
τ

)

dτ

]

where we placed a minus sign in front Ψ2 to offset the fact that we used a monotone

decreasing transformation of the utility index. Then the drift of the multiplicative

functional {
(

U∗

t

U∗

0

)

exp
[

−
∫ t

0

(

Λτ

U∗

τ

)

dτ
]

: t ≥ 0} is zero, and hence this process is an

exponential local martingale, consistent with our conclusion in Section 5.2.

B The Campbell-Cochrane model

In this appendix we give some more details of the analysis of the Campbell-Cochrane model.

Part of this discussion will be familiar to careful readers of Campbell and Cochrane (1999).
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We include some repetition because we parameterize their model in a different (but equiva-

lent) way. Also, in this appendix we allow for there to be a multivariate Brownian motion,

although in the text we feature the case of scalar Brownian motion.

B.1 Risk-free rate

The instantaneous rate of interest for the Campbell and Cochrane (1999) model is:

− lim
t↓0

1

t
logE [St|X0 = x] = ρ∗ − γξ(x− µx)− γ2

λ(x)2|ᾱc|2
2

+ γ2|ᾱc|2λ(x),

where ρ∗ is the interest rate for the power utility specification in the absence of a consumption

externality:

ρ∗ = δ + γβ̄c −
γ2|ᾱc|2

2
.

Campbell and Cochrane suppose the risk-free rate is an affine function of the state: ρ +

θ(x− µx). Thus

ρ+ θ(x− µx) = ρ∗ + γξ(x− µx)− γ2
λ(x)2|ᾱc|2

2
+ γ2|ᾱc|2λ(x). (45)

We infer the value of ρ by setting x = 0:

ρ∗ = ρ+ (θ − γξ)µx

Substituting this formula into (45), by a simple complete-the-square argument:

(θ − γξ)x− γ2|ᾱc|2
2

= −γ
2|ᾱc|2
2

[λ(x)− 1]2 .

Thus

λ(x) = 1− (1 + ζx)1/2

ζ
.
=

2(γξ − θ)

γ2|ᾱc|2

In the text we focused on the case in which θ = 0, which is the same case that is featured

in Campbell and Cochrane (1999). Wachter (2005) explores the more general case in her

analysis of term structure implications.
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B.2 Locally predictable consumption externality

Campbell and Cochrane (1999) propose that the risk exposure of C∗
t be zero when Xt =

µx. The idea is that C∗
t is locally predetermined. To understand the ramifications of this

restriction, recall that

C∗
t = Ct − Ct exp(−Xt − b),

where we now will use the local predictability restriction to determine the coefficient b. This

coefficient b is important in quantifying risk aversion. The standard measure of relative risk

aversion is now state-dependent and given by

risk aversion = γ exp(Xt + b).

The local risk exposure for C∗
t is

Ct[1− exp(−Xt − b)]ᾱc · dWt + Ct exp(−Xt − b)λ(Xt)ᾱc · dWt.

Thus we require that

1 + exp(−x− b)[λ(x)− 1] = 0,

or

1− λ(x) = exp(x+ b)

for x = µx. Squaring the equation and multiplying by exp(−2µx)

exp(−2µx)

(

1 +

[

2(γξ − θ)

γ2|ᾱc|2
]

µx

)

= exp(2b)

which determines b. At this value of b, the relative risk aversion measure is γ[1 − λ(µx)]

when x = µx.

As an extra parameter restriction, Campbell and Cochrane (1999) suggest requiring that

the derivative of the risk exposure with respect to x be zero at µx:

exp(−µx − b)[1− λ(µx)] + exp(−µx − b)λ′(µx) = 0,

or
1

2

(

[λ(µx)− 1]2
)′
= λ′(µx)[λ(µx)− 1] = [λ(µx)− 1]2.

Thus
γξ − θ

γ2|ᾱc|2
= 1 +

[

2(γξ − θ)

γ2|ᾱc|2
]

µx,
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which is the restriction on the underlying parameters. Specifically,

µx =
1

2
− γ2|ᾱc|2

2(γξ − θ)

Notice that we may now express λ as:

λ(x)− 1 = −
(

1 +

[

2(γξ − θ)

γ2|ᾱc|2
]

x

)1/2

= −
(

γξ − θ

γ2|ᾱc|2
+

[

2(γξ − θ)

γ2|ᾱc|2
]

(x− µx)

)1/2

= −
(

γξ − θ

γ2|ᾱc|2
)1/2

[1 + 2(x− µx)]
1/2 .

as derived in Campbell and Cochrane (1999).

B.3 Change of measure

Parameterize the growth functional G by
(

β̄g, ᾱg

)

. The martingale component of SG is given

by

M̂t = exp

[

(ᾱg − γᾱc) · (Wt −W0)−
t

2
|ᾱg − γᾱc|2

]

,

which we use to change the measure. With this change, the law of motion for X is:

dXt = −ξ(Xt − µx)dt+ (ᾱg − γᾱc) · ᾱcλ(Xt)dt+ λ(Xt)ᾱc · dŴt. (46)

Consider next the long-run behavior of value.

We use evolution equation (46), and the formula for the logarithmic derivative of the

stationary density q for a scalar diffusion:

d log q

dx
=

2 drift

diffusion
− d log diffusion

dx

where the drift coefficient (local mean) is −ξ(x− µx) under the original measure or

−ξ(x− µx) + (ᾱg − γᾱc) · ᾱcλ(Xt)

under the twisted measure. The diffusion coefficient (local variance) is λ(x)2|ᾱc|2.
The limiting behavior is dominated by the constant term:

lim
x→∞

d log q

dx
= − γ2ξ

γξ − θ
< 0. (47)
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As a consequence the process X is stationary under the original and under the twisted

probability measure as reflected by (29) and (46) respectively. It remains to study what

functions have finite moments under the twisted evolution.

When γξ > θ > 0, exp(γXt) has a finite expectation under the twisted stationary density

because the limit in (47) is strictly less than −γ. In contrast, when θ < 0 this expectation

will be infinite. Thus when θ > 0 the contribution to preferences will be transient, but not

when θ < 0.

When θ = 0, a more refined calculation is required because log q behaves like a positive

scalar multiple of −γx for large x. This motivates the following:

lim
x→∞

√
x

(

d log q

dx
+ γ

)

= −2

(

ᾱg · ᾱc

ᾱc · ᾱc

)

ζ−1/2 = − ᾱg · ᾱc

|ᾱc|

√

2γ

ξ
.

For the contribution of e to the stochastic discount factor to have transient implications for

valuation, this term must be negative because twice this limit is the coefficient on
√
x in the

large x approximation of log q(x) + γx. While this term is zero when ᾱg is zero, it will be

negative provided that the shocks to logGt and logCt are positively correlated.

We now characterize the limiting risk premia. When θ > 0,

risk premium = γᾱc · ᾱg

as in the Breeden (1979) model. When θ = 0 and ᾱc · ᾱg > 0,

lim
t→∞

1

t
logE [StGt|X0 = x] = µg − δ − γβ̄c − γᾱc · ᾱg +

γ2

2
|ᾱc|2 +

|ᾱg|2
2

,

but

lim
t→∞

1

t
logE [St|X0 = x] = −ρ

This justifies formula (30).

C Derivations and proofs for Section 7

C.1 Eigenvalue problems

For the multiplicative decomposition in Section 7.2.1, guess that the martingale component

takes the form (34). The martingale restriction for an increment in M̂ conditional on state

Zt− = zi is

0 =
1

2
z′iαα

′zi + βi − η +
∑

j

Aij exp (κ̂ij)
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Plugging this restriction into decomposition (33) and comparing coefficients, we obtain the

condition

κ̂ij = log ej − log ei + κij

which yields equation (35) by stacking. Using this condition in the martingale restriction

leads to

0 =
1

2
z′iαα

′zi + βi − η +
∑

j

Aij
ej
ei

exp (κij)

which, after multiplying by ei and stacking the equations, yields the eigenvalue equation

(32).

The additive decomposition in Section 7.2.2 is obtained in a similar way. Guess the

form of the martingale component log M̄ given by equation (40). The additive martingale

restriction conditional on state Zt− = zi is

0 =
∑

j

κ̄ijAij + β̄i

Using this restriction in (36), and comparing coefficients, we have

β̄i = βi − η̄

κ̄ij = κij + hj − hi

Thus the martingale restriction implies

η̄ =
∑

j

κijAij +
∑

j

Aijhj + βi (48)

Stacking this set of equations and premultiplying by q yields equation (38). The vector hh

representing the dominant component can then be found (up to scale) as a solution to the

system of equations (48).

C.2 Proof of Proposition 7.1

Proof. Notice that

d

dr
logE [MtHt (r) | Z0 = z]

∣

∣

∣

∣

r=0

=
Ê [(ê · Zt)Dt | Z0 = z]

Ê [ê · Zt | Z0 = z]
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where

Dt =
∑

0<u≤t

(Zu−)
′ κdZu +

∫ t

0

(Zu−)
′ βddu.

Further observe that the additive functional

D̄t =
∑

0<u≤t

(Zu−)
′ κdZu −

∫ t

0

(Zu−)
′ dvec

{

κdÂ
′
}

du

is a martingale under the change of probability measure. In order to find the expression for

Ê
[

(ê · Zt) D̄t | Z0 = z
]

, we calculate the local covariance between corresponding increments

in D̄ and the moving-average decomposition of ê · Zt in formula (42). We have

Ê
[

(ê · Zt) D̄t | Z0 = z
]

=

= Ê

[
∫ t

0

[

ζ (t− u)′ Zu−
]

[

(Zu−)
′ dvec

{

(Ξ (t− u)× κd) Â
′
}]

du

∣

∣

∣

∣

Z0 = z

]

= Ê

[
∫ t

0

(ê · Zt)
[

(Zu−)
′ dvec

{

(Ξ (t− u)× κd) Â
′
}]

du

∣

∣

∣

∣

Z0 = z

]

where we used

z′[(Ξ(t− u)× κd)Â
′]z = z′dvec

{

[Ξ(t)× κd] Â
′
}

and
[

ζ (t− u)′Zu−
]

= Ê [ê · Zt | Zu−] .

Combining this result with the expression for Ê
[

(ê · Zt)
(

Dt − D̄t

)

| Z0 = z
]

completes the

proof.
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