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Abstract

This paper develops a theory of subjective beliefs that departs from rational expectations, and

shows that biases in household beliefs have quantitatively large effects on macroeconomic ag-

gregates. The departures are formalized using model-consistent notions of pessimism and opti-

mism which are supported by extensive time-series and cross-sectional evidence from household

surveys. The role subjective beliefs play in aggregate fluctuations is quantified in a business

cycle model with goods and labor market frictions. Consistent with the survey evidence, an in-

crease in pessimism generates upward biases in unemployment and inflation forecasts and lowers

economic activity. The underlying belief distortions reduce aggregate demand and propagate

through frictional goods and labor markets. As a by-product of the analysis, solution tech-

niques that preserve the effects of time-varying belief distortions in the class of linear solutions

are developed.
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1 Introduction

Survey data on households’ expectations about future macroeconomic outcomes reveal significant

systematic biases and comovement of these biases at business cycle frequencies. In this paper, we

present a theory of subjective beliefs that departs from rational expectations and is disciplined

using this survey evidence. Our theory formalizes these departures using model-consistent notions

of pessimism and optimism and how they vary over the business cycle. Embedding this theory into

a quantitative business cycle model, we show that fluctuations in the subjective belief biases drive

a substantial share of movements in macroeconomic aggregates, particularly in the labor market.

We begin by documenting time-series and cross-sectional patterns in household forecasts for

unemployment and inflation. Using the University of Michigan Surveys of Consumers, we show

that household forecasts for unemployment and inflation are biased upward on average and both

biases fluctuate significantly over the business cycle, increasing during recessions. Furthermore, in

the cross section, households that forecast high inflation relative to the population also tend to

forecast high unemployment. We also provide extensive micro-level evidence showing that biases

in inflation and unemployment forecasts are tightly related to biases in forecasts of other aggregate

and individual economic variables. These results are corroborated by additional evidence from the

Survey of Consumer Expectations conducted by the Federal Reserve Bank of New York.

We then develop a framework that delivers these deviations of households’ beliefs from their

rational expectations counterpart as an outcome of time-varying pessimism or optimism. We model

pessimism (optimism) as agents overweighting the probability of future states that deliver low (high)

continuation utilities, and require dynamically consistent decision rules for agents acting under their

subjective beliefs. Since continuation utilities depend on agents’ actions and equilibrium prices, the

framework endogenously determines the subjective beliefs jointly with macroeconomic aggregates,

providing a set of overidentifying restrictions. The forecast biases that we measure in the data are

identified by the difference between the subjective and rational expectations forecasts in the model.

This mapping between the theory and survey data provides us with moment restrictions that we

use for calibration.

We show that time-varying pessimism and optimism is an important source of macroeconomic

risk by applying our framework to a calibrated economy with nominal rigidities and a frictional labor

market. The rational expectations version of the model reproduces the well-known unemployment

volatility puzzle. On the other hand, once we include belief biases that are calibrated to match the

survey data, the model generates the empirically observed large volatility of labor market variables.

The mechanism through which fluctuations in beliefs affect the macroeconomy is consistent with

the empirical evidence—an increase in pessimism is contractionary and increases the belief biases

in both inflation and unemployment forecasts. Pessimism raises households’ subjective probability

of lower productivity growth, tighter monetary policy, and further increases in pessimism because

these outcomes are associated with low continuation values. When consumers are more pessimistic,

they lower current demand because of consumption smoothing. Monopolistically competitive in-

termediate goods firms expect lower future productivity and hence higher marginal costs, which
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reduces the incentive to lower prices. In the presence of labor market frictions, firms’ pessimistic

evaluation of future surpluses leads to lower match creation. In equilibrium, the decline in output

and increase in unemployment due to an increase in pessimism is accompanied by a muted infla-

tion response. Overall, agents are concerned about states with lower productivity, higher marginal

costs, and tighter labor market conditions. This explains why our model generates countercyclical

and positively correlated biases in inflation and unemployment forecasts.

Survey data provide an informative set of restrictions about the structure of the economy and

sources of economic fluctuations. To illustrate these restrictions, we study two variants of the

model. First, we consider a setting without TFP shocks. In this case, concerns about higher

marginal costs are absent, and the model predicts a negative average inflation bias and a negative

comovement between unemployment and inflation biases, both of which are counterfactual. The

presence of uncertainty related to supply-type shocks is necessary to generate the correct sign and

comovement of these biases.

Next, we study a variant with heterogeneous beliefs, in which we impose rational beliefs on

the side of the firms. In this setting, an increase in pessimism consistent with the magnitude of

fluctuations in unemployment biases still generates sizable responses of labor market variables, but

the inflation bias is considerably attenuated compared with the benchmark. Firms with rational

beliefs realize an increase in households’ pessimism is contractionary, but similar to the case without

TFP shocks, do not associate it with higher marginal costs, and inflation falls. Adverse states

are therefore less correlated with high inflation, and pessimistic households overpredict inflation

substantially less than in the data. The beliefs of firms therefore play an important role for the

model to match the magnitude of the belief biases.

Our benchmark model features exogenous variation in pessimism. We relax this assumption

by considering a setting in which increases in pessimism are triggered by negative TFP shocks.

Overall, this specification produces fluctuations in macroeconomic aggregates and beliefs that match

unconditional moments in the data as well as our benchmark model. However, dynamic responses

to TFP shocks are counterfactually large, and the model fit to the empirical trajectories of the

unemployment rate and subjective forecasts is weaker. This indicates a quantitatively important

role for variation in pessimism that is orthogonal to productivity shocks.

We also present an alternative to the assumption of exogenous fluctuations in pessimism by

considering a setting in which households face uninsurable idiosyncratic risk. In this setting, in-

creases in idiosyncratic risk endogenously increase the belief biases without exogenous shocks to

pessimism. We provide suggestive empirical evidence in favor of this mechanism by showing that

our forecast biases are correlated with a proxy for idiosyncratic risk constructed by Schmidt (2016).

On the technical side, we develop a perturbation technique that incorporates the impact of

time-varying belief biases in a first-order approximation of the model. The idea is to construct

an appropriate scaling of the endogenously determined belief distortion that does not vanish as

the perturbed economy approaches its deterministic limit. The approximation method leads to

a tractable linear solution for the equilibrium dynamics with a role for subjective beliefs. The
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perturbation technique can be applied to a broader class of dynamic stochastic general equilib-

rium (DSGE) models, including settings in which agents have heterogeneous subjective beliefs. In

our application, we use the heterogeneous belief setup to isolate the role of belief distortions of

households and firms.

The paper contributes to the empirical and theoretical literatures that study deviations from

full information rational expectations. A series of papers use household survey data to document

empirical properties of forecast errors and test models of information frictions. For instance, see

Carroll (2003), Mankiw et al. (2003), Coibion and Gorodnichenko (2012, 2015a), and Bordalo et al.

(2020). In contrast to this literature, our focus is to build general equilibrium models disciplined by

these survey data and study quantitative macroeconomic questions. In addition, our theory delivers

a subjective measure for the joint distribution of outcomes and generates testable restrictions for

the forecast errors across macroeconomic variables, which we confirm in the survey data.

Our model of pessimism and optimism is also related to a stream of literature that builds quan-

titative models of business cycles with information processing frictions (Mankiw and Reis (2007),

Woodford (2013), Maćkowiak and Wiederholt (2015), Jurado (2016), Carroll et al. (2020)), ex-

trapolative expectations (Eusepi and Preston (2011)), news and noise shocks (Beaudry and Portier

(2004, 2007, 2014), Barsky and Sims (2011, 2012), Blanchard et al. (2013), Chahrour and Jurado

(2018)), fluctuations in confidence (Angeletos et al. (2018)), fluctuations in discount rates (Hall

(2017), Basu et al. (2021)), and model misspecification (Molavi (2019)). In contrast to these papers,

we use household survey forecasts to discipline departures from rational expectations, in particular

the average magnitude of the biases and their fluctuations, as well as their comovement across

forecasts of different macroeconomic quantities.1 These moments impose important restrictions on

the capacity that belief biases have in generating fluctuations in macroeconomic fundamentals. We

discuss differences between our approach and these theories in detail once we develop the belief

model and its predictions in Section 3. We also show that the common component in fluctuations in

the subjective belief biases, measured in the Michigan Survey, closely resembles several qualitative

proxies for consumer confidence used in some of the above-mentioned work, with the benefit that

survey data provide quantitative discipline on the magnitude of these belief biases. We elaborate

on these connections in Section 6.

Our modeling of subjective beliefs utilizes the robust-preference framework developed by Hansen

and Sargent (2001a,b), Strzalecki (2011), Hansen and Sargent (2016), and others. In this framework,

agents act as if they faced a pessimistically biased probability distribution due to concerns about

model misspecification. We instead take this pessimistically biased distribution as a model of

subjective beliefs that we enrich to allow for time-variation in belief biases, and discipline the

subjective beliefs using survey evidence. Our contribution to this literature is the parsimonious

modeling of time-varying pessimism that can easily be applied to a large class of DSGE models

1A parallel literature studies empirical properties of survey forecasts on asset returns and embeds them in asset
pricing models. See, for example, Bacchetta et al. (2009), Amromin and Sharpe (2014), Greenwood and Shleifer
(2014), Barberis et al. (2015), Adam et al. (2017), Piazzesi et al. (2015), Adam and Merkel (2019), Szöke (2022), and
Nagel and Xu (2022).
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and the set of tools to compute and estimate equilibria with linear dynamics.

The robust-preference modeling foundations also imply connections of our work to quantitative

models of ambiguity aversion in macroeconomics such as Bidder and Smith (2012), Ilut and Schnei-

der (2014), and Bianchi et al. (2018). This literature used statistics like detection error probabilities

or dispersion in analyst’s forecasts as a way of calibrating the degree of model uncertainty. While

we share with this literature the general notion of pessimistically slanted actions, we quantify the

degree of pessimism directly using evidence from household survey answers, and use those moments

to discipline the evolution of model-implied beliefs.

A recent and growing literature has followed approaches similar to ours in studying variation

in pessimism and optimism in survey data and economic models. Kamdar (2018) uses a model of

rational inattention to interpret survey evidence on household forecasts as driven by time variation

in optimism and pessimism. Maenhout et al. (2021) and Szöke (2022) exploit survey evidence to

discipline variation in pessimism in asset pricing models. Baqaee (2020) uses a model of ambiguity

aversion to characterize asymmetries in inflation expectations in household survey data. Bassanin

et al. (2021) construct a model of time-varying ambiguity concerns in a model of credit market

fluctuations. Adam et al. (2021) analyze time-variation in pessimism and optimism in stock re-

turn forecasts. This recent work advocates that fluctuations in pessimism and optimism are a

salient feature of the beliefs of economic agents and an important contributing factor to aggregate

fluctuations.

The paper is organized as follows. Section 2 describes key empirical findings from the survey

data. Motivated by these findings, we introduce our theory of subjective beliefs in Section 3, link

the implications of the theory to the belief biases in survey data, and develop a tractable solution

technique for approximating the equilibrium dynamics. Section 4 is devoted to the construction

and calibration of the structural business cycle model that embeds the subjective belief model. In

Section 5, we discuss implications of the findings and the role of subjective beliefs in business cycle

dynamics. Section 6 provides further verification of the model mechanism using local-projection

based dynamic responses and forecast error regressions, and relates belief distortions implied by

our model to measures of confidence, sentiment, and disagreement used in the literature. Section 7

concludes. The appendix contains detailed derivations of the approximation method, description

of the data, further empirical evidence and theoretical results, and robustness checks.

2 Survey expectations

We start by analyzing data on households’ expectations from the University of Michigan Surveys

of Consumers (Michigan Survey). This survey collects answers to questions about households’ own

economic situation as well as their forecasts about the future state of the economy. We document

large upward biases in average forecasts of future inflation and unemployment. These biases vary

systematically over the business cycle and across individual households in the cross section.2

2A detailed description of the construction of all data is provided in Appendix D.
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We define a belief wedge as the deviation of a survey response from the corresponding rational

expectations forecast. This requires taking a stand on how to determine the probability measure

that generates the data.

Our preferred way is to use a vector autoregression (VAR) as a convenient and flexible way

of describing the data generating measure. We follow the literature and consider several com-

monly used specifications to ensure that the characteristics of the belief wedges are not sensitive

to the particular choice of the VAR. The details of the construction of the preferred specification

and additional results for the alternative versions of the VAR are provided in Appendix D.3 and

Appendix D.4, respectively.

As a robustness check, we also document patterns for the belief wedges constructed using

responses in the Survey of Professional Forecasters (SPF) as the rational forecast. There is existing

work that studies biases in SPF forecasts (Elliott et al. (2008), Capistrán and Timmermann (2009),

Bordalo et al. (2020)), but these biases are substantially smaller than those we find in household

surveys (Bianchi et al. (2022)) and are not robust to the chosen time period. Our main findings do

not depend on these alternative choices of the rational forecast.

2.1 Time-series evidence

Figure 1 shows the differences between the Michigan Survey average household expectations and

the rational forecasts for inflation and unemployment. The survey expectations are mean one-

year-ahead expectations in the survey samples, constructed using quarterly data for the period

1982Q1–2019Q4. The unemployment rate survey forecast is inferred from categorical answers by

fitting a time series of parametric distributions using the procedure from Carlson and Parkin (1975)

and Mankiw et al. (2003). The construction of both series is detailed in Appendix D.1.

The belief wedges in Figure 1 are large on average, vary over time, and have a strong common

component that is correlated with the business cycle. Using the VAR as the rational forecast,

the average inflation and unemployment wedges over the sample period are 1.22% and 0.52%,

respectively. The wedges are also volatile, with standard deviations of 0.97% and 0.57% for inflation

and unemployment, respectively. Finally, the wedges consistently increase during the shaded NBER

recessions. This means not only that households overestimate unemployment and inflation relative

to the VAR forecast, but also that these biases are larger when measures of business activity are low.

The correlations of the inflation and unemployment wedges with output gap are −0.29 and −0.51,

respectively, and analogous correlations with GDP growth are −0.49 and −0.28, respectively.

The bottom panel of Figure 1 shows that these patterns are robust to using the SPF forecasts as

the rational benchmark. In Figure 16 in Appendix D.4 we separately plot the household forecasts

and the rational forecasts. This figure shows that these cyclical patterns in the belief wedges are

driven not only by fluctuations in the VAR or SPF forecasts, but crucially by time variation in the

actual household forecasts. In the same appendix, we also report the descriptive statistics using

other ways of measuring the wedges, such as extending the data to a longer sample and using the

median response across households.
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Figure 1: Top panel: Difference between the mean one-year-ahead forecasts from the Michigan Survey
and corresponding statistical VAR forecasts. Bottom panel: Difference between the mean one-year-ahead
forecasts from the Michigan Survey and corresponding SPF forecasts. Details on the construction of the
data series are in Appendix D. NBER recessions are shaded.

We interpret these patterns as households expressing time-varying pessimism or optimism in

their view of the aggregate economy. A pessimistic household overweighs the probability of adverse

future states relative to the data-generating measure. Unemployment is high in these adverse

states, and households’ unemployment forecasts hence exhibit a positive belief wedge. Similarly,

the observed positive inflation wedge implies that a pessimistic household views high inflation states

as adverse.

The interpretation of positive inflation biases as emerging from a pessimistic view of the econ-

omy also lines up with survey evidence on households’ inflation attitudes. The Bank of England

administers a quarterly Inflation Attitudes Survey in which households are asked, among other

questions, what the impact of an increase in inflation would be on the United Kingdom economy.

Figure 2 shows that over the sample, between 50% and 80% of households responded that an in-

crease in inflation would weaken the economy. Moreover, this fear of an adverse impact of higher

inflation is highest during the Great Recession, and the correlation of this share of households with

United Kingdom GDP growth over the 1999Q4–2019Q4 sample period is −0.48. The household
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Figure 2: Bank of England Inflation Attitudes Survey, shares of answers to the question: “If prices started
to rise faster than they do now, do you think Britain’s economy would . . . ” Data sample 1999Q4–2019Q4.
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Figure 3: Left panel: Median inflation forecasts in the Michigan Survey and the SCE. Right panel: Share
of respondents in the Michigan Survey stating that unemployment will be higher during the next 12 months
and the mean probability that unemployment will be higher one year from now in the SCE. Details on the
construction of the data series are in Appendix D.

median inflation forecast averaged over this sample is 2.74%, while the realized inflation rate over

this period averaged 2.00%. Therefore, United Kingdom households significantly overpredict infla-

tion, associate high inflation with adverse economic outcomes, and tend to have larger biases during

recessions.3 That households associate high inflation with adverse outcomes is also confirmed and

discussed by Shiller (1997).

These patterns are robust to alternative ways of measuring the wedges. A particularly insightful

check is a comparison of our results from the Michigan Survey with the Federal Reserve Bank of

3The large magnitude of the inflation wedge in household survey expectations is also consistent with the findings
of Coibion and Gorodnichenko (2015b) for the United States, as well as with international evidence. For example,
Coibion et al. (2018b) find large positive inflation biases in household and firm surveys in New Zealand and Vellekoop
and Wiederholt (2019) document large and persistent positive biases in a long panel survey of households in the
Netherlands.
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Figure 4: Left panel: Bin scatter plot for household-level data in the Michigan Survey. Households sorted
into percentile bins on inflation forecasts, with time effects removed. Vertical axis represents the difference
in shares of households forecasting unemployment going up and unemployment going down. Right panel:
Relationship between the average inflation wedge ∆(π)g of demographic group g and the corresponding
average unemployment wedge ∆(u)g in the Michigan Survey. Demographic groups are listed in Table 7 in
Appendix D. Standard errors of regression coefficients are in parentheses.

New York Survey of Consumer Expectations (SCE). The SCE contains a richer set of questions but

only began in 2013. The left panel of Figure 3 shows that the median inflation forecasts from both

surveys are very well aligned, including the timing and magnitude of the large increase in survey

forecasts during the recent inflation wave.4 Since the two surveys do not ask the same questions

about unemployment, the right panel shows two different sets of unemployment forecast statistics.

We report the mean probability that unemployment will be higher one year from now from the

SCE and the share of respondents who predict that unemployment will be higher in the next 12

months from the Michigan Survey. The levels are not directly comparable but the statistics comove

strongly over time.

2.2 Cross-sectional evidence

In addition to the time series, we also use household-level data to provide evidence for a positive

cross-sectional correlation between the unemployment and inflation belief wedges and a strong

comovement across time for disaggregated demographic groups. These patterns corroborate the

idea that subjective beliefs about aggregate variables contain a common factor that reflects time-

varying pessimism or optimism.

The left panel of Figure 4 shows the tight relationship between the inflation and unemployment

forecasts at the micro level in the Michigan Survey. The scatter plot sorts the inflation forecasts of

4Armantier et al. (2013) and Manski (2017) advocate eliciting probabilistic forecasts from individual households.
The Michigan Survey forecast is constructed by aggregating point forecasts of individual households, and we assume
these to be the mean forecasts under the subjective distribution in the quantitative model. Households in the SCE
report subjective distributions of the forecasted variables, which are then integrated to obtain mean forecasts at the
household level. The alignment of the data from the two surveys justifies this assumption.
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individual households into percentile bins, similarly to Candia et al. (2020), and plots the difference

in the share of households in each bin that forecast unemployment going up and unemployment

going down on the vertical axis. The plot reveals that households that forecast high inflation also

predict high unemployment.

As we document in Appendix D.5, these cross-sectional patterns are prevalent for a range

of survey responses. Households that expect high inflation also expect a general worsening of

aggregate economic conditions measured using a variety of variables, as well as worsening of their

own economic situation. Importantly, individual household forecasts also exhibit a tight relationship

between forecasts of aggregate unemployment and probabilities of losing their own jobs. Moreover,

all these patterns also hold when controlling for household-level fixed effects, implying that when

households increase their inflation forecasts between subsequent interviews, they also predict more

adverse economic conditions going forward. We corroborate these findings with data from the SCE,

which shows analogous results using an additional range of forecasted quantities.

The cross-sectional heterogeneity in forecasts is persistent and related to demographic character-

istics of the households. The right panel of Figure 4 displays evidence at the level of demographic

groups reported in the Michigan Survey for average wedges over the examined period 1982Q1–

2019Q4.5 Demographic groups with larger average inflation wedges also have larger unemployment

wedges. Consistent with existing evidence, households with lower reported education and lower

reported income levels make more biased forecasts, but these biases remain nontrivial even for

high-education and high-income households. These cross-sectional patterns are independent of the

construction of the underlying rational forecast.6

We also plot the dispersion of the data from the Michigan Survey for the unemployment rate

and inflation rate forecasts in Figure 5. For the inflation data, we have information on the quan-

tiles of the cross-sectional distribution. For the unemployment rate forecast, we use the inferred

distributions from categorical answers. The cross-sectional dispersion in the survey answers across

individual households is substantial, but the interquartile range appears to be stable over time.

The correlation between the mean and median inflation forecast is 0.94.

Overall, the time-series and cross-sectional evidence from the Michigan Survey paints a clear

picture. Households on average expect higher unemployment and higher inflation relative to rational

expectations, and these biases are larger in recessions.

3 Framework for subjective beliefs

Motivated by the empirical results from Section 2, we now introduce a framework for modeling

deviations of agents’ subjective beliefs from the data-generating probability measure. Denote the

5This demographic classification includes alternative age groups, geographical regions, quartiles of the income
distribution, gender, and different levels of education. Table 7 in Appendix D provides additional details.

6In Appendix D.5, we show that this cross-sectional relationship is stable over time, holds at the level of individual
households, and is robust to controlling for demographic composition. Rozsypal and Schlafmann (2019) and Das et al.
(2020) also study these cross-sectional forecast patterns in the Michigan Survey and document results consistent with
ours. Candia et al. (2020) provide further international evidence using household surveys from different countries.
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Figure 5: Dispersion in survey expectations in the Michigan Survey. The graphs show quantiles of the
distribution of responses in the Michigan Survey, net of the mean VAR forecast. The top panel shows the
unemployment responses, the bottom panel the inflation responses. Details on the construction of the data
series are in Appendix D. NBER recessions are shaded.

data-generating and subjective probability measures as P and P̃ , and the corresponding conditional

expectations as Et [·] and Ẽt [·], respectively. The discrepancy between the two measures can be

expressed using a strictly positive martingale with increments mt+1.
7 The belief wedge for the

one-period-ahead forecast of the macroeconomic variable zt is then given by

∆
(1)
t (z)

.
= Ẽt [zt+1]− Et [zt+1] = Et [mt+1zt+1]− Et [zt+1] . (1)

The random variable mt+1, which captures agents’ subjective beliefs, acts as a weighting scheme

on the distribution of time-t+ 1 outcomes.

A model-consistent notion of pessimism (optimism) is a weighting scheme that overweights

(underweights) states that are adverse from the agents’ viewpoint. To formalize this idea in a

7Formally, under the assumption that P and P̃ are equivalent, there exists a strictly positive martingaleM defined
recursively as Mt+1 = mt+1Mt with M0 = 1 such that for any t and any time-t + j measurable random variable
zt+j , Ẽt [zt+j ] = Et [(Mt+j/Mt) zt+j ]. The conditional distribution under P̃ can therefore be fully characterized by
specifying the process for mt.
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dynamically consistent environment, we build on the robust preference setting of Hansen and

Sargent (2001a,b). Agents’ preferences are represented using a concave period utility u (·) and the

continuation value recursion

Vt = min
mt+1>0

Et[mt+1]=1

u (xt) + βEt [mt+1Vt+1] +
β

θt
Et [mt+1 logmt+1] (2)

with

θt = θxt, (3)

xt+1 = ψ (xt, wt+1) . (4)

Here, xt is an n × 1 vector of stationary economic variables that follows the Markovian law of

motion (4), θ is a 1×n vector of parameters, and wt+1 ∼ N (0k, Ik×k) is an independent and identi-

cally distributed (iid) vector of normally distributed shocks under the data-generating probability

measure P . We take the function ψ as given for now but later derive it as a solution to a set of

equilibrium conditions. The linear specification of θt allows for negative values, in which case the

minimization problem in (2) turns into a maximization problem.8

When θt is positive, the minimization problem in (2) that characterizes the pessimistic belief can

be interpreted as capturing agents’ concerns about model misspecification. Each choice of a process

mt+1 yields an alternative model, i.e., an alternative probability distribution of future outcomes.

The pessimistic agent is led to choose a model that yields a low expected value Et [mt+1Vt+1] but

wants to only consider as plausible models that are difficult to distinguish statistically from the

data-generating measure. The degree of statistical similarity is controlled by the entropy penalty

Et [mt+1 logmt+1], scaled by the penalty parameter θt. More pronounced statistical deviations

that are easier to detect are represented by random variables mt+1 with a large dispersion that

yields a large entropy. Optimal decisions and the pessimistic subjective beliefs that rationalize

them are pinned down by the desire of the household to bound utility losses from potential model

misspecification. In this paper, we refrain from interpreting the subjective belief as resulting from

such model misspecification concerns. Instead, we postulate (2) directly as a specific model of

pessimism or optimism, later disciplined using available survey data.

The solution to the minimization problem (2) satisfies

mt+1 =
exp (−θtVt+1)

Et [exp (−θtVt+1)]
, (5)

andmt+1 completely characterizes agents’ subjective beliefs relative to the data-generating measure.

Adverse outcomes are states with low continuation values Vt+1. The sign of θt captures whether

8In Section 4, we also endow the agent with a set of controls, which gives rise to a max–min specification of the
recursion. The multiplier version of the robust preference setup from Hansen and Sargent (2001a,b) is obtained when
θt is a constant parameter. In Appendix C, we discuss the sequence formulation of the decision problem and link it
to the robust control problem in more detail.
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the agent is pessimistic or optimistic, and the magnitude of θt controls the magnitude of the belief

distortion. An increase in θt corresponds to an increase in pessimism. The value θt = 0 corresponds

tomt+1 = 1, in which case the one-period-ahead subjective belief coincides with the data-generating

process.9

Agents endowed with preference formulation (2) act as dynamically consistent subjective ex-

pected utility agents with beliefs given by the probability measure P̃ . Since P̃ rationalizes their

actions, we impose the hypothesis that agents answer survey questions about economic forecasts

according to the same P̃ and relate the belief wedges from Section 2 to the difference between

expectations under P̃ and the data-generating measure P .

Two observations motivate this hypothesis. First, as we documented in Section 2 and consistent

with the large literature on household survey expectations, household survey data on economic

forecasts exhibit substantial and persistent biases characterized by fluctuations in pessimism and

optimism that (5) formally captures. Second, subjective beliefs reported in surveys are found to

be systematically related to real consumption behavior. Similar to us, Malmendier and Nagel

(2016) use the Michigan Survey to substantiate a significant relationship between survey responses

on subjective expectations of economic outcomes and individual consumer spending, borrowing,

and lending decisions. Ichiue and Nishiguchi (2015) use household survey data from Japan to

link inflation expectations and durable goods spending. Vellekoop and Wiederholt (2019) link

households’ portfolio choice to their inflation expectations in Dutch survey data. Giglio et al.

(2021) relate investors’ portfolio choice and surveyed return expectations. Gennaioli et al. (2015)

show that subjective expectations of managers in the Duke University CFO Survey have predictive

power for firm investment and production behavior. Tanaka et al. (2020) document that subjective

GDP forecasts of Japanese firms predict their employment, investment, and output growth. Lastly,

Crump et al. (2022) exploit the SCE to estimate agents’ intertemporal elasticity of substitution

using the relationship between subjective inflation expectations and expected spending behavior.

All these findings support the rationale for associating the survey answers with the subjective beliefs

that households use in their decision making.

Combining equations (1) and (5) yields

∆
(1)
t (z) = Covt [mt+1, zt+1] = Covt

[
exp (−θtVt+1)

Et [exp (−θtVt+1)]
, zt+1

]
. (6)

The belief wedges associated with macroeconomic variables zt+1 thus depend on their covariance

with agents’ continuation value Vt+1. In the context of the empirical evidence from Section 2, when

θt > 0 and agents are pessimistic, they overpredict unemployment because unemployment is high

in states that they perceive as adverse. Since continuation values Vt+1 = V (xt+1) and the law of

9In recent work, Caplin and Leahy (2019) use a specification with a negative θt to motivate optimistic beliefs, while
Bassanin et al. (2021) specify a time-varying θt to model fluctuations in pessimism and optimism in a model of credit
cycles. Substituting the solution for mt+1 into problem (2) yields the recursion Vt = u (xt)− β

θt
logEt [exp (−θtVt+1)].

When the period utility function is logarithmic, this is mathematically equivalent to Epstein and Zin (1989) preference
under unitary elasticity of substitution with a time-varying risk aversion coefficient γt = θt + 1 used, for example, in
Dew-Becker (2014), Alvarez and Atkeson (2017), or Basu et al. (2021).
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motion (4) are endogenously determined, equation (6) combined with survey data yields a set of

cross-equation restrictions for the equilibrium dynamics of the model.

3.1 General equilibrium and a solution method

We seek to incorporate the model of endogenous subjective beliefs into a large class of dynamic

stochastic general equilibrium (DSGE) models. A wide range of DSGE models with subjective

beliefs can be cast as a solution to a system of expectational difference equations,

0 = Ẽt [g (xt+1, xt, xt−1, wt+1, wt)] , (7)

where gt+1 = g (xt+1, xt, xt−1, wt+1, wt) is an n × 1 vector function.10 This vector of equations

includes agents’ Euler equations, which can be represented using subjective beliefs implied by

mt+1. Specifically, for the i-th equation of the system,

0 = Ẽt

[
git+1

]
= Et

[
mt+1g

i
t+1

]
.

The feedback between agents’ subjective beliefs and the equilibrium law of motion requires jointly

solving the system of equations (7) for the continuation value recursion (2), the law of motion (4),

and the endogenously determined probability measure P̃ defined through (5).

We develop a novel approximation technique for the equilibrium dynamics of xt that builds on

the series expansion method used in Borovička and Hansen (2014). The technique incorporates

time variation in subjective beliefs in a tractable linear approximation of the equilibrium dynamics.

Consider a class of models indexed by a perturbation parameter q that approximates the dynamics

(4) by scaling the volatility of the innovations wt+1:

xt+1 (q) = ψ (xt (q) , qwt+1, q) . (8)

Hence, with each q, there is an associated state vector process xt (q) given by the law of motion

(8), and q = 1 recovers the original dynamics (4). The dynamics of xt (q) are approximated by

constructing a first-order series expansion,

xt (q) ≈ x̄+ qx1t, (9)

where the ‘first-derivative’ process x1t represents the local dynamics in the neighborhood of the

steady state x̄ and does not depend on q. The steady state x̄ is the solution to (8) evaluated at

q = 0 , given implicitly by x̄ = ψ (x̄, 0, 0). Assuming that the function ψ (x,w, q) is sufficiently

smooth, we obtain the dynamics of x1t by differentiating (8) with respect to q, utilizing (9), and

10Our solution method, fully described in Appendix B, is able to handle heterogeneous belief distortions for different
forward-looking equations of the equilibrium system. We abstract from this heterogeneity in the main text to simplify
notation but utilize this flexibility in Section 5 to disentangle the effect of belief distortions on the side of households
and firms in our structural model.
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evaluating at q = 0:

x1t+1 = ψq + ψxx1t + ψwwt+1, (10)

where ψq, ψx, and ψw are conforming coefficient matrices representing the corresponding partial

derivatives of ψ (x,w, q) evaluated at the steady state. For example, ψx
.
= ∂

∂xψ (x,w, q)
∣∣
(x̄,0,0)

.

The key innovation in our approach relative to the standard perturbation approximations in

Sims (2002) or Schmitt-Grohé and Uribe (2004) is the treatment of the penalty parameter θt in the

continuation value recursion when constructing the perturbation. Substituting the belief distortion

(5) into (2) and applying the perturbation argument to the stochastic processes Vt, xt, and θt yields

the perturbed continuation value recursion

Vt (q) = u (xt (q) , q)−
β

θt (q)
logEt [exp (−θt (q)Vt+1 (q))] . (11)

The usual expansion in the perturbation parameter leads to the following first-order approximation

of the exponent in (11) and in the numerator of (5):

−θt (q)Vt+1 (q) ≈ −θ̄ (x̄+ qx1t)
(
V̄ + qV1t+1

)
≈ −θ̄

(
x̄V̄ + q

(
x1tV̄ + x̄V1t+1

))
.

The scaling of the stochastic term by q indicates that as q → 0 (i.e., as the economy approaches

its deterministic counterpart), the belief distortion in the perturbed model vanishes. Consequently,

the usual first-order approximation of (11) is not affected by θt, a standard result arising from the

smoothness of the certainty-equivalent transformation logEt [exp (·)].11

Instead, we propose to use the perturbation

θt (q) = θxt (q) ≈
θ (x̄+ x1t)

q
. (12)

Differentiating (11) with respect to q then yields a recursion for the first-derivative process V1t:

V1t = uxx1t + uq − β
1

θ (x̄+ x1t)
logEt

[
exp

(
−θ (x̄+ x1t)V1t+1

)]
. (13)

The nonlinearity in the recursive equation for the first-derivative process stems from the perturba-

tion choice (12). Using the guess

V1t = Vxx1t + Vq, (14)

recursion (13) yields a pair of equations for coefficients Vx and Vq. The equation for Vx is a Riccati

equation whose solution can be found iteratively (see Appendix B.2). As a result, the zeroth-order

approximation of the belief distortion (5) (i.e., the evaluation of the expansion of (5) at q = 0)

takes the form

m0t+1 =
exp

(
−θ (x̄+ x1t)Vxψwwt+1

)
Et

[
exp

(
−θ (x̄+ x1t)Vxψwwt+1

)] . (15)

11The issue is analogous to the second-order nature of risk premia in small-noise approximations.

14



This expression reveals the effect of the perturbation choice (12). The volatility of the shocks qwt+1

in the perturbed economy (8) vanishes with q → 0, but at the same time, the magnitude of agents’

belief biases (12) scales up relative to the shock volatility. These two effects are constructed to offset

each other such that in the economy that approaches its deterministic limit, the agents’ subjective

model remains nontrivially distinct from the data-generating process. A similar assumption on the

scaling of the perturbation parameter in the study of robustly optimal monetary policy is utilized

in Adam and Woodford (2021).

When we approximate agents’ subjective model P̃ using the zeroth-order term of the belief dis-

tortion (15), the vector of normally distributed innovations wt+1 in (4) under P̃ has the distribution

wt+1 ∼ N
(
−θ (x̄+ x1t) (Vxψw)

′ , Ik×k

)
. (16)

Instead of facing a vector of zero-mean shocks wt+1, the agent perceives these shocks under her

subjective beliefs as having a time-varying drift. The time variation is determined by the first-order

dynamics of θt from equation (3), given by θ (x̄+ x1t). The relative magnitudes of the distortions

of individual shocks are given by the sensitivity of the continuation value to the dynamics of the

state vector, Vx, and the loadings of the state vector on individual shocks, ψw. An implication of

(16) is that the dynamics of the model (10) under the agents’ subjective beliefs P̃ satisfy

x1t+1 =
[
ψq − ψwψ

′
wV

′
xθx̄
]
+
[
ψx − ψwψ

′
wV

′
xθ
]
x1t + ψww̃t+1 (17)

= ψ̃q + ψ̃xx1t + ψww̃t+1,

where w̃t+1 ∼ N (0k, Ik×k) is an iid vector of normally distributed shocks under the subjective

probability measure P̃ .

3.2 Restrictions on subjective beliefs and mapping to survey data

Subjective beliefs alter both the conditional mean and the persistence of economic shocks. More-

over, variables that move θt and the continuation value in opposite directions exhibit a higher

persistence under the subjective beliefs.12 Assume that the forecasted variable zt in (1) takes the

form zt = z̄′xt. Using the linearized dynamics under the data-generating measure (10) and under

the subjective measure (17), we obtain an expression for the model-implied belief wedges:

∆
(1)
t (z) = Ẽt [zt+1]− Et [zt+1] = z̄′ψwẼt [wt+1] (18)

= −θ (x̄+ x1t) z̄
′ (ψwψ

′
w

)
V ′
x.

Equation (18) is the linearized version of formula (6). Longer-horizon forecasts ∆
(j)
t (z) = Ẽt [zt+j ]−

Et [zt+j ] are constructed correspondingly by iterating on the subjective dynamics (17).

The model predicts a one-factor structure in the dynamics of the belief wedges measured using

the survey data. The relative distortions of survey forecasts of macroeconomic variables zt are given

12This statement is precisely correct in the scalar case when ψ2
xVxθ < 0.
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by constant loadings −z̄′ (ψwψ
′
w)V

′
x, whereas the factor that measures the overall magnitude of the

belief distortions, θt ≈ θ (x̄+ x1t), varies over time. This one-factor structure is the key restriction

that the linearized subjective beliefs model imposes on the joint dynamics of the survey answers

and implies that the magnitudes of the belief wedges should comove over time, which is consistent

with the evidence in Section 2.13

The vector of loadings −z̄′ (ψwψ
′
w)V

′
x is the negative of the covariance of the innovations to the

value function, Vxψw, with innovations z̄′ψw to the macroeconomic variable zt for which we have

survey data. Since these loadings are determined endogenously in equilibrium, they also depend

on the dynamics of the factor θt, and hence on the vector θ. In the quantitative application in

Section 4, we will study the implications of alternative parsimonious specifications of θ for the

relative magnitude of the belief distortions as well as for their time-series properties, and compare

them with actual forecasts.

The model of beliefs therefore yields a set of overidentifying restrictions, both for the relative

belief wedges across forecasted variables and for their time-series properties. Importantly, free

parameters that characterize subjective beliefs are restricted to the specification of the process θt

irrespective of the number of state variables or exogenous shocks. The number of overidentifying

restrictions thus grows with the number of variables for which we have forecast data. While the

theory itself does not predict the form of the factor θ (x̄+ x1t) in (18), this common factor can be

estimated as the common component in the time series data on belief wedges for alternative survey

answers.

The structure of overidentifying restrictions also distinguishes the model implications from other

mechanisms that affect aggregate fluctuations. In contrast to the extensive literature on various

forms of Bayesian and non-Bayesian learning (Eusepi and Preston (2011)), information frictions

(Mankiw and Reis (2007)), or news and noise shocks (Beaudry and Portier (2004)), this model of

beliefs generates nonzero average biases that we confirm in the data. Second, as long as agents

have correct beliefs, learning, information frictions, or news shocks cannot lead to forecast errors

predictable by information available to those agents. Predictability of forecast errors is strongly

supported by empirical evidence and existing literature that we discuss in Section 6.2.

The implications for the dynamics of macroeconomic quantities are more subtle. For example, in

the case of news shocks, agents receive advance information about a future realization of a shock,

which is subsequently confirmed in the data, contrary to the case of fluctuations in subjective

beliefs. However, endogenous variables combine the impact of shocks and the consequences of

the behavioral response to the change in beliefs, so distinguishing news shocks from pure belief

fluctuations using endogenous quantities is possible but requires taking a stand on the specifics of

the structure of the economy.

Using biases observed in survey data also helps us distinguish our model of fluctuations in

13The first-order expansion generates linear dynamics with homoskedastic shocks. In a fully nonlinear solution,
time variation in the belief wedges ∆

(j)
t (z) would also incorporate fluctuations in the dispersion of Vt+1, generated,

for example, by stochastic volatility. We leave a full examination of these considerations for future work but return
to the role heteroskedastic shocks play in a specific example constructed in Section 5.4.
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subjective beliefs from models of fluctuations in discount rates that generate variation in risk-free

rates or rational risk premia (Hall (2017), Basu and Bundick (2017), Borovička and Borovičková

(2019), Basu et al. (2021), Kehoe et al. (2023)). In Footnote 9, we note the equivalence between

our model under logarithmic period utility and one with Epstein and Zin (1989) preferences and

time-varying risk aversion. This equivalence implies that these two models cannot be distinguished

using data on asset prices or macroeconomic variables. However, fluctuations in rational risk

premia would not show up as biases in survey forecasts, allowing us to discipline the contribution

of subjective beliefs themselves.

Models of ambiguity aversion (Bidder and Smith (2012), Ilut and Schneider (2014)) generate

pessimistically slanted biases when the worst-case distribution is interpreted as a subjective belief.

The previous literature calibrated the magnitude and time-variation of these distortions indirectly,

by relying on measures like detection error probabilities and dispersion in analysts’ forecasts. We

differ from this literature by directly mapping the magnitudes of the biases to those observed in

survey forecast data.

Brunnermeier and Parker (2005) formulate a model of optimal expectations in which subjective

beliefs maximize average subjective utility under the correct ex-ante expectation. Similar to our

setup with a negative θt, subjective beliefs are jointly endogenously determined with the utility

consequences of agents’ decisions, and overweigh favorable states that are still plausible under the

data-generating measure. Unlike the beliefs in our model, the Brunnermeier and Parker (2005)

optimal expectations are determined ex-ante and not as an outcome of a dynamically consistent

problem. Furthermore, the survey data we use predominantly favor pessimistic biases.

The endogenous determination of agents’ beliefs implies that agents fear states that are adverse

from their own perspective. In an environment with heterogeneous agents, this will also lead to

belief heterogeneity associated with exposure to uninsurable idiosyncratic risk or life-cycle patterns,

yielding testable restrictions that can be verified against the cross-sectional patterns in belief biases

documented in Appendix D.5.

Finally, the first-order expansion generates linear dynamics with homoskedastic shocks. In a

fully nonlinear solution, time variation in the belief wedges ∆
(j)
t (z) in (18) would also incorporate

fluctuations in the dispersion of Vt+1, generated, for example, by stochastic volatility. The model

then predicts that more volatile times that lead to more dispersion in Vt+1 also imply larger belief

biases, providing a potential rationale for the cyclical behavior of biases we observe in the data.

We leave a full examination of heteroskedastic shocks, idiosyncratic risk, and implied belief

heterogeneity for future work but return to the role heteroskedastic shocks and idiosyncratic risk

play in a specific example constructed in Section 5.4.

4 Subjective beliefs in a structural business cycle model

In this section, we introduce the subjective beliefs framework into a calibrated version of an economy

with nominal rigidities and a frictional labor market. In the absence of belief distortions, our
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environment is similar to Ravenna and Walsh (2008), Gertler et al. (2008), and Christiano et al.

(2016). Our setup provides well-defined notions of unemployment and inflation, which directly

map to the survey questions. Although parsimonious, the model is able to match moments of both

the belief wedges and macroeconomic aggregates. We use this model to quantify the contribution

of fluctuations in subjective beliefs to macroeconomic outcomes and assess key channels in the

propagation mechanism.

4.1 Model

The model economy is populated by a representative household with subjective beliefs described

in Section 3, competitive producers of a homogeneous final good, and monopolistic producers of

intermediate goods who employ workers hired in a frictional labor market. In the benchmark

version of the model, all economic agents share the same subjective beliefs as the representative

household. Alternative specifications that distinguish between the beliefs of households and firms

are studied in Section 5.14

4.1.1 Representative household

The preferences of the representative household are given by the recursion

Vt = max
Ct,Bt+1

min
mt+1>0

Et[mt+1]=1

logCt + βEt [mt+1Vt+1] +
β

θt
Et [mt+1 logmt+1] , (19)

with time preference coefficient β. We impose a simple structure on the penalty parameter θt from

equation (3), and assume that it follows an exogenously specified AR(1) process15

θt = (1− ρθ)µθ + ρθθt−1 + σθw
θ
t . (20)

We will refer to θt as the belief shock. The magnitude of the belief distortion is determined by

fluctuations in θt specified in (20). However, equilibrium dynamics in the model endogenously

determine the states that yield low continuation values Vt+1. These states are evaluated as adverse

by the household and are then perceived as more likely under the subjective model.

Naturally, the dynamics of the subjective beliefs then endogenously depend on the structure

of other shocks in the model, which we describe in Section 4.1.4. Households understand that

endogenous dynamics generated by fluctuations in θt constitutes a source of risk, and take this into

account when forming their subjective belief. In Section 5.3, we also study a version of the model

14The subjective belief of the representative household is calibrated to the survey evidence from the Michigan
Survey. We abstract from explicitly modeling belief heterogeneity within the household sector, including households
who could possibly be endowed with beliefs corresponding to the SPF forecasters. As in Section 2, the SPF forecasts
only serve as one way of quantifying the belief biases of the representative household for the purpose of calibrating
the model.

15This is a slight abuse of notation relative to equation (3) where θt = θ̄xt. Here, θt can be interpreted as one
element of the state vector xt, and θ̄ as a coordinate vector that selects this component.
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in which we replace (20) with a process for θt that is correlated with the TFP process, which will

alter the implications for relative magnitudes and dynamics of the wedges.

The household consists of a unit mass of workers who perfectly share consumption risk. A

fraction Lt is employed and earns a real wage ξt. A fraction 1 − Lt is unemployed and collects

unemployment benefits with real value D financed through lump-sum taxes. The household faces

the nominal budget constraint

PtCt +Bt+1 ≤ (1− Lt)PtD + LtPtξt +Rt−1Bt − Tt,

where Pt is the price of consumption goods, Bt+1 denotes the one-period risk-free bonds purchased

in period t with return Rt, and Tt are lump-sum taxes net of profits.

4.1.2 Labor market

At the end of period t− 1, employed workers separate with probability 1− ρ and join the pool of

unemployed, who search for jobs at the beginning of period t. The total number of searchers at the

beginning of period t therefore is 1− ρLt−1. The law of motion for the mass of employed workers

is given by

Lt = ρLt−1 + (1− ρLt−1) ft = (ρ+ ht)Lt−1,

where ft is the endogenously determined job-finding probability and

ht =
ft (1− ρLt−1)

Lt−1

is the hiring rate. Measured unemployment is given by ut = 1− Lt, which includes people who do

not rejoin employment after searching at the beginning of the period.

Firms in the labor market hire workers and sell labor services using a linear technology. At the

beginning of period t, they post vacancies at rate vt for a total number of vacancies vtLt−1. The

labor market tightness is defined as the number of posted vacancies over the number of searchers,

ζt =
vtLt−1

1− ρLt−1
.

A Cobb–Douglas matching function with efficiency µ and curvature ν combines vacancies and

workers to produce

Mt = µ (vtLt−1)
ν (1− ρLt−1)

1−ν

matches. The probability that a searching worker finds a job is then given by

ft =
Mt

1− ρLt−1
= µζνt ,

and the vacancy-filling rate is equal to qt = ft/ζt.

We now characterize workers’ subjective valuations when they are employed and unemployed,
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and the subjective value of the firm in the labor market. Workers’ idiosyncratic risk from matching

is pooled at the level of the household but workers are risk averse with respect to aggregate shocks

faced by the household. Let st+1 = βCt/Ct+1 denote the marginal rate of substitution of the

representative household between consumption today and consumption tomorrow. The value of an

unemployed worker Ut is given recursively as

Ut = D + Ẽt

[
st+1

(
ft+1J

w
t+1 + (1− ft+1)Ut+1

)]
,

where Ẽt [·] represents the expectation under the subjective belief of the household, and Jw
t is the

value of an employed worker. Similarly, the value of the employed worker satisfies the recursion

Jw
t = ξt + Ẽt

[
st+1 (ρ+ (1− ρ) ft+1) J

w
t+1

]
+ Ẽt [st+1 (1− ρ) (1− ft+1)Ut+1] .

Here, the term ρ+(1− ρ) ft+1 combines the probability ρ of continuing in the existing job and the

probability (1− ρ) ft+1 of losing the job at the end of period t but immediately finding a new job

at the beginning of period t+1. Finally, the value of the worker to the firm is the present value of

profits earned by the firm from the match, given by the difference between the worker’s marginal

product ϑt on the current job and the wage,

Jt = ϑt − ξt + ρẼt [st+1Jt+1] .

To close the labor market, we specify the free-entry condition and the wage-setting protocol. Let

κv be the flow cost of posting a vacancy. The zero-profit condition for entering firms implies

Jt =
κv
qt
.

We follow Shimer (2010) and use Nash bargaining with rigid wages. The firm and the worker

bargain over a target wage ξ∗t to split the match surplus according to

η (Jt + ξt − ξ∗t ) = (1− η) (Jw
t − Ut + ξ∗t − ξt) ,

where η is the bargaining power of the worker. The terms Jt+ ξt− ξ∗t and Jw
t −Ut+ ξ

∗
t − ξt are the

surplus values to the firm and worker, respectively, of choosing the target wage ξ∗t instead of the

equilibrium wage ξt. The actual wage is a weighted average of last period’s wage and the current

target wage,

ξt = λξt−1 + (1− λ) ξ∗t ,

where λ is a wage rigidity parameter, with λ = 0 corresponding to flexible wages.

An important feature of the frictional labor market is the forward-looking nature of vacancy-

posting decisions and bargaining. When evaluating the distribution of future states, workers inherit

the beliefs of the representative household. Similarly, firms maximize profits using equilibrium state

prices obtained from households’ preferences and beliefs. This implies that fluctuations in θt directly
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affect the incentives of firms to post vacancies, through their effect on the valuation of the match

surplus and equilibrium wages. This is a striking difference relative to the Walrasian spot market

where workers are hired using only one-period employment contracts. In such an environment,

fluctuations in subjective beliefs do not directly affect labor market decisions, since there is no

uncertainty about economic conditions in the current period.

4.1.3 Production and market clearing

The frictional labor market is embedded in a New Keynesian framework with Calvo (1983) price

setting. A homogeneous final good Yt with price Pt is produced in a competitive market using the

production technology

Yt =

[∫ 1

0
(Yj,t)

(ε−1)/ε dj

]ε/(ε−1)

, ε > 0,

where Yj,t are specialized inputs with prices Pj,t. Final good producers solve the static competitive

problem

max
Yj,t

PtYt −
∫ 1

0
Pj,tYj,tdj,

leading to the first-order conditions

Yj,t =

(
Pt

Pj,t

)ε

Yt, j ∈ [0, 1] .

Specialized inputs are produced by monopolistic retailers indexed by j, using the technology

Yj,t = exp (at) lj,t − ϕ,

where lj,t is the quantity of labor services used in production, at is the logarithm of the neutral

technology level, and ϕ is a fixed cost of production. Labor services are purchased from labor

market firms described in Section 4.1.2 at a competitive price ϑt. The retailer is subject to Calvo-

style price frictions and reoptimizes the price with probability 1−χ. These infrequent adjustments

imply that price setting is a dynamic problem affected by distortions in the firm’s beliefs.

Aggregate resources satisfy the constraint

Ct +
κv
qt
htLt−1 = Yt

and the market clearing condition for labor services is∫ 1

0
lj,tdj = Lt.
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4.1.4 Shock structure and monetary policy

We complete the model by specifying the remaining sources of exogenous variation to the economy.

The monetary authority follows an interest rate rule

log
(
Rt/R

)
= ρr log

(
Rt−1/R

)
+ (1− ρr) [rπ log (πt/π) + ry log (Yt/Y

∗)] + σrw
r
t ,

where wR
t is an iid monetary policy shock, π an inflation target, and Y ∗ the steady-state value of

Yt. The neutral technology process at is specified as

at+1 = ρaat + σaw
a
t+1.

The final source of exogenous variation is the belief shock θt specified in (20) that drives agents’

subjective belief deviations from the data-generating process. We assume that all innovations are

independent under the data-generating measure P :(
wr
t , w

a
t , w

θ
t

)′ iid∼ N (0, I) .

As we have seen in Section 3, this property does not carry over to the subjective measure where

the joint distribution of future realizations of the innovations depends on the current level of θt.

4.2 Model solution and calibration

The equilibrium of the structural model from the previous section fits in the general framework that

we developed in Section 3.16 We apply the expansion methods from Section 3.1 to compute a linear

approximation to the solution for the equilibrium dynamics. Most parameters are calibrated to

discipline the steady state of the economy and its dynamic responses to technology and monetary

policy shocks. Parameters for the TFP process are estimated using data from Fernald (2014),

and the parameters of the process θt are set to make the model-implied belief wedges for inflation

and unemployment consistent with the data from Section 2. The calibrated parameter values are

summarized in Table 1.

Steady state. The subjective discount factor β = 0.994 is set to target a steady state real return

of 1% per year, and the intercept of the monetary policy rule π̄ = 0.01 to yield a steady-state

annualized inflation of 2%.17 The parameters ε = 6 and χ = 0.75 governing nominal frictions are

calibrated to match a markup of 20% and a frequency of price changes that corresponds to three

quarters. We choose the job survival parameter ρ = 0.89 to target a quarterly separation rate of

11%. We follow Shimer (2005) and set the curvature of the matching function ν = 0.72 and the

worker’s bargaining weight η = 0.72. The remaining labor market parameters—matching efficiency

16The full set of equilibrium equations of the model is stated in Appendix I.
17The steady state of the linearized model is distorted by first-order effects of belief distortions captured by the

term ψq in equation (10), so that the steady-state real return and inflation differ from 1/β − 1 and π̄, respectively.
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Parameters Value

β Discount factor 0.994
ε Elasticity of substitution intermediate goods 6.00
χp Calvo price stickiness 0.75
χw Wage rigidity 0.925
λ Steady state markup 1.2
π̄ Monetary policy rule: intercept 0.01
ρr Monetary policy rule: smoothing 0.84
rπ Monetary policy rule: loading on inflation 1.60
ry Monetary policy rule: loading on output 0.028

Labor market
ρ Job survival probability 0.89
µ Matching efficiency 0.67
ν Curvature of matching function 0.72
η Worker’s bargaining weight 0.72
κv Vacancy posting costs 0.09
D Flow benefits of unemployment 0.57

Shocks
µθ Mean belief shock 5.64
ρθ Persistence of belief shock 0.714
σθ Volatility of belief shock 4.3
ρa Persistence of TFP shock 0.84
100σa Volatility of TFP shock 0.568
100σr Volatility of monetary policy shock 0.078

Table 1: Benchmark parameter values. Model is calibrated at a quarterly frequency.

µ = 0.67, unemployment benefits D = 0.57, and vacancy posting costs κ = 0.09—are calibrated to

achieve an average job-finding rate of 0.67, a flow value of unemployment equal to 70% of wages,

and a steady-state tightness normalized to one.

TFP and monetary policy shocks. As shown in equation (18), belief distortions in the model

depend on the size and propagation of fundamental shocks. We therefore discipline the calibra-

tion by aligning the dynamic responses to TFP and monetary policy shocks with their empirical

counterparts. The model then endogenously determines how households distort these empirically

relevant shocks to generate belief wedges, which we compare with the data as a check of model fit.

We use TFP data from Fernald (2014) to infer ρa = 0.841 and σa = 0.568%. The smoothing

parameter in the monetary policy rule ρr = 0.84 is taken from Christiano et al. (2016). The wage

rigidity parameter λ = 0.925 and the monetary policy parameters rπ = 1.60, ry = 0.028, and

σr = 0.078% are chosen to make the impulse responses of inflation and unemployment to TFP and

monetary policy shocks consistent with the VAR evidence in Dupor et al. (2009) and Christiano

et al. (2016). As shown in equation (18), belief distortions in the model depend on the propagation
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of fundamental shocks, and it is therefore crucial for the model to fit these responses. We focus on

cumulative 10-quarter responses as a target. The model generates cumulative inflation responses of

−2.79% (TFP) and −0.73% (monetary policy) and cumulative unemployment responses of −0.21%

(TFP) and 0.74% (monetary policy), which are values that fall comfortably within the estimated

90% confidence intervals in both papers.

Belief shock. Finally, we calibrate the parameters of the process θt using the belief wedge data

from Section 2. Our model predicts a one-factor structure of the belief wedges (18). A straight-

forward procedure to extract a common factor is to consider the first principal component. In

our data, the first principal component explains 76% of the variation in the wedges.18 We set

the autocorrelation coefficient ρθ to 0.714, which matches the autocorrelation of the first principal

component extracted from the time series of unemployment and inflation wedges. The remaining

two parameters for the mean and volatility of the belief shock, µθ = 5.64 and σθ = 4.3, are chosen

to fit four moments, namely the means and volatilities of the unemployment and inflation wedges.

4.3 Model fit

The first two columns of Table 2 show the fit of the calibrated benchmark model to moments for

inflation, unemployment, output, and the belief wedges. The model somewhat understates the

mean and volatility of the inflation wedge and the volatility of unemployment but matches the

remaining moments of macroeconomic variables and belief wedges well. The model also matches

meaningfully well the correlations of belief wedges and unemployment with output.

What the model misses is the unconditional acyclicality of inflation observed in the data. In

the DSGE literature that studies models with a richer structure (e.g., Smets and Wouters (2007)),

much of the variation in inflation is attributed to wage and price markup shocks which, at the same

time, have little explanatory power for output and unemployment. Adding such shocks would

reduce the correlation between inflation and output while having little impact on the dynamics of

the wedges.

In the absence of such shocks, we focus on fitting the conditional responses of inflation to the

TFP shock and belief shock, which determine the dynamics of the inflation wedge. We used the

magnitude of responses to identified TFP shocks as targeted moments in the calibration of the

model in Section 4.2. Later in Section 6.1, we compare the model-implied responses to the belief

shock with empirical responses obtained using local projections. In Appendix E.1, we provide a

more extensive discussion of the fit of the benchmark model in terms of its unconditional moments

that yields additional insights regarding the model fit and the contribution of alternative shocks to

the dynamics of the model.

We also consider versions of the model with alternative configurations of the shock processes and

18We also estimated the time series for the factor using a hidden factor model where we interpret the imperfect
correlation between the two wedges as arising from measurement errors in the survey data. In Appendix F.1, we
compare both estimates of the common factor. Their correlation in the time series is 0.95.
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Model
Moment Data benchmark no θt only θt
Mean of inflation wedge 1.22 0.90 0.00 0.00
Mean of unemployment wedge 0.52 0.55 0.00 0.00
Volatility of inflation wedge 0.97 0.73 0.00 0.00
Volatility of unemployment wedge 0.57 0.45 0.00 0.00
Volatility of inflation 1.37 1.17 0.98 0.00
Volatility of output 2.00 2.22 1.55 0.00
Volatility of unemployment 1.70 1.39 0.55 0.00
Corr(inflation wedge, output) −0.30 −0.67 0.00 0.00
Corr(unemployment wedge, output) −0.49 −0.67 0.00 0.00
Corr(inflation, output) 0.10 −0.82 −0.85 0.00
Corr(unemployment, output) −0.87 −0.74 −0.33 0.00

Model
Moment no at θ(at) flexible w rational firms

Mean of inflation wedge −0.32 0.85 0.34 0.35
Mean of unemployment wedge 0.54 0.56 0.16 0.55
Volatility of inflation wedge 0.26 0.68 0.28 0.29
Volatility of unemployment wedge 0.43 0.46 0.13 0.45
Volatility of inflation 0.69 1.47 0.86 1.09
Volatility of output 0.98 3.14 1.49 1.98
Volatility of unemployment 0.87 1.49 0.77 1.24
Corr(inflation wedge, output) 0.50 −0.98 −0.44 −0.53
Corr(unemployment wedge, output) −0.50 −0.98 −0.44 −0.53
Corr(inflation, output) 0.17 −0.79 −0.64 −0.53
Corr(unemployment, output) −0.98 −0.99 −0.35 −0.67

Table 2: Data and model-implied theoretical moments for macroeconomic quantities and belief wedges.
The sample period for the Data column is 1982Q1–2019Q4. Values in all columns are in percentages and
annualized, output is detrended, inflation rate is the 4-quarter change in the price index.

model parameters to understand the role of fluctuations in θt and model specification in generating

these results. We report the fit of these alternatives in the remaining five columns of Table 2.

To highlight the role of belief shocks in matching the unemployment volatility observed in the

data, the third column (no θt) reports statistics for the rational expectations version of the model

(µθ = σθ = 0). In this case, the model generates the standard unemployment volatility puzzle,

with TFP and monetary policy shocks able to generate only a third of the empirically observed

unemployment volatility. Belief wedges are zero by construction.

Figure 6 further emphasizes the importance of the θt shocks by comparing the model-implied

paths for unemployment and belief wedges against the data. We extract the innovations to the TFP

process from the Fernald (2014) time series and innovations to the belief shock process from the time

series for the first principal component of the belief wedges that we used in the calibration, and feed

them into the model. We compare the model-implied path for unemployment to a counterfactual
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Figure 6: Data and model-implied time series for unemployment, inflation, and belief wedges.
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exercise in which we set θt = µθ and hence shut down fluctuations in belief biases.

The top panel shows that adding belief shocks to the model moves the model-implied time

series much closer to the data. In particular, without fluctuations in θt, the model overstates the

unemployment during the dot-com boom in the late 1990s and understates the unemployment

around the Great Recession. The model interprets the decrease in unemployment in the late

1990s as arising from relative optimism among households and attributes much of the increase in

unemployment around 2008–2009 to an increase in pessimism. The second panel represents the

model-implied path for inflation. As expected from the preceding discussion, the model implies

countercyclical inflation even though inflation is acyclical in the data. However, fluctuations in θt

have a negligible impact on the inflation path. As we elaborate in Section 5, an increase in pessimism

acts as a contractionary demand shock while increasing firms’ concerns about high future prices,

leading to only a small equilibrium impact on inflation.

The bottom two panels of Figure 6 show that the time variation in θt generating the plotted

path for unemployment also implies belief wedges that closely match the data. Time variation in θt

plays a substantial role in explaining fluctuations in unemployment, but does not act in isolation.

For instance, when we shut down TFP and monetary policy shocks (setting σa = σr = 0), the belief

wedges and macro aggregates exhibit no volatility (see the fourth column in Table 2, labeled “only

θt”). In this equilibrium, households do not face uncertainty about continuation values and do not

form distorted expectations about the future path of the economy.19

The fifth column (no at) of Table 2 shows the results in the economy without TFP shocks

(σa = 0) and reveals a key interaction between fluctuations in θt and other structural shocks

that is required to rationalize the observed belief wedges. To make the economy comparable, we

recalibrate the process for θt to fit the properties of the unemployment wedge from the benchmark

model (setting µθ = 150 and σθ = 117.7). The model misses properties of the belief wedges despite

generating a sizable amount of volatility in macroeconomic aggregates. The inflation wedge now has

a substantially lower volatility, a negative mean, and a negative correlation with the unemployment

wedge, all of which are inconsistent with the empirical evidence documented in Section 2.

In the absence of TFP shocks, pessimistic households are concerned about adverse realizations of

monetary policy and belief shocks. Both of these shocks act as demand-type shocks, simultaneously

lowering economic activity and inflation. Low realizations of households’ continuation value are

therefore associated with high unemployment and low inflation, moving the two respective belief

wedges in opposite directions.

In the sixth column, we present results for the specification of subjective beliefs where θt is

driven by fluctuations in TFP, θt = θ(at). We discuss this specification in Section 5.3.

Our specification of the labor market involves Nash bargaining with rigid wages in the spirit

of Shimer (2010). The last column of Table 2 presents the results for the case when wage rigidity

is removed from the model (λ = 0) and firms and workers use the standard Nash bargaining

19The nonstochastic equilibrium is self-confirming in the sense of Fudenberg and Levine (1993). Households still
distort the future distribution of the process θt, but that is irrelevant for their decisions.
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protocol. Without wage rigidity, both TFP and belief shocks are less potent in their ability to

affect macroeconomic aggregates. The magnitude of macroeconomic fluctuations declines, with

unemployment volatility falling by almost a half. The decrease in macroeconomic volatility reduces

the covariance of forecasted variables with continuation values, and the mean and volatility of the

belief wedges decreases as well.20

5 Understanding the role of subjective beliefs

In this section, we analyze two types of dynamic responses to innovations in θt: those under the

data-generating measure P and those under the subjective belief P̃ . Together they clarify the

mechanism through which fluctuations in subjective beliefs propagate in the economy.

5.1 Belief wedges and dynamic responses under subjective beliefs

Figure 7 depicts the impulse responses to an innovation wθ
t under the data-generating measure.

An increase in θt, depicted in the bottom right graph, is contractionary. A one standard deviation

innovation to θt leads on impact to a fall of about 1% in output and a 1 percentage point increase in

the unemployment rate. Inflation increases on impact for a short period but decreases afterward,

with a 10-quarter cumulative response of approximately zero. The contractionary effects of an

increase in θt are about two-thirds of the response to a typical productivity shock: a one standard

deviation fall in productivity leads to a cumulative 10-quarter decrease of 1.2% in annual output,

compared with a 0.8% decrease in the case of a belief shock. The bottom panels of Figure 7 show

that households also increase their upward bias in inflation and unemployment forecasts relative to

the data-generating measure, which is consistent with the survey data described in Section 2.

The dynamic responses of the exogenous shocks under households’ subjective measure P̃ are

shown in Figure 8. Under the data-generating measure P (dashed line), innovations to individual

exogenous shock processes are uncorrelated and iid over time, and hence the technology and mon-

etary policy shocks do not respond to wθ
t . In contrast, under the households’ subjective measure

P̃ (solid line), the shocks are correlated. Households associate an increase in θt with a negative

productivity shock accompanied by a monetary tightening. They also forecast a further sequence

of positive innovations to θt, hence increasing the subjective persistence of the belief shock. The

particular correlation structure arises through the effect that these three innovations have on the

continuation value Vt. The pessimistic household also distorts productivity shocks more than mon-

etary policy shocks, reflecting a more adverse impact of the productivity shock on the continuation

value.

The continuation value recursion (19) indicates that bad times must be generated by low levels

of current and future consumption under the households’ subjective model. The top left panel of

Figure 9 confirms this intuition. Households facing an increase in θt forecast a large and very persis-

20In this exercise, we keep all other parameters of the model unchanged. We further analyze recalibrated versions
of the flexible wage model in Appendix F.3.
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Figure 7: Impulse response functions to the belief shock innovation wθ under the data-generating mea-
sure P . Output response is in percentages, and unemployment rate, inflation rate, and belief wedges are in
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data-generating measure P (dashed line) and the subjective measure P̃ (solid line). Horizontal axis is in
quarters.

tent drop in consumption (solid line) relative to the data-generating process (dashed line). A higher

subjective persistence of bad times under the pessimistic belief is manifested in all macroeconomic

quantities.21

The equilibrium mapping from exogenous shocks to endogenous variables also explains why

households forecast higher unemployment, lower output growth, and higher inflation relative to

the data-generating process. When TFP shocks are sufficiently prominent, households’ inflation

21These findings are consistent with Piazzesi et al. (2015), who find higher persistence in the survey forecasts of
interest rates in the Blue Chip Financial Forecasts data.
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expectations increase relative to the rational forecast because expectations of lower productivity

imply higher marginal costs, which pushes prices upward through the optimal pricing behavior of

firms. The top right panel of Figure 9 shows that households fear persistently higher inflation in the

future. As in the Bank of England Inflation Attitudes Survey depicted in Figure 2, they associate

adverse states with high inflation.

Figure 9 also shows that the increase in θt has a particularly pronounced contractionary effect

on labor market dynamics. Firm valuation Jt, given by the present discounted value of profits

earned by the firm from a match with a worker,

Jt = ϑt − ξt + ρẼt [st+1Jt+1] ,

decreases substantially under the more pessimistic belief in Ẽt [·], which causes a large drop in

vacancy-posting rates vt and job-finding rates ft. Again, adverse labor market conditions are

expected to last significantly longer under the subjective belief.

The mechanism through which subjective beliefs alter forward-looking decisions in our model

provides an interpretation of Euler equation wedges featured in a range of papers as a source of

aggregate fluctuations. For example, Smets and Wouters (2007) introduce a “risk premium” shock

that has been shown to play an important role in the post-2008 dynamics, Basu and Bundick (2017)

and Hall (2017) include direct shocks to the discount rate, and Leduc and Liu (2016) use second-
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moment shocks to TFP. We share the idea that fluctuations in the consumption Euler equation

wedge affect aggregate demand and that wedges in firms’ Euler equations affect price setting and

match creation. Our framework integrates these mechanisms through movements in subjective

beliefs that are disciplined by survey data.

In addition, the importance of uncertainty about supply-type shocks that arises endogenously

when we match survey evidence provides a rationale for the specification in Ilut and Schneider

(2014). They use a model of exogenously specified time-varying ambiguity aversion about the

TFP process based on the multiple-prior preferences of Gilboa and Schmeidler (1989) and Epstein

and Schneider (2003). Agents in their model behave as if endowed with a subjective belief that

exhibits time-varying pessimism about TFP shocks. We show that these types of belief distor-

tions are needed to match survey data jointly with macroeconomic outcomes. More generally, our

framework uses endogenous exposures of the continuation value as inputs to belief distortions and

thereby avoids overparameterization. This approach is particularly useful in settings with multiple

exogenous shocks.

We have shown that one can jointly match macroeconomic and belief wedge data using a

relatively parsimonious calibrated model. However, we do not rule out a possible role for additional

sources of subjective biases, or the potential presence of other shocks and frictions. In an earlier

version of this paper (Bhandari et al. (2016)), we studied an estimated model with a substantially

richer environment, reaching the same conclusions about the role of fluctuations in subjective beliefs.

5.2 Role of firms’ subjective beliefs

The benchmark economy features homogeneous subjective beliefs imposed on all agents and their

forward-looking decisions: the consumption-saving decision represented by the consumption Euler

equation, the dynamic pricing behavior of intermediate goods producers that determines the New

Keynesian Phillips curve, vacancy posting decisions of firms, and bargaining between firms and

workers in the labor market, driven by valuation of firms’ and workers’ surpluses from created

matches.

At the same time, there are plausible reasons why beliefs of households and firms may differ.

Candia et al. (2020) summarize the available evidence from household and firm surveys for a variety

of countries and conclude that while households robustly associate high inflation with adverse

outcomes, the evidence for firms is more mixed. In some surveys, firms’ forecasts are closer to

households’ forecasts, while in others, they are closer to those of professional forecasters.22

To uncover the role played by the assumption that firms inherit the subjective beliefs of the

households, we now study a variant of the model in which we impose rational expectations on firms

while preserving subjective beliefs for the households. To implement this variant, we exploit the

tractability of our framework to solve for an equilibrium in which we “turn off” belief distortions

on specific forward-looking equations. Formally, we look for the solution to the system of equations

22Chahrour and Ulbricht (2023) also study fluctuations in beliefs or confidence that are specific to firms and quantify
their impact on macroeconomic dynamics.
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Figure 10: Impulse response functions to the belief shock innovation wθ in the benchmark model with
homogeneous subjective beliefs (solid line) and in an economy with rational firms (dashed line). Wage and
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(7) modified as follows:

0 = Et [Mt+1g (xt+1, xt, xt−1, wt+1, wt)] ,

where g is, as before, the n×1 vector of functions that includes forward-looking Euler equations and

other equilibrium conditions, and Mt+1 ≡ diag
{
mσ1

t+1, . . . ,m
σn
t+1

}
are the separate belief distortions

on each of the n equations. We consider two distinct belief distortions σi ∈ {0, 1}. The expression

m0
t+1 ≡ 1 denotes an undistorted equation under rational expectations, and

m1
t+1 ≡

exp (−θtVt+1)

Et [exp (−θtVt+1)]

denotes, as in (5), an equation under the subjective belief. For a given configuration of {σi}, we
solve for new equilibrium dynamics and the associated continuation process Vt+1. To make the role

of subjective beliefs in these economies comparable, we adjust the mean and volatility parameters

of the exogenous process θt such that the mean and volatility of the unemployment wedge are

unchanged. For details on implementation and a more general treatment of heterogeneous beliefs

in this framework, see Appendix B.5.

Figure 10 depicts the dynamic responses in the variant with rational firms (dashed line) and

compares them with the benchmark in which all agents have subjective beliefs (solid line). The

model with rational firms produces similar fluctuations in unemployment as the benchmark but

32



markedly different dynamics for inflation and wages—inflation is lower on impact, and wages fall by

less. Intermediate goods firms with rational beliefs realize that an increase in θt is contractionary

but, unlike their counterparts in the benchmark model, do not associate it with higher future

marginal costs and therefore do not increase prices as much.23 Unconditional moments emerging

from this calibration are reported in the last column of Table 2. A notable difference is the much

smaller volatility of the inflation wedge relative to the baseline calibration.

The reduced fall in wages arises because of the asymmetry in beliefs of firms and workers in the

labor market.24 Under the Nash protocol, firms and workers split the surplus, which is the difference

between firms’ subjective valuation of output produced in the match and workers’ subjective value

of unemployment. When firms have rational beliefs, an increase in θt does not alter their valuation

of the match output as much as it would have if they shared the pessimistic beliefs of the workers.

As a result, the subjective surplus that is bargained over is higher, and the wage that implements

the bargaining outcome falls by less.

The drop in inflation in response to an increase in θt implies that inflation comoves less strongly

with adverse states. As a result, even though we recalibrated the volatility of θt innovations to match

the volatility of the unemployment wedge from the benchmark model, the model with rational firms

predicts substantially lower volatility of the inflation wedge. Fluctuations in subjective beliefs on

the side of the intermediate goods firms therefore constitute an essential ingredient to reconcile the

inflation survey data and macroeconomic outcomes.

5.3 Fluctuations in pessimism induced by productivity shocks

We now relax the assumption that time variation in θt is orthogonal to other shocks under the data

generating process. We explore the implications of two extensions in which belief fluctuations are

induced by other structural shocks in the model and by time-variation in risk exposures that the

homoskedastic model abstracts from.

In particular, we first study a version of the model in which fluctuations in θt are induced by

innovations to TFP at:

θt = µθ + caat. (21)

In contrast to the benchmark with θt that follows an AR(1) process with independent innovations,

subjective biases are affected directly by productivity shocks and feed back through the decisions of

forward-looking consumers, firms, and workers, amplifying the overall effect of the initial impulse

to productivity. This captures a common narrative of extrapolative expectations (see Adam et al.

(2021), Gennaioli et al. (2015), Nagel and Xu (2022), and references therein). With ca < 0, a

negative innovation to TFP results in higher pessimism, and agents expect unemployment and

inflation to be high relative to what is implied by the data generating process. This leads to higher

23The distorted beliefs of the price-setting firms following a large increase in θt (see Figure 6) can thus also account
for the “missing disinflation” during the Great Recession, discussed in Coibion and Gorodnichenko (2015b).

24In the bargaining process, firms and workers agree to disagree about their subjective valuation of the match, in
the sense of Harrison and Kreps (1978) and Morris (1995).
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future unemployment compared to the model with rational expectations. Conversely, a positive

innovation to TFP propagates through optimism about the future.

The last column (θ(at)) in Table 2 shows that the model with fluctuations in θt induced by TFP

is able to match the moments for both macroeconomic aggregates and the belief wedges about as

well as the baseline exogenous θt model. In particular, the amplification from households’ subjective

beliefs allows the model to match the volatility of unemployment in the data using only TFP and

monetary policy shocks. However, these unconditional moments are now generated by conditional

responses of unemployment to TFP shocks that are substantially larger than suggested by the

VAR evidence discussed in Section 4.2. Figure 26 in Appendix F.2 shows the impulse response to

a negative TFP shock and compares it to the TFP response in an economy without the feedback

through subjective beliefs (ca = 0).

Moreover, the fit of the simulated paths for unemployment and the belief wedges, shown in

Figure 27 in Appendix F.2, worsens significantly. In particular, the correlation between the data

and the model-implied paths for unemployment, the unemployment belief wedge, and the inflation

belief wedge are 0.18, 0.25, and 0.45 in the model with θt induced by TFP, as compared to 0.48,

0.79, and 0.76 in the benchmark model.

We view the above differences in model fit as evidence for quantitatively important movements

in θt that are orthogonal to productivity. Richer specifications of how fluctuations in pessimism are

shaped by the evolution of other shocks as well as endogenous variables is left for future research.

5.4 Idiosyncratic risk as a source of endogenous fluctuations

The linear model approximation we construct abstracts from time-variation in risk induced by het-

eroskedastic innovations or model non-linearities. Specifically, the continuation value approxima-

tion (14) is a linear function of the process x1t that follows a homoskedastic vector-autoregression.

Consequently, the only source of variation in belief wedges (18) are movements in θt ≈ θx1t.

While the model in Section 5.3 featured time variation in θt driven by TFP shocks, we now

consider a model where θt is constant but belief fluctuations are induced by time-varying uninsurable

idiosyncratic risk.25 We follow the framework of Constantinides and Duffie (1996) and postulate an

endowment economy populated by a unit mass of households indexed by i ∈ [0, 1], with consumption

of household i given by Ci
t = δitCt. The share processes δit are modeled as

δit+1

δit
= exp

(
−ηit+1σt+1 −

1

2
σ2t+1

)
,

where ηit+1 ∼ N (0, I) are permanent growth shocks to individual consumption that are independent

in the cross section and of aggregate variables. The variance process σ2t that controls the dispersion

25Mitra and Xu (2023) study a search model with firms that are ambigious about an idiosyncratic match-specific
component of productivity.
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of idiosyncratic uncertainty follows

σ2t+1 = (1− ψσ) σ̄
2 + ψσσ

2
t + σtψσwwt+1,

with ψσw being a 1× k vector of exposures to aggregate macroeconomic shocks specified in (4).26

Household’s period utility function is logarithmic, u (C) = (1− β) logC. Households are allowed

to trade claims that contingent on aggregate states but there are no markets that can insure

idiosyncratic risk. To keep the framework analytically tractable, we abstract from variation in

aggregate consumption and assume logCt+1 − logCt = c̄.

In Appendix G, we show that under these assumptions, there is no inter-household trade in

claims contingent on aggregate risk, and households share a common subjective belief with respect

to aggregate variables given by the belief distortion

m̂t+1 =
exp

(
−θ
(
v̄σ − 1

2 (1 + θ)
)
σtψσwwt+1

)
Et

[
exp

(
−θ
(
v̄σ − 1

2 (1 + θ)
)
σtψσwwt+1

)] ,
where v̄σ is the exposure of the household’s continuation value to the variance process σ2t .

Consider an aggregate variable zt = z̄′x1t where x1t follows the linear process (10). Then

the belief wedge, as the difference between the subjective forecast and forecast under the data-

generating measure, is given by

∆
(1)
t (z) = Ẽt [zt+1]− Et [zt+1] = z̄′ψwẼt [wt+1]

= −θσtz̄′ψwψ
′
σw

(
v̄σ − 1

2
(1 + θ)

)
.

This is a direct counterpart of expression (18) from the representative household model. While the

dynamics of the aggregate variables are homoskedastic and the penalty parameter θ is constant,

time-variation in idiosyncratic risk induces time-varying belief distortions. Since the term in the

parenthesis is negative, times of high idiosyncratic uncertainty are bad for the household. Conse-

quently, households overpredict variables that comove positively with innovations to dispersion in

idiosyncratic uncertainty, as indicated by the covariance term z̄′ψwψ
′
σw.

In Figure 11, we use the idiosyncratic skewness index constructed by Schmidt (2016) as a

measure of dispersion of idiosyncratic risk. The skewness index emphasizes the time-varying nature

of the likelihood of large adverse idiosyncratic shocks like job loss, which are empirically only

imperfectly insured by households or labor market institutions. The blue dashed line represents

the negative of the standardized index, while the solid orange line is the first principal component

of the belief wedges.

Households are more pessimistic during times of high idiosyncratic risk, and the correlation

26With Gaussian shocks wt+1, the linear variance process can take negative values, which can be avoided either with
an appropriate truncation of the shocks, or by considering a continuous-time limit, which yields a strictly positive
square root process used in Cox et al. (1985). The variance process could be extended to include exposure to a
persistent vector-autoregression.
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Figure 11: Comparison of the first principal component of the belief wedges (orange solid line) with the
index of idiosyncratic skewness constructed by Schmidt (2016) from cross-sectional Social Security Admin-
istration data on labor income growth rates (dashed blue line). Both time series are standardized and the
skewness measure is plotted with a negative sign. NBER recessions are shaded.

between the two time series is −0.49. Providing a quantitative link between the skewness index

and the belief wedges would require a complete description of the economy which is beyond the scope

of this paper but the strong comovement supports the hypothesis that fluctuations in idiosyncratic

uncertainty can be a meaningful rationale for the time variation in pessimism.

6 Verification of the mechanism

In this section, we provide further evidence that compares predictions of the structural model

with the data and verifies the quantitative importance of belief fluctuations for macroeconomic

dynamics. First, we use local projections to construct empirical impulse responses of macroeconomic

variables and survey forecasts to innovations in the belief wedge θt and compare them to their model

counterparts. Second, we show that the structural model produces forecast errors in subjective

beliefs that align with those in the household survey data. Finally, we show that the time series for

θt extracted from belief wedges is highly correlated with empirical proxies for consumer confidence

and discuss advantages of using survey forecasts data over the confidence proxies.

6.1 Impulse responses constructed using local projections

We first provide additional evidence for our mechanism by comparing the model-implied impulse re-

sponses to the belief shock θt with corresponding impulse responses estimated using the flexible local

projection approach proposed in Jordà (2005). Our structural model imposes an AR(1) structure

on the belief shock θt, which is connected to the endogenous variables through the cross-equation

restrictions, with linear Markov dynamics obtained as the solution of the general equilibrium model.

The local projections relax the cross-equation restrictions and the linear Markov dynamics from our

model, thus providing further reduced form evidence supporting our model’s implications about
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Figure 12: Impulse response functions of Michigan Survey responses to the innovation in the principal
component of the belief wedges (solid orange lines), constructed as the difference between the Michigan
and SPF forecasts. Responses are in percentage points, inflation rate is annualized. Dashed lines represent
±1 standard deviation bands constructed using heteroskedasticity-robust standard errors. Model-implied
impulse responses are displayed using blue lines with circles. Horizontal axis is in quarters.

the effects of fluctuations in pessimism and optimism.

We follow the lag augmentation procedure advocated by Montiel Olea and Plagborg-Møller

(2021), and estimate the impulse response to a variable of interest zt as the function βz (h), h =

0, . . . ,H using the regression

zt+h = βz (h) θt +

p∑
l=1

γz,l (h) θt−l + ξt (h) .

Under our model assumptions, these impulse responses correspond to the impulse responses to the

shock wθ
t analyzed in Section 5. Montiel Olea and Plagborg-Møller (2021) show validity of Huber–

White heteroskedasticity robust standard errors for this regression under the assumption that θt

follows an autoregressive process up to order p.

In order to avoid any potential concerns related to the misspecification of the belief wedges due

to the estimation of the VAR forecasts, we estimate in this exercise impulse responses to innovations

to the belief shock θt that is constructed as the principal component of the belief wedges between

the Michigan and SPF forecasts. In Appendix F.1, we show that the principal component is very

close to the filtered path of θt estimated in a hidden state space model. Results for the belief shock

θt constructed from the belief wedges between the Michigan and VAR forecasts are analogous.

37



0 10 20
−6

−4

−2

0
Better financial situation

0 10 20
−6

−4

−2

0

Real income up

0 10 20
−1

−0.5

0

0.5

Expected change in income

Figure 13: Impulse response functions of Michigan Survey responses to the innovation in the principal
component of the belief wedges, constructed as the difference between the Michigan and SPF forecasts. Bet-
ter financial situation: Net share of households expecting better financial conditions in one year (percentage
points). Real income up: Net share of households expecting higher real income in one year (percent-
age points). Expected change in income: Expected percent change in income in one year for the median
household. Dashed lines represent ±1 standard deviation bands constructed using heteroskedasticity-robust
standard errors. Horizontal axis is in quarters.

Figure 12 depicts the responses of the belief wedges, and actual inflation and unemployment for

the local projections and the model.27 Overall, the two approaches produce similar responses. In

response to a positive innovation to the belief shock (i.e., an increase in θt), both the local projec-

tions and the structural model find a substantial increase in the unemployment rate and an initial

brief increase followed by a modest but persistent decrease in the inflation rate. While the struc-

tural model does not have a mechanism to generate the hump-shaped response of unemployment

estimated by the local projections, the overall magnitudes of the impulse responses are comparable.

These responses correspond to an increase in pessimism, with both the unemployment and inflation

wedges increasing. In Appendix E.2, we also construct the predicted responses of the inflation and

unemployment forecasts, and for wedges constructed using VAR forecasts as robustness checks.

Figure 13 shows that an increase in the belief shock θt also predicts a pessimistic shift in

households forecasts of other quantities. The net shares of households expecting better financial

conditions and higher real income in one year decrease. Expected growth in nominal income for

the median household decreases as well. These aggregate responses corroborate the micro-level

evidence from the panel data in the Michigan and FRBNY Surveys that we discussed in Section 2.2

and detailed in Appendix D.5.

6.2 Forecast error regressions

As another test of our theoretical mechanism, we now show that the dynamics of subjective beliefs

implied by our model are also consistent with the dynamics of forecast errors measured in the

survey data. To that end, we estimate a linear model of forecast errors for a variable of interest zt

27It is well known that confidence intervals for the impulse responses constructed using local projections can be
wide (see for example Li et al. (2021) and Miranda-Agrippino and Ricco (2021)), and literature has proposed shrink-
age procedures for standard errors. We follow a conservative approach here, without implementing any shrinkage.
Nevertheless, the estimated responses are instructive for verifying the mechanism in our model.
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using regressions of the form

zt+j − Ẽt [zt+j ] = b0 + bzzt + bf Ẽt−1 [zt+j−1] + εt+j , (22)

where zt ∈ {πt, ut}, and Ẽt [zt+j ] is the subjective forecast at time t for the realization j periods

ahead. We formally specify assumptions to derive this updating rule in Appendix H. Under full

information rational expectations, we should expect the errors to be mean zero and unforecastable,

b0 = bz = bf = 0.

Our model does not imply equation (22) as a structural relationship for belief updating, since

the state space that determines the relationship between forecast errors and predictors involves

multiple exogenous and endogenous variables. However, given the prevalence of such univariate

predictive regressions in empirical work, it is still informative to run the reduced-form regressions

on observed data and compare them with regressions using model-simulated data as a further

validation of our mechanism.28

Table 3 compares our empirical estimates to the corresponding values obtained from data sim-

ulated from our model. The top panel reports results for inflation forecasts, while the bottom

panel for unemployment forecasts. We estimate the multivariate regression (22) as well as two

univariate regressions with each of the regressors separately. The regressors are demeaned, hence

the estimated coefficient b0 corresponds to the mean of the forecast error on the left-hand side.

First, as documented in Section 2, the data indicate that on average, households overpredict

inflation and unemployment by a significant amount, hence the negative coefficients b0 in the first

row of the table. As we have already seen, our model is consistent with these large average biases.

Our model also generates the right amount of predictability in inflation and unemployment forecast

errors, reflected by very similar R2 coefficients in the empirical and theoretical regressions.

Importantly, our model delivers a distinct predictability pattern for inflation and unemployment

forecasts, in both cases consistent with the data. The significant negative coefficient bf in the

inflation regression indicates that inflation forecast errors are persistent—high previous inflation

forecasts predict excessively high forecasts going forward. On the other hand, predictability of

unemployment rate forecast errors is dominated by the current state—when unemployment is high,

households are particularly pessimistic and predict overly high unemployment going forward.

Introduction of the belief shock to a standard DSGE model thus delivers both the mean biases

and predictability patterns of households’ inflation and unemployment forecasts as a joint outcome.

Rather than updating beliefs about inflation and unemployment independently, the household

understands the equilibrium relationship between these two variables but pessimistically biases

28Aruoba et al. (2017) advocate comparing estimates of simple univariate time series models using actual and
model-generated data as a diagnostic tool for DSGE models. While they focus on assessing nonlinearities generated by
model dynamics, we share their aim of using interpretable reduced-form relationships to validate the model. Existing
literature (e.g., Coibion and Gorodnichenko (2012, 2015a), Bordalo et al. (2020), Angeletos et al. (2020)) that studies

predictability of forecast errors of professional forecasters also often includes forecast revisions Ẽt [zt+j ]− Ẽt−1 [zt+j ]
as a regressor. The construction of forecast revisions requires forecasts for multiple horizons (j and j +1), which are
not available in the Michigan Survey.
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Panel A (1) (2) (3)
Inflation data model data model data model

b0 −1.26 −0.90 −1.26 −0.90 −1.26 −0.90
(0.11) (0.11) (0.11)

bz 0.08 0.10 −0.12 −0.22
(0.11) (0.08)

bf −0.50 −0.47 −0.42 −0.38
(0.17) (0.13)

R2 0.067 0.103 0.014 0.046 0.063 0.100

Panel B (1) (2) (3)
Unemployment data model data model data model

b0 −0.44 −0.55 −0.44 −0.55 −0.44 −0.55
(0.10) (0.10) (0.11)

bz −0.40 −0.46 −0.35 −0.51
(0.28) (0.06)

bf 0.05 −0.10 −0.32 −0.52
(0.27) (0.06)

R2 0.180 0.218 0.180 0.216 0.169 0.120

Table 3: Estimated coefficients for forecast error predictability regression (22) in the data and its theoretical
counterpart in the model. Standard errors for the empirical regression are in parentheses. Columns (2) and
(3) show results for restricted univariate versions of equation (22) with one of the regressors omitted from
the regression.

their joint distribution.

Our results can be contrasted with two prominent frameworks: a Bayesian model with frictions

in information processing and a non-Bayesian model of overreaction. The former case is studied

by Coibion and Gorodnichenko (2012), who show that various types of information sluggishness,

including the sticky information model studied in Mankiw and Reis (2002) or Carroll (2003) or

the noisy information model in the spirit of Lucas (1972), Sims (2003), and Woodford (2003b),

imply b0 = 0, bz ∈ (0, 1), and bf ∈ (−1, 0). Coibion and Gorodnichenko (2012) also document this

sluggishness for inflation forecasts of households in the Michigan Survey, firms in the Livingston

survey, and FOMC members in the Monetary Policy Reports. The latter case is discussed in

Kohlhas and Walther (2021) and Angeletos et al. (2020), who argue that overreaction is associated

with bz < 0. In particular, new information in zt implies excessive updating of the forecast Ẽt [zt+j ]

and hence a negatively correlated forecast error.29 Both these models also imply that b0 = 0.

29Bordalo et al. (2020) provide evidence of such overshooting in the individual forecasts in the SPF based on
predictability of individual forecast errors using individual forecast revisions, although the consensus forecasts tend
to respond sluggishly. They rationalize this finding using a model in which forecasters filter a signal contaminated
with common and private noise, with a calibration where individual forecast errors are dominated by overreaction to
the private noise component, while the average or consensus forecast is driven to sluggish adjustment to the common
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The empirical and model-implied predictability patterns summarized in Table 3 cannot be

jointly rationalized with either of these models. First, we find b0 < 0 for both inflation and unem-

ployment. In contrast, both models predict that forecasts should be unbiased on average. Second,

the slope coefficients in the data row indicate that the evolution of inflation and unemployment

forecasts appear to be consistent with different belief updating mechanisms.

On one hand, the inflation regression in column (1) of Panel A is dominated by the large

and highly significant negative coefficient on the lagged forecast (bf = −0.50). This suggests

that households update inflation forecasts sluggishly, consistent with sticky information models

and empirical findings in Coibion and Gorodnichenko (2012). Current inflation does not play a

significant role in predicting forecast errors, even in the univariate regression in column (2).

On the other hand, the slope coefficients in the unemployment rate regression in column (1)

of Panel B exhibit a distinctly different pattern. The negative coefficient on the current unem-

ployment level (bz = −0.40) suggests that households overreact to changes in unemployment. The

magnitude and statistical significance of the overreaction in the univariate regression in column (2)

are substantially larger than estimates found by Angeletos et al. (2020) in SPF forecasts using the

same relationship.30

These results emphasize the importance of departing from univariate models of belief formation

toward those that model the joint subjective distribution over the evolution of macroeconomic

variables. In our model, belief wedges are cyclical. Since the unemployment rate is a much better

predictor of the business cycle than inflation, it is also more successful in predicting forecast errors,

aligning empirical evidence with model-implied predictability patterns.

6.3 Measures of sentiment and confidence

We have interpreted movements in the belief wedges as arising from time-varying pessimism and op-

timism. We now show that these are connected more generally with empirical proxies for consumer

sentiment, which existing work has also connected to macroeconomic fluctuations.31 Since these

sentiment measures are procyclical, they may be capturing similar demand-driven forces as our

mechanism. To understand how these alternative measures relate to our framework, we compare

them in Figure 14 with our belief shock θt.

The top panel of Figure 14 shows a close connection between the belief shock and the Michigan

Consumer Sentiment Index and the Conference Board Consumer Confidence Index. Both indices

provide independent measures of sentiment that comove strongly with the belief shock, with cor-

relations of −0.65 and −0.72, respectively. The comovement is consistent with our interpretation

noise component.
30Column (3) shows that the lagged forecast is a statistically significant predictor of the forecast error in the

univariate regression. Due to its high persistence, the unemployment rate and its forecast are highly correlated,
which makes the forecast insignificant in the multivariate regression.

31For example, Barsky and Sims (2012) and Angeletos et al. (2018) use the Michigan Consumer Sentiment Index,
and Leduc and Liu (2016) use the share of Michigan Survey households who report that it is not a good time to buy
new cars because of an uncertain future. Angeletos et al. (2018) remark on issues with the qualitative nature of the
Michigan Consumer Sentiment Index, which our approach addresses.
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Figure 14: Comparison of the first principal component of the belief wedges with alternative measures
of sentiment and disagreement. Top panel: negative of the Michigan Consumer Sentiment Index, negative
of the Conference Board Consumer Confidence Index. Bottom panel: Interquartile dispersion in individual
forecasts in Survey of Professional Forecasters of CPI inflation, unemployment, and real GDP growth. NBER
recessions are shaded. Following Zhao (2017), we average dispersion in SPF forecasts over horizons from
zero (nowcast) to three quarters to reduce noise.

of the belief wedges as arising from pessimism, as captured by negative movements in sentiment.

A shortcoming of using empirical measures of sentiment is the lack of theoretical counterparts in

quantitative models. The magnitude of fluctuations in these sentiments is thus typically calibrated

indirectly using the volatility of macroeconomic quantities. In contrast, we calibrate θt to match

the level and volatility of the belief wedges, which we directly measure in survey data, in line

with arguments by Dominitz and Manski (2004), Coibion et al. (2018a), and Manski (2017) to use

responses to quantitative survey questions in order to provide a tighter link between survey data

and theoretical models. Our theory also enforces additional restrictions on the relative magnitudes

of the belief wedges, providing overidentifying restrictions that we verify empirically.

Instead of belief wedges, Ilut and Schneider (2014) use the dispersion of SPF forecasts of real

GDP as a proxy for the degree of ambiguity on the side of households. In related work, Mankiw

et al. (2003), Bachmann et al. (2013), and others use measures of cross-sectional forecast dispersion

as a proxy for economic uncertainty, based on the assumption that higher dispersion is indicative
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of more difficulty in estimating the forecast distribution. The bottom panel of Figure 14 shows

that measures of dispersion in SPF forecasts of inflation, unemployment, and real GDP growth are

largely uncorrelated with the belief wedges, indicating that disagreement among SPF forecasters

is distinct from pessimistic concerns of households. Although our framework and solution method

allow for heterogeneity in beliefs that could explicitly model such disagreement in forecasts, we

leave a quantitative analysis of such a model for future work.

7 Conclusion

In this paper, we develop a framework in which agents’ subjective beliefs depart from rational

expectations and feature time-varying pessimism and optimism. Using survey data to discipline

this departure, we show that subjective beliefs have an economically significant role in driving

macroeconomic outcomes, especially labor market quantities.

Pessimistic agents in the model overweight outcomes that are associated with low continuation

utilities. Systematic policy changes that alter the distribution of consumption will also affect the

distribution of adverse states, and hence agents’ subjective beliefs and decisions. We view the

policy-invariant nature of the mapping between continuation utilities and beliefs as an extension of

the rational expectations hypothesis that preserves immunity to the Lucas critique and makes our

framework suitable for the study of normative questions.

A natural application is the conduct of monetary policy where managing private sector expec-

tations stands at the forefront. Another direction is to exploit the cross-sectional differences in

beliefs that we documented. With incomplete markets, heterogeneous exposures of continuation

values to shocks will generate endogenous heterogeneity in beliefs and has implications for savings,

portfolio choices, and labor market behavior. Such a modification of the framework can be applied

to study the design of social insurance policies.
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Appendix

A Subjective beliefs and belief wedges

In this section, we derive formulas for the belief distortions in the linearized version of the dynamic model

described in Section 3, extended to include nonstationary shocks as in Appendix B.7. Let (Ω, {Ft}∞t=0 , P )

be the filtered probability space generated by the innovations {wt+1}∞t=0, with wt+1 ∼ N (0k, Ik×k) iid. The

subjective probability measure P̃ is formally defined by specifying a strictly positive martingale Mt+1 with

one-period increments:

mt+1 =
Mt+1

Mt
= exp

(
−1

2
|νt|2 + ν′twt+1

)
. (23)

The conditional mean of the innovation vector under P̃ then satisfies Ẽt [wt+1] = νt. We consider linear

model dynamics given by

xt = x̂t + zt (24)

x̂t+1 = ψq + ψxx̂t + ψwwt+1

zt+1 − zt = ϕq + ϕxx̂t + ϕqwt+1.

The vector xt of economic variables therefore has a stationary component x̂t and a nonstationary component

zt that has a stationary growth rate.32 We impose a restriction on the belief distortion (23):

νt = H +HFx̂t,

where F is a 1×n vector and H, H are k×1 vectors. The belief distortion derived in the structural model is

a special case of this restriction. In particular, in the case of the linear approximation of the stationary model

developed in Section 3, we have zt ≡ 0 and x1t = x̂t. Equation (16) implies that νt = −θ (x̄+ x1t) (Vxψw)
′
,

and hence

H = −θx̄ (Vxψw)
′

H = − (Vxψw)
′

F = θ.

In the case of the nonstationary model from Appendix B.7, the expressions for H, H, and F are given in

equation (58).

Let ζt = Zxt = Z (x̂t + zt) be an m × 1 vector of variables for which we have observable data on

households’ expectations where Z is an m × n selection matrix. We are interested in τ -period-ahead belief

wedges

∆
(τ)
t = Ẽt [ζt+τ ]− Et [ζt+τ ] .

Guess that

Et [ζt+τ − ζt] = G(τ)
x x̂t +G

(τ)
0

Ẽt [ζt+τ − ζt] = G̃(τ)
x x̂t + G̃

(τ)
0 ,

where G
(τ)
x , G

(τ)
0 , G̃

(τ)
x , and G̃

(τ)
0 are conformable matrix coefficients with initial conditions

G
(τ)
0 = G̃

(τ)
0 = 0m×1 G(τ)

x = G̃(τ)
x = 0m×n.

32The linear approximation of the model specified in Section 3 maps directly into this framework. We drop the
subindices denoting first-order derivative processes for convenience.
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We can then establish a recursive formula for the expectations under the data-generating measure

G(τ)
x x̂t +G

(τ)
0 = Et [ζt+τ − ζt] = (25)

= Et

[
Z (xt+1 − xt) +G(τ−1)

x x̂t+1 +G
(τ−1)
0

]
= G

(τ−1)
0 + Zϕq +

(
Z +G(τ−1)

x

)
ψq +

[(
Z +G(τ−1)

x

)
ψx + (Zϕx − Z)

]
x̂t

+
((
Z +G(τ−1)

x

)
ψw + Zϕw

)
Et [wt+1] .

Since Et [wt+1] = 0, we obtain

G(τ)
x =

(
Z +G(τ−1)

x

)
ψx + (Zϕx − Z)

G
(τ)
0 = G

(τ−1)
0 + Zϕq +

(
Z +G(τ−1)

x

)
ψq.

Under the subjective measure, the derivation is unchanged, except for the last line in (25), which now involves

the subjective expectation Ẽt [wt+1] = H +HFx̂t. Then,

G̃(τ)
x =

(
Z + G̃(τ−1)

x

)
ψx + (Zϕx − Z) +

((
Z + G̃(τ−1)

x

)
ψw + Zϕw

)
HF

G̃
(τ)
0 = G̃

(τ−1)
0 + Zϕq +

(
Z + G̃(τ−1)

x

)
ψq +

((
Z + G̃(τ−1)

x

)
ψw + Zϕw

)
H

Consequently,

∆
(τ)
t =

(
G̃(τ)

x −G(τ)
x

)
x̂t + G̃

(τ)
0 −G

(τ)
0 .

When the dynamics (24) are stationary and demeaned, H, ϕq, ϕx, ϕw, and ϕq are all zero, and we get explicit

expressions

G(τ)
x = Z (ψx)

τ

G
(τ)
0 = Z

τ−1∑
i=0

(ψx)
i
ψq = Z (I − ψx)

−1
(I − (ψx)

τ
)ψq

G̃(τ)
x = Z (ψx + ψwHF )

τ

G̃
(τ)
0 = Z

τ−1∑
i=0

(ψx + ψwHF )
i
ψq = Z (I − (ψx + ψwHF ))

−1
(I − (ψx + ψwHF )

τ
)ψq.

B Linear approximation of models with robust preferences

The linear approximation in this paper builds on the series expansion method used in Holmes (1995),

Lombardo (2010), and Borovička and Hansen (2014). The innovation in this paper consists of adapting

the series expansion method to an approximation of models with robust preferences to derive a linear

approximation that allows for endogenously determined time-varying belief distortions. The critical step

in the expansion lies in the joint perturbation of the shock vector wt and the penalty process θt.

B.1 Law of motion

We start with the approximation of the model for the law of motion (4) with a sufficiently smooth policy rule

ψ. We consider a class of models indexed by the scalar perturbation parameter q that scales the volatility
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of the shock vector wt

xt+1 (q) = ψ (xt (q) , qwt+1, q) (26)

and assume that there exists a series expansion of xt around q = 0:

xt (q) ≈ x̄+ qx1t +
q2

2
x2t + . . . .

The processes xjt, j = 0, 1, . . . can be viewed as derivatives of xt with respect to the perturbation parameter,

and their laws of motion can be inferred by differentiating (26) j times and evaluating the derivatives at

q = 0, assuming that ψ is sufficiently smooth. Here, we focus only on the approximation up to the first

order:

x̄ = ψ (x̄, 0, 0) (27)

x1t+1 = ψq + ψxx1t + ψwwt+1.

We begin with a case in which the equilibrium dynamics of xt are stationary. Extensions to nonstationary

environments are considered in Appendix B.7.

B.2 Continuation values

We now focus on the expansion of the continuation value recursion. Substituting the belief distortion (5)

into the recursion (2) yields

Vt = u (xt)−
β

θt
logEt [exp (−θtVt+1)] . (28)

We are looking for an expansion of the continuation value

Vt (q) ≈ V̄ + qV1t. (29)

To derive the solution of the continuation value, we are interested in expanding the following perturbation

of the recursion:

Vt (q) = u (xt (q) , q)− β
q

θ (x̄+ x1t)
logEt

[
exp

(
−θ (x̄+ x1t)

q
Vt+1 (q)

)]
. (30)

Here, we utilized the fact that θt = θxt ≈ θ (x̄+ x1t). More importantly, the perturbation scales jointly

the volatility of the stochastic processes for Vt and u (xt) with the magnitude of the penalty parameter

θt. In particular, the penalty parameter in the perturbation of equation (2) becomes q/
[
θ (x̄+ x1t)

]
and

decreases jointly with the volatility of the shock process. This assumption will imply that the benchmark

and subjective models do not converge as q → 0, and the linear approximation around a deterministic steady

state yields a nontrivial contribution from the subjective dynamics.

Using the expansion of the period utility function

u (xt (q) , q) ≈ ū+ qu1t = ū+ q (uxx1t + uq) ,

we get the deterministic steady-state (zeroth-order) term by setting q = 0:

V̄ = (1− β)
−1
ū.
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The first-order term in the expansion is derived by differentiating (30) with respect to q and is given by the

recursion

V1t = u1t − β
1

θ (x̄+ x1t)
logEt

[
exp

(
−θ (x̄+ x1t)V1t+1

)]
. (31)

Since x̄ is constant and x1t has linear dynamics (27), we hope to find linear dynamics for V1t as well. Since

ut = u (xt), we can make the guess that V i
t (q) = V i (xt (q) , q), which leads to the following expressions for

the derivative of Vt:

V1t = Vxx1t + Vq.

Using this guess and comparing coefficients, equation (31) leads to a pair of algebraic equations for the

unknown coefficients Vx and Vq:

Vx = ux − β

2
Vxψwψ

′
wV

′
xθ + βVxψx

Vq = uq −
β

2
θx̄Vxψwψ

′
wV

′
x + βVxψq + βVq.

The first from this pair of equations is a Riccati equation for Vx, which can be solved for given coefficients

ψx and ψw.

B.3 Distortions and belief wedges

With the approximation of the continuation value at hand, we can derive the expansion of the one-period

belief distortion mt+1 that defines the subjective model relative to the benchmark model. As in (30), we

scale the penalty parameter θt jointly with the volatility of the underlying shocks:

mt+1 (q) =
exp

(
− 1

qθtVt+1 (q)
)

Et

[
exp

(
− 1

qθtVt+1 (q)
)] ≈ m0,t+1 + qm1,t+1.

It turns out that in order to derive the correct first-order expansion, we are required to consider a second-order

expansion of the continuation value

Vt (q) ≈ V̄ + qV1t +
q

2
V2t,

although the term V2t will be inconsequential for subsequent analysis. Substituting in expression (29) and

noting that V̄ is a deterministic term, we can approximate mt+1 with

mt+1 (q) ≈
exp

(
−θ (x̄+ x1t)

(
V1t+1 +

q
2V2t+1

))
Et

[
exp

(
−θ (x̄+ x1t)

(
V1t+1 +

q
2V2t+1

))] .
Differentiating with respect to q and evaluating at q = 0, we obtain the expansion

m0t+1 =
exp

(
−θ (x̄+ x1t)V1t+1

)
Et

[
exp

(
−θ (x̄+ x1t)V1t+1

)] (32)

m1t+1 = − 1

2θ (x̄+ x1t)
m0t+1 [V2t+1 − Et [m0t+1V2t+1]] .

This expansion is distinctly different from the standard polynomial expansion familiar from the perturbation

literature. First, observe that m0t+1 is not constant, as one would expect for a zeroth-order term, but
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nonlinear in V1t+1. However, since Et [m0t+1] = 1, we can treat m0t+1 as a change of measure that will

adjust the distribution of shocks that are correlated with m0t+1. We will show that with Gaussian shocks,

we can still preserve tractability. Further notice that Et [m1t+1] = 0.

The linear structure of V1t also has an important implication for the subjective belief distortion con-

structed from m0t+1. Substituting into (32) yields

m0t+1 =
exp

(
−θ (x̄+ x1t)Vxψwwt+1

)
Et

[
exp

(
−θ (x̄+ x1t)Vxψwwt+1

)] .
This implies that for a function f (wt+1) with a shock vector wt+1 ∼ N (0, I), the first-order approximation

is given by

Ẽt [f (wt+1)] = Et [mt+1f (wt+1)] (33)

≈ f0 (wt+1) + Et [m0t+1f1 (wt+1)] .

The distortion generating the subjective measure P̃ is therefore approximated by the zeroth-order term

m0t+1, and the vector wt+1 has the following distribution:

wt+1 ∼ N
(
−θ (x̄+ x1t) (Vxψw)

′
, Ik
)
. (34)

The mean of the shock is therefore time varying and depends on the linear process x1t.

It follows that the belief wedges for the one-period-ahead forecast of the vector of variables xt are given

by

∆
(1)
t = Ẽt [xt+1]− Et [xt+1] = ψwẼt [wt+1] = −θ (x̄+ x1t) (ψwψ

′
w)V

′
x.

Belief wedges for longer-horizon forecasts are then computed using formulas from Appendix A, observing

that we can set

F = θ, H = − (Vxψw)
′
, H = −θx̄ (Vxψw)

′
.

The terms ψw and Vx are functions of structural parameters in the model solved in the following section.

B.4 Equilibrium conditions

We assume that equilibrium conditions in our framework can be written as

0 = Et [g̃ (xt+1, xt, xt−1, wt+1, wt)] , (35)

where g̃ is an n × 1 vector function and the dynamics for xt are implied by (4). This vector of equations

includes expectational equations such as Euler equations of the robust household, which can be represented

using subjective belief distortions mt+1. We therefore assume that we can write the j-th component of g̃ as

g̃j (xt+1, xt, xt−1, wt+1, wt) = m
σj

t+1g
j (xt+1, xt, xt−1, wt+1, wt) ,

where σj ∈ {0, 1} captures whether the expectation in the j-th equation is under the household’s subjective

model. In particular, all nonexpectational equations and all equations not involving agents’ preferences have

σj = 0. System (35) can then be written as

0 = Et [Mt+1g (xt+1, xt, xt−1, wt+1, wt)] , (36)
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where Mt+1 = diag
{
mσ1

t+1, . . . ,m
σn
t+1

}
is a diagonal matrix of the belief distortions, and g is independent of

θt. The zeroth-order and first-order expansions are

0 = Et [M0t+1g0t+1] = g0t+1

0 = Et [M0t+1g1t+1] + Et [M1t+1g0t+1] = Et [M0t+1g1t+1] ,

where the last equality follows from Et [m1t+1] = 0.

For the first-order derivative of the equilibrium conditions, we have

0 = Et [M0t+1g1t+1] . (37)

The first-order term in the expansion of gt+1 is given by

g1t+1 = gx+x1t+1 + gxx1t + gx−x1t−1 + gw+wt+1 + gwwt + gq = (38)

= [(gx+ψx + gx)ψx + gx−]x1t−1 + [(gx+ψx + gx)ψw + gw]wt +

+(gx+ψx + gx+ + gx)ψq + gq + (gx+ψw + gw+)wt+1,

where symbols x+, x, x−, w+, w, q represent partial derivatives with respect to xt+1, xt, xt−1, wt+1, wt and q,

respectively. Given the subjective distribution of the shock vector (34), we can write

Ẽt [wt+1] = − (Vxψw)
′
θ [(x̄+ ψq) + ψxx1t−1 + ψwwt] .

Let [A]
i
denote the i-th row of matrix A. Notice that

[gx+ψw + gw+]
i
(Vxψw)

′
θ

is a 1× n vector. Construct the n× n matrix E by stacking these row vectors for all equations i = 1, . . . , n:

E = stack
{
σi [gx+ψw + gw+]

i
(Vxψw)

′
θ
}
,

which contains non-zero rows for expectational equations under the subjective model. Using matrix E, we
construct the conditional expectation of the last term in g1t+1 in (38). In particular,

0 = Et [M0t+1g1t+1] =

= [(gx+ψx + gx)ψx + gx−]x1t−1 + [(gx+ψx + gx)ψw + gw]wt +

+(gx+ψx + gx+ + gx)ψq + gq − E [(x̄+ ψq) + ψxx1t−1 + ψwwt] .

Equation (37) is thus a system of linear second-order stochastic difference equations. There are well-

known results that discuss the conditions under which there exists a unique stable equilibrium path to this

system (Blanchard and Kahn (1980), Sims (2002)). We assume that such conditions are satisfied. Comparing

coefficients on x1t−1, wt, and the constant term implies that

0 = (gx+ψx + gx − E)ψx + gx− (39)

0 = (gx+ψx + gx − E)ψw + gw (40)

0 = (gx+ψx + gx+ + gx)ψq + gq − E (x̄+ ψq) . (41)
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These equations need to be solved for ψx, ψw, ψq, and Vx where

Vx = ux − β

2
Vxψwψ

′
wV

′
xθ + βVxψx (42)

and

E = stack
{
σi [gx+ψw + gw+]

i
(Vxψw)

′
θ
}
. (43)

B.5 Multiple belief distortions

We proceeded with the derivation of the approximation under the assumption that there is only a single

belief distortion affecting the equilibrium equations. This has been done for notational simplicity, and the

extension to a framework with multiple agents endowed with heterogeneous belief distortions stemming from

robust preferences is straightforward. Let us assume that there are J agents with alternative belief distortions

characterized by
(
V j
t ,m

j
t+1, θ

j
)
, j = 1, . . . J . The system of equilibrium conditions (36) given by

0 = Et [Mt+1g (xt+1, xt, xt−1, wt+1, wt)]

with Mt+1 = diag
{
mσ1

t+1, . . . ,m
σn
t+1

}
can then be extended to include alternative belief distortions indexed

by σi ∈ {0, 1, . . . , J} where m0
t+1 ≡ 1 denotes an undistorted equation. Subsequently, there are J distorted

means of the innovations

Ẽj
t [wt+1] = −

(
V j
xψw

)′
θ
j
[(x̄+ ψq) + ψxx1t−1 + ψwwt]

that distort individual equations. Matrix E in (43) that collects the distortions of the equilibrium conditions

then becomes

E = stack
{
[gx+ψw + gw+]

i
(V σi

x ψw)
′
θ
σi
}
,

where σi = 0 corresponds to no distortion, and hence the i-th row is a row of zeros. The structure of the

system (39)–(43) remains the same except that we now have J recursions for V j
x in (42) and a modified

matrix E.

B.6 Special case: θt is an exogenous AR(1) process

In the application, we consider a special case that restricts θt to be an exogenous AR(1) process. With a slight

abuse in notation, this restriction can be implemented by replacing the vector of variables xt with (x′t, ft)
′

where ft is a scalar AR(1) process representing the time variation in subjective beliefs as an exogenously

specified shock:

ft+1 = (1− ρf ) f̄ + ρfft + σfw
f
t+1. (44)

The dynamics of the model then satisfy

xt = ψ (xt−1, wt, ft) (45)

with steady state
(
x̄′, f̄

)′
. The vector θ in (3) is then partitioned as θ

′
=
(
θ
′
x, θf

)
= (01×n−1, 1), and thus

θt = ft, as used in the specification in Section 4. Constructing the first-order series expansion of (45), we
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obtain (
x1t+1

f1t+1

)
=

(
ψq

0

)
+

(
ψx ρfψxf

0 ρf

)(
x1t

f1t

)
+

(
ψw σfψxf

0 σf

)(
wt+1

wf
t+1,

)

where wt+1 and wf
t+1 are uncorrelated innovations. The matrices ψx and ψw thus do not involve any direct

impact of the dynamics of the belief shock f1t and the matrix ψxf captures how the dynamics of f1t influence

the dynamics of endogenous state variables.

Let us further assume that the system (35) represents the equilibrium restrictions of the model except

for equation (44). In this case, the function g does not directly depend on f . Repeating the expansion of

the equilibrium conditions from Section B.4 and comparing coefficients on xt−1, ft−1, wt, and the constant

term yields the set of conditions for matrices ψx, ψw, ψxf , and ψq:

0 = (gx+ψx + gx)ψx + gx− (46)

0 = (gx+ρfψxf − E) + (gx+ψx + gx)ψxf (47)

0 = (gx+ψx + gx)ψw + gw (48)

0 = (gx+ψx + gx+ + gx)ψq + gq − Ef̄ (49)

with

Vx = ux + βVxψx (50)

Vf = uf − βθf
2

(
V 2
f σ

2
f + 2Vxψxfσ

2
fVf + Vx

(
σ2
fψxfψ

′
xf + ψwψ

′
w

)
V ′
x

)
(51)

+β (Vfρf + Vxψxfρf )

E = stack
{
σi
[
gx+ψxfσ

2
f (Vf + Vxψxf ) + (gx+ψw + gw+)ψ

′
wV

′
x

]i}
θf . (52)

This set of equations is the counterpart of equations (39)–(43) and can be solved sequentially. First, notice

that equations (46) and (48) can be solved for ψx and ψw, and these coefficients are not affected by the

dynamics of ft. But the equilibrium dynamics of xt are affected by movements in ft through the coefficient

ψxf . The coefficient ρfψxf introduces an additional component in the time-varying drift of xt, while σfψxf

is an additional source of volatility arising from the shocks to household’s subjective beliefs.

We solve this set of equations by backward induction. First, we use (39), (43), and (50) to find the

rational expectations solution for ψx, ψw, Vx. Then we postulate that (45) is in fact a time-dependent law

of motion

xt = ψt (xt−1, wt, ft)

with terminal condition at a distant date T

xT = ψT (xT−1, wT , 0) .

This corresponds to assuming that starting from date T , subjective belief distortions are absent in the model.
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Plugging this guess into the set of equilibrium conditions, we obtain the set of algebraic equations

0 =
(
gx+ψ

t+1
xf ρf − Et+1

)
+ (gx+ψx + gx)ψ

t
xf (53)

V t
f = uf − βθf

2

((
V t+1
f σf

)2
+ 2Vxψ

t+1
xf σ2

fV
t+1
f + Vx

(
σ2
fψ

t+1
xf

(
ψt+1
xf

)′
+ ψwψ

′
w

)
V ′
x

)
(54)

+βρf

(
V t+1
f + Vxψ

t+1
xf

)
Et+1 =

[
gx+ψ

t+1
xf

(
V t+1
f + Vxψ

t+1
xf

)
σ2
f + (gx+ψw + gw+)ψ

′
wV

′
x

]
θf . (55)

Equation (53) can then be solved for

ψt
xf = (gx+ψx + gx)

−1
(
Et+1 − gx+ψ

t+1
xf ρf

)
(56)

Iterating backward on equations (54)–(56) until convergence yields the stationary solution of the economy

with subjective beliefs as a long-horizon limit of an economy where these concerns vanish at a distant T .

The system converges as long as its dynamics are stationary under the subjective model. Once we find the

limit limt→−∞ Et = E, we can also determine

ψq = (gx+ψx + gx+ + gx)
−1 (Ef̄ − gq

)
.

B.7 Nonstationary models

For the purpose of applying the expansion method, we assumed that the state vector xt is stationary. Our

framework can, however, deal with deterministic or stochastic trends featured in macroeconomic models.

Specifically, let us assume that there exists a vector-valued stochastic process zt such that the dynamics of

xt can be written as

xt = x̂t + zt (57)

zt+1 − zt = ϕ (x̂t, wt+1) ,

where x̂t is a stationary vector Markov process that replaces dynamics (4):

x̂t+1 = ψ (x̂t, wt+1) .

The process zt thus has stationary increments and xt and zt are cointegrated, element by element. A typical

example of an element in zt is a productivity process with a permanent component. Once we solve for the

stationary dynamics of x̂t, we can obtain the dynamics of xt in a straightforward way using (57).

Assume that the period utility function can be written in the form

u (xt) = û (x̂t) + Zuzt,

where Zu is a selection vector that selects the appropriate scaling from the vector zt. For example,

u (xt) = logCt = log
[
Ĉt exp (Z

uzt)
]
= log Ĉt + Zuzt,

where Zuzt is the nonstationary component of the logarithm of consumption logCt, and Ĉt = Ĉ (x̂t) is the
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stationary part. It follows from equation (28) that we can write

Vt = V̂ (x̂t) + (1− β)
−1
Zuzt,

and the stationary component of the continuation value V̂ (x̂t) satisfies the recursion

V̂ (x̂t) = û (x̂t)−
β

θt
logEt

[
exp

(
−θt

(
V̂ (x̂t+1) + (1− β)

−1
Zuϕ (x̂t, wt+1)

))]
.

The first-order expansion of ϕ yields

z̄t+1 − z̄t = ϕ (x̄, 0)

z1t+1 − z1t = ϕq + ϕxx̂1t + ϕwwt+1,

where x̄ is the steady state of x̂t. We can now proceed as in the stationary case except using the expansion

of functions û and V̂ . We have

V̄ = (1− β)
−1
[
ū+ β (1− β)

−1
Zuϕ (x̄, 0)

]
and

V̂1t = Vxx̂1t + Vq

with

Vx = ux + β
[
Vxψx + (1− β)

−1
Zuϕx

]
− β

2

∣∣∣Vxψw + (1− β)
−1
Zuϕw

∣∣∣2 θ
Vq = uq + β

[
Vq + Vxψq + (1− β)

−1
Zuϕq

]
− β

2
θx̄
∣∣∣Vxψw + (1− β)

−1
Zuϕw

∣∣∣2 .
The zeroth-order distortion is consequently given by

m0t+1 =
exp

(
−θ (x̄+ x̂1t)

(
Vxψw + (1− β)

−1
Zuϕw

)
wt+1

)
Et

[
exp

(
−θ (x̄+ x̂1t)

(
Vxψw + (1− β)

−1
Zuϕw

)
wt+1

)]
so that under the subjective belief,

wt+1 ∼ N

(
−θ (x̄+ x̂1t)

(
Vxψw + (1− β)

−1
Zuϕw

)′
, Ik

)
.

Equation (17) then becomes

x̂1t+1 = ψq − θx̄ψw

(
Vxψw + (1− β)

−1
Zuϕw

)′
+

[
ψx − ψw

(
Vxψw + (1− β)

−1
Zuϕw

)′
θ

]
x̂1t + ψww̃t+1

= ψ̃q + ψ̃xx1t + ψww̃t+1.

Comparing these dynamics under the subjective belief with those under the data-generating process, we

can again construct belief wedges for longer-horizon forecasts as in Section B.3. Under the nonstationary

dynamics, these wedges ∆
(j)
t = Ẽt [xt+j ] − Et [xt+j ] are computed using the recursive calculations outlined
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in Appendix A, imposing

F = θ

H = −
(
Vxψw + (1− β)

−1
Zuϕw

)′
(58)

H = −
(
θx̄
) (
Vxψw + (1− β)

−1
Zuϕw

)′
.

To solve for the equilibrium dynamics, notice that we are still solving the set of equations (39)–(41) but

now with Vx and E given by

Vx = ux + β
[
Vxψx + (1− β)

−1
Zuϕx

]
− β

2

∣∣∣Vxψw + (1− β)
−1
Zuϕw

∣∣∣2 θ
E = stack

{
σi [gx+ψw + gw+]

i
(
Vxψw + (1− β)

−1
Zuϕw

)′
θ

}
.

In the special case described in Section B.6, the belief shock ft is modeled as an exogenous AR(1) process.

The first-order dynamics of the stochastic growth rate can be expressed as

z1t+1 − z1t = ϕq + ϕxx̂1t + ϕxff1t + ϕwwt+1 + ϕwfw
f
t+1.

The only modifications appearing in the model solution are those related to the continuation value recursion

and the shock distortion in E. Specifically,

Vx = ux + β
[
Vxψx + (1− β)

−1
Zuϕx

]
Vf = uf + β

(
ρfVf + ρfVxψxf + (1− β)

−1
Zuϕxf

)
−βθf

2

∣∣∣Vxψw + (1− β)
−1
Zuϕw

∣∣∣2 − βθf
2

∣∣∣Vxψxfσf + Vfσf + (1− β)
−1
Zuϕwf

∣∣∣2
E = stack

{
σi

[
(gx+ψw + gw+)

(
Vxψw + (1− β)

−1
Zuϕw

)′]i}
θf

+stack

{
σi
[
gx+ψxfσf

(
Vfσf + Vxψxfσf + (1− β)

−1
Zuϕwf

)]i}
θf .

In the recursive form, Vf and E can be solved by iterating on the pair of equations

V t
f = uf + β

(
ρfV

t+1
f + ρfVxψ

t+1
xf + (1− β)

−1
Zuϕxf

)
−βθf

2

∣∣∣Vxψw + (1− β)
−1
Zuϕw

∣∣∣2 − βθf
2

∣∣∣Vxψt+1
xf σf + V t+1

f σf + (1− β)
−1
Zuϕwf

∣∣∣2
Et+1 = stack

{
σi

[
(gx+ψw + gw+)

(
Vxψw + (1− β)

−1
Zuϕw

)′]i}
θf

+stack

{
σi
[
gx+ψ

t+1
xf σf

(
V t+1
f σf + Vxψ

t+1
xf σf + (1− β)

−1
Zuϕwf

)]i}
θf

together with equation (56), which remains unchanged.
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C Sequence problem formulation and penalty functions

We postulated the subjective belief problem in Section 3 directly in its recursive form. In order to formulate

the sequence problem, define Mt,t+j = Πj
k=1mt+k, and the penalty function

Et
.
= Et

∞∑
j=0

βj

[
Mt,t+j

β

θt+j
Et+j [mt+j+1 logmt+j+1]

]
. (59)

This penalty function has the recursive representation

Et =
β

θt
Et [mt+1 logmt+1] + βEt [mt+1Et+1] .

Then, the sequence problem can be written as

V ∗
t = max

{yt+j}∞
j=0

min
{mt+j>0}∞

j=1

Et+j−1[mt+j ]=1

∞∑
j=0

βjEt [Mt,t+jut+j ] + Et (60)

where yt represents the vector of choice variables the period utility sequence {ut+j}∞j=0 implicitly depends

on (these choice variables are omitted for simplicity from formulation (2)). This notation assumes that

{θt+j}∞j=0 is positive, otherwise we replace minimization with maximization in states where θt+j is negative.

Associated with the problem is a set of constraints on the choice variables analogous to that in (4).

The first-order conditions with respect to mt+1+k, k ≥ 0, yield

0 =

∞∑
j=k+1

βjMt,t+kEt+1+k [Mt+1+k,t+jut+j ]

+

∞∑
j=k+1

βjMt,t+kEt+1+k

[
Mt+1+k,t+j

β

θt+j
Et+j [mt+j+1 logmt+j+1]

]

+βkMt,t+k

[
β

θt+k
[logmt+1+k + 1]− κt+k

]
where βkMt,t+kκt+k is the Lagrange multiplier on the constraint Et+k [mt+1+k] = 1. The normalization

implied by the Lagrange multiplier yields

mt+1+k =
exp

(
−θt+kV

∗
t+1+k

)
Et+k

[
exp

(
−θt+kV ∗

t+1+k

)] .
Suppose that the utility function and associated constraints for the maximization part of the problem in

(60) satisfy standard properties yielding a strictly concave objective on a convex choice set, and, as in our

application, θt does not depend on individual choices. Given the strict convexity of the entropy function,

the minimax inequality is an equality, and the min and max operators in (60) can be exchanged. The

specification of the penalty function and the principle of optimality also imply that we can write the value

function recursively as

V ∗
t = max

yt

min
mt+1>0

Et[mt+1]=0

ut +
β

θt
Et [mt+1 logmt+1] + Et

[
mt+1V

∗
t+1

]
.
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The penalty Et in (59) represents the discounted average of future one-period-ahead entropies, weighted

by the future penalty parameters θt+j . In particular, it takes into account agent’s anticipation of future

variation in the degree of pessimism, reflected in the variation in θt+j . This anticipation assure dynamic

consistency of agent’s beliefs and decisions. A similar penalty consisting of discounted average of future

one-period ahead entropies, but averaged under the data-generating measure, has been used in Woodford

(2010) and Adam and Woodford (2012), with a constant penalty parameter.

The penalty Et is not the same as the infinite-horizon discounted entropy from Hansen and Sargent

(2001a,b). This discounted entropy can be written as

Ẽt =
β (1− β)

θt
Et

∞∑
j=0

βj [Mt,t+j logMt,t+j ] ,

with a recursive representation given by

Ẽt =
β

θt
Et [mt+1 logmt+1] + βEt

[
θt+1

θt
mt+1Ẽt+1

]
.

The value function defined as

Ṽ ∗
t = max

{yt+j}∞
j=0

min
{mt+j}∞

j=1

Et+j−1[mt+j ]=1

∞∑
j=0

βjEt [Mt,t+jut+j ] + Ẽt,

then we can write Ṽ ∗
t as

Ṽ ∗
t = max

{yt+j}∞
j=0

min
{mt+j}∞

j=1

Et+j−1[mt+j ]=1

ut +
β

θt
Et [mt+1 logmt+1]

+βEt

mt+1

Et+1

∞∑
j=0

βj [Mt+1,t+1+jut+1+j ] +
θt+1

θt
Ẽt+1

 .
This formulation is not recursive and hence leads to a dynamically inconsistent choice of belief distortions.

The lack of dynamic consistency could be rectified by introducing commitment with promise-keeping con-

straints as in the constraint problems in Hansen et al. (2006) but the outcome would lead to a different set

of belief distortions that does not take into account future variation in θt+j .

D Data and further empirical evidence

Macroeconomic data are collected from the Federal Reserve Bank of St. Louis database (FRED).33 The

data on households’ expectations are obtained from the University of Michigan Surveys of Consumers.34 We

also use data from the Survey of Consumer Expectations administered by the Federal Reserve Bank of New

York,35 and data from the Survey of Professional Forecasters collected from the Federal Reserve Bank of

33Federal Reserve Economic Data, Federal Reserve Bank of St. Louis, https://fred.stlouisfed.org/.
34Surveys of Consumers, University of Michigan, http://www.sca.isr.umich.edu/. See also Thomas (1999) for

details on the survey methodology.
35Survey of Consumer Expectations, Center for Microeconomic Data, Federal Reserve Bank of New York,

https://www.newyorkfed.org/microeconomics/sce.
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Philadelphia website.36 See Table 4 for details.

We use the consumer price index for all urban consumers: all items (CPIAUSCL in FRED) to compute

the rate of inflation in the data. Computing the belief wedges using the personal consumption expenditures

(PCE) index from the Bureau of Economic Analysis as an alternative (PCEPI in FRED) would leave the

cyclical component of the inflation wedge almost unchanged because the two series are highly correlated

(correlation over the sample period is 0.95). However, the PCE series has a substantially lower mean (by

0.36% annually between 1982 and 2019), so using the PCE index as observations from the data-generating

process would make households appear to overestimate inflation significantly more than in the case of the

CPI. We prefer the CPI because its weighting is based on surveys of the composition of households’ purchases,

and is based on out-of-pocket expenditures, which are arguably more salient for the formation of households’

beliefs.

For the rate of unemployment, we use the civilian unemployment rate (UNRATE in FRED) as the

data counterpart. Since households in the Michigan Survey are asked about the change in the rate of

unemployment, the potential issue with different average levels of alternative measures of unemployment

that households could envision becomes irrelevant. We construct the level forecast as the realized UNRATE

measure in the month when the forecast is made, plus the forecasted change in the unemployment rate from

the Michigan Survey.

D.1 Survey data

For the inflation rate in the Michigan Survey, we record the cross-sectional mean, median, and quartile

answers. The survey question on the unemployment rate only records up/same/down responses. We use the

method from Carlson and Parkin (1975) and Mankiw et al. (2003) to fit a time series of normal distributions

to these qualitative responses. Let qut , q
s
t , and qdt be the fractions of survey answers up, same, down,

respectively, recorded at time t. We assume that these categories are constructed from a continuous cross-

sectional distribution of responses with normal density N
(
µt, σ

2
t

)
. In particular, there exists a response

threshold a such that an answer on the interval [−a, a] is recorded as “same”. This implies

qdt = Φ

(
−a− µt

σt

)
qut = 1− Φ

(
a− µt

σt

)
,

and thus

−a− µt = σtΦ
−1
(
qdt
)

a− µt = σtΦ
−1 (1− qut ) ,

and therefore

σt =
2a

Φ−1 (1− qut )− Φ−1
(
qdt
)

µt = a− σtΦ
−1 (1− qut ) .

The constant a is then determined so that the time-series average of the cross-sectional dispersions σt divided

by the observed average cross-sectional dispersion for the SPF forecast corresponds to the analogous ratio

for the inflation responses, for which we have dispersion data readily available. We use the obtained means

µt as the time series of mean forecasts for the change in unemployment.

To verify that the obtained time series µt provides a meaningful fit to the actual mean forecast, we verify

36Survey of Professional Forecasters, Federal Reserve Bank of Philadelphia,
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/.
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Households’ expectations (Michigan Survey)

Ẽt

[∑4
j=1 πt+j

]
Expected change in prices during the next year (Table 32, variable PX1), mean and
median responses and quartiles of the cross-sectional distribution of individual answers.
Questions: “During the next 12 months, do you think that prices in general will go up,
or go down, or stay where they are now?” and “By about what percent do you expect
prices to go up, on the average, during the next 12 months?”

Ẽt

[
1
n

∑4
j=1 ut+j

]
Expected unemployment rate during the next year (Table 30, variable UMEX), con-
struction of mean response and the dispersion detailed in the text. Question: “How
about people out of work during the coming 12 months – do you think there will be more
unemployment than now, about the same, or less?” We also report results interpreting
answers to this question as expected unemployment in one year, Ẽt [ut+4].

Households’ expectations (SCE)

Ẽt

[∑4
j=1 πt+j

]
Median one-year-ahead expected inflation rate (used in Figure 3). The time series is
constructed by aggregating probabilistic responses to the question: “In your view, what
would you say is the percent chance that, over the next 12 months. . . the rate of inflation
will be between xi% and xi+1%” for a range of brackets across individual households.
See Armantier et al. (2017) for details.

P̃t[ut+4] Probability of unemployment being higher in one year than today (used in Figure 3).
Mean response to the question: “What do you think is the percent chance that 12
months from now the unemployment rate in the U.S. will be higher than it is now?”

Survey of Professional Forecasters

Et

[∑4
j=1 πt+j

]
Forecasted CPI inflation rate, seasonally adjusted (CPI). Forecast at time t is con-
structed as the mean survey forecast made in second month of quarter t + 1, for CPI
inflation rate between quarters t and t+ 4.

Et[
1
n

∑4
j=1 ut+j ] Forecasted unemployment rate, seasonally adjusted (UNEMP). Forecast at time t is

constructed as the mean survey forecast made in second month of quarter t+1, for the
average unemployment rate in quarters t+ 1 to t+ 4.

Macroeconomic variables (FRED)
πt Consumer price index for all urban consumers: all items, seasonally adjusted

(CPIAUCSL). Quarterly logarithmic growth rate, last month to last month of quarter.
ut Civilian unemployment rate, quarterly, seasonally adjusted (UNRATE).
log (Yt/Yt−1) Real gross domestic product, quarterly, seasonally adjusted annual rate (GDPC1).

Quarterly logarithmic growth rate.
log
(
Yt/Ȳt

)
Output gap. Difference between real gross domestic product, quarterly, seasonally
adjusted annual rate (GDPC1) and real potential output (GDPPOT).

Table 4: Data definitions for key macroeconomic and survey variables.
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Figure 15: Fitted mean forecast of one-year-ahead inflation rate (solid line) constructed using the Carlson
and Parkin (1975) and Mankiw et al. (2003) method from categorical data, and actual mean forecast in the
Michigan Survey (dashed line). NBER recessions are shaded.

the methodology using the inflation forecast data. We categorize individual numerical inflation forecast

responses in each period into three bins, < 3%, 3 − 4%, and ≥ 5%, and then fit a time series of normal

distributions as described above, using the three time series of answer shares in each of the bins as input.

Figure 15 compares the time series of actual mean forecasts with the time series of fitted means constructed

using categorical data. The correlation between the two series is 93.3%, and the time-series averages differ

only by 0.15%, providing strong support for the methodology as a plausible approximation of the actual

mean forecast.

D.2 Information sets

The construction of belief wedges requires taking a stance on how to align information sets available to

surveyed households and the econometrician. We use a quarterly VAR, described in more detail in the next

subsection, for our benchmark forecast under the data-generating (rational) measure. We use monthly data

from the Michigan Survey and available micro data from the monthly cross sections of the survey for the

period 1982Q1–2019Q4 in the main text. When computing the belief wedges relative to the VAR forecast,

we use responses from the first month of quarter t+1 as those made by households with information available

at the end of quarter t. Time-series moments for the wedges in this sample are summarized in Panel A of

Table 5. The forecasting horizon for one-year-ahead forecasts is assumed to span quarters t+ 1 to t+ 4.

The Michigan Survey also contains aggregated data at the quarterly frequency starting from 1960. We

use these quarterly time series for the time period 1960Q3–2019Q4 in Table 5. We use the responses reported

during quarter t+ 1 as those made with information available to the households at the end of quarter t.

The SPF is administered during the second month of each quarter. To compute the belief wedge relative

to the SPF forecast, we therefore use Michigan Survey responses from the second month of each quarter

as well to align information sets for the two forecasts. We again use the benchmark time period 1982Q1–

2019Q4. Forecasts made in the second month of quarter t+1 are assumed to span quarters t+1 to t+4 in

the quarterly analysis. Panel C of Table 5 summarizes the data.
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D.3 Forecasting VAR

We use a standard quarterly forecasting VAR to compute the forecasts of inflation and unemployment

under the data-generating measure. All time series are downloaded from FRED for the period 1960Q1–

2019Q4: CPI inflation (CPIAUCSL, percentage change to a year ago), real GDP (GDPC1, annualized

percentage quarterly change), unemployment rate (UNRATE), log change in the relative price of investment

goods (PIRIC), capital utilization rate (CUMFNS), log hours worked per capita (average hours per worker

PRS85006023 multiplied by the employment-population ratio CE16OV/CNP16OV), consumption rate of

nondurables and services ((PCEND+PCESV)/GDP), investment rate (GPDI/GDP), and the federal funds

rate (FEDFUNDS). The VAR is estimated with two lags. These choices for the forecasting VAR are similar

to those made in Christiano et al. (2005), Del Negro et al. (2007), Christiano et al. (2011), or Christiano et al.

(2016). We experimented with increasing the lag length and including additional forecasting variables, with-

out materially affecting the results. Below we present the results for two such alternative VAR specifications

from the literature. All VAR models are estimated in unrestricted form using linear regression.

D.4 Further time-series evidence on the belief wedges

In the main text, we use belief wedges constructed using the Michigan Survey responses for the period

1982Q1–2019Q4. In Table 5, we quantify their comovement with the business cycle and provide alternative

specifications for the belief wedges as well as alternative time periods as robustness checks.

For the inflation wedge, we show results for both the mean and median inflation forecast for the Michi-

gan Survey. For the unemployment wedge, we produce two wedges based on alternative interpretations

of the relevant question in the Michigan Survey. The wedge ∆
(4)
t (u) is the wedge for the forecast of the

unemployment rate four quarters ahead. The wedge ∆
(4)

t (u) is the wedge for the forecast of the average

unemployment rate during the next four quarters.

Panel A in Table 5 contains time-series characteristics of the belief wedges for the benchmark case,

constructed using survey data for the period 1982Q1–2019Q4, net of the corresponding VAR forecasts. This

is our preferred time period because the Michigan Survey for this period contains better-quality disaggregated

survey data at the monthly frequency that allow us to better align information sets (Appendix D.2), study

the cross-sectional patterns between the belief wedges, and compare the Michigan Survey responses with

available SPF forecasts.

The subsequent panels of Table 5 contain a variety of robustness checks. First, to ensure that our results

are not driven by the Great Recession episode, we compute the moments excluding observations for the

period 2007Q4–2009Q2. These results are reported in Panel B of Table 5. The correlation between the

unemployment and inflation belief wedges remains positive, albeit somewhat smaller than in the full sample.

In addition, the belief wedges retain a strong negative correlation with the business cycle.

Next, we use the Michigan Survey responses aggregated at the quarterly frequency that are available

for a longer period 1960Q3–2019Q4. These results are reported in Panel C of Table 5. The patterns in the

data are largely unchanged (information on the median inflation forecast is not available in the Michigan

Survey for this time period). The belief wedges continue to be large, volatile, and countercyclical. The mean

inflation wedge is somewhat smaller than in Panel A, and the lower correlation between the output gap and

GDP growth implies that the wedges continue to be strongly countercyclical when using the output gap as

the measure of economic activity, but the relationship with GDP growth is weaker.

As an alternative, we also construct the belief wedges using the responses from the Survey of Professional

Forecasters as a measure of forecasts under the data-generating measure. Panel D from Table 5 provides
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Figure 16: Comparison of mean forecasts from the Michigan Survey, Survey of Professional Forecasters,
and the forecast obtained using the VAR. Top panel: Forecasted one-year-ahead change in unemployment.
Bottom panel: Forecasted one-year-ahead inflation rate. NBER recessions are shaded.

the time-series characteristic for these wedges. As in the previous cases, we obtain large and volatile belief

wedges that are highly negatively correlated with the business cycle.

In order to investigate the source of the belief wedges in more depth, we plot actual forecasts from the

Michigan Survey, the Survey of Professional Forecasters, and the VAR in Figure 16. Since the Michigan

Survey unemployment forecast is constructed for the change in unemployment rate, we convert the SPF and

VAR forecasts by subtracting the contemporaneous unemployment rate. The top panel shows the forecasts

of the change in unemployment rate, while the bottom panel shows the inflation rate forecasts.

The source of the fluctuations in the unemployment belief wedge can be broadly attributed to two

factors. First, the Michigan Survey forecasts increase more aggressively during recessions than the SPF and

VAR forecasts, and second, the Michigan Survey forecasts tend to decline more slowly after recessions end.

Households in the Michigan Survey on average also only rarely predict that unemployment will decrease,

which yields the upward average bias in the forecast. A similar pattern emerges for the inflation forecasts.

Particularly notable is the large wedge between the forecasts in the post-Great Recession period.

As a robustness check of the VAR specification, we also present belief wedged constructed using two

alternative VAR specifications for the rational forecast. Specifically, we use the specification from Del Negro

et al. (2007) (DSSW), and from Christiano et al. (2011) (CTW), which is also used in Christiano et al.
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Panel A: 1982Q1–2019Q4, VAR forecast correlation matrix
mean std (1) (2) (3) (4) (5) (6)

(1) Unemployment wedge ∆
(4)
t (u) 0.52 0.57 1.00 0.90 0.34 0.29 −0.51 −0.28

(2) Unemployment wedge ∆
(4)

t (u) 0.48 0.48 1.00 0.29 0.26 −0.26 −0.39

(3) Mean inflation wedge ∆
(4)
t (π) 1.22 0.97 1.00 0.93 −0.29 −0.49

(4) Median inflation wedge ∆
(4)
t (π) 0.44 1.06 1.00 −0.19 −0.54

(5) Output gap log
(
Yt/Ȳt

)
−1.53 1.98 1.00 0.46

(6) GDP growth log (Yt/Yt−4) 2.00 1.51 1.00

Panel B: 1982Q1–2019Q4, VAR forecast correlation matrix
(excluding 2007Q4–2009Q2) mean std (1) (2) (3) (4) (5) (6)

(1) Unemployment wedge ∆
(4)
t (u) 0.49 0.55 1.00 0.90 0.22 0.15 −0.50 −0.17

(2) Unemployment wedge ∆
(4)

t (u) 0.44 0.44 1.00 0.11 0.07 −0.25 −0.27

(3) Mean inflation wedge ∆
(4)
t (π) 1.13 0.77 1.00 0.90 −0.23 −0.26

(4) Median inflation wedge ∆
(4)
t (π) 0.34 0.85 1.00 −0.10 −0.34

(5) Output gap log
(
Yt/Ȳt

)
−1.61 1.97 1.00 0.44

(6) GDP growth log (Yt/Yt−4) 2.14 1.32 1.00

Panel C: 1960Q3–2019Q4, VAR forecast correlation matrix
mean std (1) (2) (3) (4) (5) (6)

(1) Unemployment wedge ∆
(4)
t (u) 0.40 0.61 1.00 0.88 0.24 — −0.31 0.01

(2) Unemployment wedge ∆
(4)

t (u) 0.39 0.52 1.00 0.19 — −0.12 −0.14

(3) Mean inflation wedge ∆
(4)
t (π) 0.82 1.11 1.00 — −0.34 −0.37

(4) Median inflation wedge ∆
(4)
t (π) — — — — —

(5) Output gap log
(
Yt/Ȳt

)
−0.88 2.33 1.00 0.52

(6) GDP growth log (Yt/Yt−4) 2.23 1.78 1.00

Panel D: 1982Q1–2019Q4, SPF forecast correlation matrix
mean std (1) (2) (3) (4) (5) (6)

(1) Unemployment wedge ∆
(4)
t (u) 0.49 0.49 1.00 0.97 0.18 0.12 −0.34 −0.54

(2) Unemployment wedge ∆
(4)

t (u) 0.44 0.47 1.00 0.16 0.12 −0.15 −0.50

(3) Mean inflation wedge ∆
(4)
t (π) 1.06 0.81 1.00 0.89 −0.11 −0.24

(4) Median inflation wedge ∆
(4)
t (π) 0.24 0.91 1.00 0.01 −0.30

(5) Output gap log
(
Yt/Ȳt

)
−1.53 1.98 1.00 0.46

(6) GDP growth log (Yt/Yt−4) 2.00 1.51 1.00

Table 5: Time-series and business cycle statistics for the belief wedges. Panel A: Belief wedge relative to a
VAR forecast, time period 1982Q1–2019Q4. Panel B : Belief wedge relative to a VAR forecast, time period
1982Q1–2019Q4, excluding Great Recession. Panel C : Belief wedge relative to a VAR forecast, time period
1960Q3–2019Q4 (median inflation forecast not available for this period). Panel D : Belief wedge relative to
the SPF forecast, time period 1982Q1–2019Q4.

62



correlation with
mean std output gap GDP growth

Benchmark VAR model Unemployment wedge 0.52 0.57 −0.49 −0.28
Inflation wedge 1.22 0.97 −0.30 −0.49
Principal component 0.00 1.00 −0.48 −0.47

CTW VAR model Unemployment wedge 0.57 0.54 −0.52 −0.24
Inflation wedge 1.15 1.01 −0.26 −0.41
Principal component 0.00 1.00 −0.50 −0.42

DSSW VAR model Unemployment wedge 0.56 0.56 −0.48 −0.34
Inflation wedge 1.23 0.94 −0.33 −0.38
Principal component 0.00 1.00 −0.50 −0.45

Table 6: Belief wedges for alternative VAR specifications of the rational forecast. CTW: Christiano et al.
(2011), DSSW: Del Negro et al. (2007).

(2016). DSSW use a smaller set of variables with a longer lag length of four periods: GDP growth, growth

of consumption of nondurables and services, investment, wage growth, logarithm of hours worked per capita,

GDP deflator, and the Federal Funds rate. All nominal quantities are per capita and deflated by the GDP

deflator. CTW use two lags as in our benchmark specification but use a richer set of variables: relative price

of investment goods, growth rate in real GDP per hour worked, GDP deflator, unemployment rate, capital

utilization, real GDP per hour relative to real wage, consumption of nondurables and services relative to

GDP, investment relative to GDP, job separation rate, job finding rate, vacancy rate, hours per person in

labor force, and the Federal Funds rate. In both cases, we make sure include CPI inflation and unemployment

rate as well to form the respective forecasts. The estimation period is 1960Q1–2019Q4.

The results are presented in Table 6 and Figure 17. The characteristics of the belief wedges as well as

the resulting principal components are extremely similar across the specifications of the underlying VAR. In

all cases, the wedges are countercyclical and track each other closely in the observed sample. The correlation

between the principal components constructed using the benchmark model and those constructed using the

CTW and DSSW VARs is 82% and 85%, respectively.

D.5 Further cross-sectional evidence on the belief wedges

In this section, we provide further evidence on the cross-sectional relationship between household-level survey

answer biases for alternative questions, documented in the Michigan Survey and the SCE.

In the cross-sectional analysis (except for Table 7), we do not convert unemployment responses using the

procedure described in Appendix D.1, but encode categorical household-level responses on the forecasted

change in the unemployment rate {down, same (or don’t know), up} for household i in demographic group

g and month t as ũi,g,t ∈ {−1, 0, 1}. We drop respondents aged 65 and above and those with missing

responses. Population and group-level averages ũt and ũg,t then represent the share of respondents who

forecast an increase in unemployment minus the share that forecasts a decrease. For the inflation responses,

we drop households who indicate “don’t know,” have a missing response, or have extreme forecasts (above

20% or below −10%). The results are robust to keeping the extreme forecasts.

Table 7 reports the conditional time-series averages of the households’ forecasts for different demographic

groups in the Michigan Survey, displayed in Figure 4. More educated respondents and respondents with

higher incomes overpredict inflation and unemployment less on average, but all demographic groups still

overpredict both quantities. Moreover, demographic groups that on average overpredict inflation relatively
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Figure 17: Belief wedges for alternative VAR specifications of the rational forecast. CTW: Christiano et al.
(2011), DSSW: Del Negro et al. (2007). NBER recessions are shaded.

more also overpredict unemployment relatively more.

D.5.1 Cross-sectional regressions

Tables 8–10 provide further details at the level of demographic groups and individual households. First, we

ask whether in times when demographic group g on average overpredicts inflation more relative to population,

the group also overpredicts unemployment more relative to population. Table 8 summarizes the regression

coefficients in time-series regressions of the form

ũg,t − ũt = αg + βg [π̃g,t − π̃t] + εg,t, (61)
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actual SPF all 18-34 35-44 45-54 55-64 W NC NE S
π 2.71 2.86 3.87 3.93 3.85 3.83 3.75 3.81 3.82 3.83 3.99
u 6.14 6.05 6.55 6.44 6.58 6.63 6.63 6.54 6.55 6.61 6.53

u share — — 14.8 11.3 15.6 17.2 17.1 14.3 15.1 16.6 14.0

male female bottom 2nd Q 3rd Q top HS SC COL GS
π 3.33 4.36 4.78 4.10 3.59 3.12 4.38 3.84 3.41 3.30
u 6.45 6.64 6.71 6.58 6.52 6.42 6.63 6.55 6.46 6.48

u share 11.0 18.3 19.8 15.8 13.6 9.8 17.5 14.9 11.5 11.9

Table 7: Demographic characteristics of households’ expectations on inflation (π) and the unemployment
rate. The row labeled “u share” is the percentage share of responses that the unemployment rate will
increase minus the percentage share stating that the unemployment rate will decrease. The line labeled “u”
is the average fitted unemployment rate forecast computed as in Appendix D.1. Time-series averages, all
values are annualized and in percentages, time period 1982Q1–2019Q4. Actual : actual average inflation and
unemployment rate; SPF : average SPF forecast; all : average household forecast; 18-34 etc: age groups; W :
West region; NC : North-Central; NE : North-East; S : South; bottom, 2nd Q, 3rd Q, top: income quartiles;
HS : high school education; SC : some college; COL: college degree; GS : graduate studies.

where ũg,t, π̃g,t are the average forecasts of demographic group g in month t, and ũt, π̃t are the average

forecasts in month t for the whole population. The estimated regression coefficients β̂g are all positive, and

most of them are highly statistically significant.

Next, we investigate whether in times when individual households i overpredict inflation more relative to

the population, they also overpredict unemployment relatively more. The regression on the pooled sample

of N = 180, 729 household-level observations with demographic controls is

ũi,g,t − ũt = α+ β [π̃i,g,t − π̃t] + δ′Di,g,t + εi,g,t,

where ũi,g,t, π̃i,g,t are the forecasts of household i belonging to demographic group g in month t and Di,g,t

is the vector of demographic group dummies. The estimated slope coefficient is β̂ = 2.26 with a standard

error of 0.04. We also run pooled regressions using differences between individual household forecasts and

the group-specific average in the given month:

ũi,g,t − ũg,t = αc + βc [π̃i,g,t − π̃g,t] + εi,g,t (62)

for different demographic categorizations c ∈ {pooled population, education, income, region, age, sex}. Ta-

ble 9 reports the estimates of regression coefficients β̂c.

To show that these cross-sectional relationships are stable over time, we run the regressions month by

month and for each demographic sorting c:

ũi,g,t − ũg,t = αc,t + βc,t [π̃i,g,t − π̃g,t] + εi,g,t. (63)

Table 10 shows the mean and standard deviation of the distribution of estimated coefficients β̂c,t for each

of the categorizations. Regardless of the demographic categorization, around 96% of all the estimated

coefficients β̂c,t are positive, and about 69% of them have a t-statistic larger than 1.96. Figure 18 plots the

smoothed time series of the coefficients for the pooled population case and documents that the significantly

positive cross-sectional relationship between the belief wedges is not specific to a particular subperiod in the

data.
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18-34 35-44 45-54 55-65 W NC NE S

100× β̂g 3.01 2.40 2.24 2.58 3.29 2.10 2.62 4.68
std. err. 0.99 0.79 0.81 0.75 0.90 0.88 0.84 0.86

male female bottom 2nd Q 3rd Q top HS SC COL GS

100× β̂g 3.84 5.53 0.66 0.93 3.28 1.53 5.76 5.46 3.11 6.38
100× std. err. 1.08 1.16 0.81 0.82 0.85 1.06 0.94 0.81 0.90 1.05

Table 8: Regression coefficients in regression (61) run separately for alternative demographic groups g,

listed in the caption of Table 7. 100 × β̂g scales the left-hand side in the regression to percentage shares.
Each regression involves N = 456 monthly observations.

population age region sex income education

100× β̂c 2.38 2.39 2.38 2.30 2.32 2.34
100× std. err. 0.04 0.04 0.04 0.04 0.04 0.04

N 180,729 180,729 180,691 180,702 172,354 179,726

Table 9: Regression coefficients in pooled regression (62) for alternative demographic categorizations c.

100× β̂c scales the left-hand side in the regression to percentage shares.

population age region sex income education

average 100× β̂c,t 2.56 2.57 2.56 2.49 2.50 2.51

std. dev. 100× β̂c,t 1.55 1.54 1.53 1.53 1.52 1.52
months 456 456 456 456 456 456
# t > 0 440 440 442 437 444 441

# t > 1.96 314 322 317 308 308 313

Table 10: Regression coefficients in regression (63) for alternative demographic categorizations c. “Months”
indicates the number of monthly regressions we run in each case, and # t > 0 and # t > 1.96 indicate the
number of regressions from that sample in which the estimate β̂c,t has a t-statistic larger than zero or 1.96,

respectively. 100× β̂c scales the left-hand side in the regression to percentage shares.
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Figure 18: Smoothed (12-month moving average) t-statistics on the estimates β̂t in regression (63) for the
case when the demographic sorting c corresponds to the pooled population (i.e., ũg,t = ũt.)
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Figure 19: Bin scatter plots for household-level data in the Michigan Survey. Households sorted into
percentile bins, with month fixed effects removed. One percent tails of the variable on the horizontal axis
truncated. Axes labels described in the text.

D.5.2 Scatter plots of household-level data from Michigan Survey and SCE

The tight cross-sectional relationship between the inflation and unemployment forecasts extends to forecasts

of other aggregate and household-level variables. Figure 19 depicts this evidence in the form of bin scatter

plots, paralleling the left panel of Figure 4 from the main text. The evidence is not exhaustive and holds

for responses to other survey questions as well. In each panel, we remove month-specific means from the

household-level forecasts of both variables, sort the forecasts on the variable depicted on the horizontal axis,

and group them into percentile bins.
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Figure 20: Bin scatter plots for the panel component of the household-level data in the Michigan Survey.
Households sorted into two-percentile bins, with month and household fixed effects removed. One percent
tails of the variable on the horizontal axis truncated. Axes labels described in the text.

Figure 20 replicates these bin scatter plots utilizing the panel component of the Michigan Survey. In the

survey, a subsample of interviewed households is re-interviewed again six months after the initial interview.

For this figure, we restrict our sample to this panel component, and remove month and household-level fixed

effects.

The figures show that households strongly associate high inflation with bad times, both in terms of

aggregate as well as household-specific quantities. Concerns about higher aggregate unemployment also

translate into concerns about more adverse individual outcomes, household members correctly connect higher

unemployment forecasts to higher chances of losing their own job, and to lower increases in individual

incomes. The graphs for the panel component documents that this is not only due to individual fixed effects—

increases in inflation forecasts are associated with more pessimistic updates of forecasts of macroeconomic

quantities.

The specific variables depicted in the figures correspond to survey responses to the following questions:

� expected inflation (%): ‘By about what percent do you expect prices to go (up/down) on the average,

during the next 12 months?’

� unemployment up: ‘How about people out of work during the coming 12 months—do you think that

there will be more unemployment than now, about the same, or less?’ Net share of ‘more’ minus ‘less’

responses.

� ICE : Index of Consumer Expectations, composite index computed from responses to a range of ques-

tions about future economic conditions.

� better economy : ‘Now turning to business conditions in the country as a whole—do you think that

during the next 12 months we’ll have good times financially, or bad times, or what?’ Net share of
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Figure 21: Bin scatter plots for household-level data in the Federal Reserve Bank of New York SCE.
Households sorted into percentile bins, with month fixed effects removed. One percent tails of the variable
on the horizontal axis truncated. Axes labels described in the text.

‘good times’ minus ’bad times’ responses.

� better pers. finances: ‘Now looking ahead—do you think that a year from now you will be better off

financially, or worse off, or just about the same as now?’ Net share of ‘better off’ minus ‘worse off’

responses.

� good time to buy house: ‘Generally speaking, do you think now is a good time or a bad time to buy a

house?’ Net share of ‘good time’ minus ‘bad time’ responses.

� change in family income: ‘By about what percent do you expect your income to (increase/decrease)

during the next 12 months?’

� probability losing job: ‘During the next 5 years, what do you think the chances are that you (or your

husband/wife) will lose a job you wanted to keep?’ Probability in percent.

The same pattern appears in the SCE administered by the Federal Reserve Bank of New York. Figure 21

shows that in the cross section, households that predict high inflation also assign a higher probability that

unemployment will increase, and they expect they will be financially worse off. The last panel verifies that

households consistently associated higher probabilities of aggregate unemployment with higher probabilities

of losing their own job.

The SCE is a rotating panel that interviews the households monthly during the period of 12 months.

Figure 22 replicates the analysis utilizing this panel component of the survey by removing household fixed

effects as well. The graphs confirm that when households change their forecasts, they do so consistently

with our theory. Increases in inflation expectations are associated with increases in the probability of higher

unemployment and more adverse expectations of future financial conditions, while increases in expectations

of higher unemployment are consistently accompanied with increases in expectations of losing respondents’

own job.

The specific variables depicted in the figures correspond to survey responses to the following questions:

� expected inflation (%): Calculated mean from the solicited probability distribution for the rate of

inflation over the next 12 months.

� P(unemployment up): ‘What do you think is the percent chance that 12 months from now the unem-

ployment rate in the U.S. will be higher than it is now?’
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Figure 22: Bin scatter plots for the panel component of the household-level data in the Federal Reserve
Bank of New York SCE. Households sorted into percentile bins, with month and household fixed effects
removed. One percent tails of the variable on the horizontal axis truncated. Axes labels described in the
text.

Data Benchmark model
Variable \ horizon 0 1 2 5 10 0 1 2 5 10
inflation wedge 1.00 0.68 0.54 0.34 0.25 1.00 0.71 0.51 0.18 0.04
unemployment wedge 1.00 0.67 0.64 0.41 0.06 1.00 0.71 0.51 0.18 0.04
inflation 1.00 0.81 0.63 0.32 0.20 1.00 0.93 0.77 0.23 −0.04
output 1.00 0.96 0.89 0.59 0.16 1.00 0.84 0.69 0.31 0.01
unemployment 1.00 0.98 0.95 0.76 0.33 1.00 0.65 0.47 0.07 −0.13

Table 11: Autocorrelation functions for macroeconomic quantities and belief wedges. The sample period
for the data is 1982Q1–2019Q4. Output is detrended, inflation rate is the 4-quarter change in the price
index.

� fin. better off : ‘Looking ahead, do you think you (and any family living with you) will be financially

better or worse off 12 months from now than you are these days?’ Net share of ‘better’ minus ‘worse’

responses.

� P(losing job): ‘What do you think is the percent chance that you will lose your current (main) job

during the next 12 months?’

E Model fit

In this section, we provide further evidence on the fit of the benchmark model with the data. We first

report additional unconditional moments obtained from the model dynamics that accompany those reported

in Table 2, and then extend evidence from Section 6.1 on impulse responses of belief wedge components

constructed using local projections.

E.1 Unconditional moments for the benchmark model

Tables 11 to 13 provide a comparison of the theoretical moments implied by the model with the data.

Table 11 shows that the model produces the right amount of persistence of the belief wedges, and a somewhat

higher persistence of inflation. The model does not have enough persistence to produce the particularly

high autocorrelation of unemployment; this is closely related to the absence of a hump-shaped response of

unemployment to the belief shock discussed in Section 6.1.
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Data Benchmark model
Variable (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)
(1) inflation wedge 1.00 0.34 −0.56 −0.30 0.26 1.00 1.00 0.33 −0.67 0.86
(2) unemployment wedge 1.00 −0.15 −0.49 0.61 1.00 0.33 −0.67 0.86
(3) inflation 1.00 0.10 0.03 1.00 −0.82 0.39
(4) output 1.00 −0.87 1.00 −0.74
(5) unemployment 1.00 1.00

Table 12: Unconditional correlation matrix for macroeconomic quantities and belief wedges. The sample
period for the data is 1982Q1–2019Q4. Output is detrended, inflation rate is the 4-quarter change in the
price index.

inflation output unemployment
Shock \ horizon 1 10 100 1 10 100 1 10 100
belief shock wθ

t 0.40 0.31 0.33 0.78 0.51 0.51 0.83 0.84 0.84
technology shock wa

t 0.58 0.66 0.64 0.14 0.45 0.45 0.08 0.08 0.08
monetary policy shock wr

t 0.02 0.03 0.03 0.08 0.04 0.04 0.09 0.08 0.08

Table 13: Theoretical variance decomposition of forecast errors for inflation, output, and unemployment
rate. Inflation rate is the 4-quarter change in the price index.

In Table 12, we display the unconditional covariance matrix that expands the results from Table 2. As

mentioned in Section 4.3, the model reproduces the countercyclical comovement of wedges with output and

unemployment but misses the unconditional dynamics of inflation—in the data sample, inflation is essentially

acyclical, while the model produces countercyclical inflation. In order to understand the underlying source of

this unconditional correlation, Table 13 displays the variance decomposition of forecast errors for alternative

macroeconomic variables. The model attributes a substantial share of variation in inflation to technology

shocks, while the belief shock predominantly drives output and unemployment. This is very similar to the

variance decomposition between ambiguity and TFP shocks at business cycle frequencies produced in Ilut

and Schneider (2014), who allocate most of the variation in inflation at business cycle frequencies to the

TFP shock, while real variables are driven by the ambiguity shock, which drives the subjective conditional

mean of TFP growth.

E.2 Impulse responses constructed using local projections

In Section 6.1, we constructed impulse responses to an innovation in the belief shock θt using local projections

proposed in Jordà (2005). As shown in Figure 12 in the main text, a positive innovation to the belief

wedge (a positive shock wθ
t ), representing an increase in pessimism, predicts a substantial increase in the

unemployment rate and an initial brief increase followed by a modest but persistent decrease in the inflation

rate. Unemployment and inflation wedges increase, reflecting the increase in the degree of pessimism.

Figure 23 provides additional evidence on the responses of the inflation and unemployment belief wedges

by decomposing the wedge responses into the separate contributions of the Michigan and SPF forecasts.

The top row shows that just like in the model, the increase in the inflation belief wedge after a positive

belief shock uncovered by the local projection is driven by an increase in the Michigan forecast, accompanied

by a mildly negative response of the SPF forecast. Combining these responses yields the responses of the

inflation wedge in Figure 12.

The bottom row of the figure presents the predicted responses of the unemployment wedge components,

given by the evolution over time of the one-year ahead forecasts of the change in the unemployment rate
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Figure 23: Local projection coefficients to the innovation in the principal component of the belief wedges
(solid orange lines), constructed as the difference between the Michigan and SPF forecasts. Responses are
in percentage points, inflation rate is annualized. ∆ unemployment forecast displays the projection of the
forecast of the change in the unemployment rate. Dashed lines represent ±1 standard deviation bands
constructed using heteroskedasticity-robust standard errors. Model-implied impulse responses are displayed
using blue lines with circles. Horizontal axis is in quarters.

in response to an initial shock to wθ
t . After the positive belief shock, households in the Michigan survey

start forecasting further increases in the unemployment rate for about 6–8 quarters, while the SPF forecast

is muted and somewhat negative after 2–3 years. Combining these temporal patterns generates the large

and persistent increase in the unemployment wedge. The difference compared to the model stems from the

absence of the hump-shaped unemployment response in the model—in the model, the unemployment rate

increases on impact of the belief shock and then starts declining, which is rationally reflected in the response

of the SPF forecast, while pessimistic households expect a much more gradual decline in the unemployment

rate after the initial increase. However, the difference between the two responses is the same in the data as

in the model, which generates a consistent responses of the unemployment wedge in Figure 12.

The key takeaway from the figure is the observation that empirically, the belief shocks that generate

fluctuations in the wedges are primarily driven by movements in the Michigan forecasts, emphasizing the

role of belief fluctuations in the household survey.

Finally, in Figure 24 we document consistent behavior of the belief wedges constructed using the SPF

forecasts and VAR forecasts as rational forecasts. In particular, we use local projections to construct impulse

responses of the VAR wedges to an innovation of the principal component constructed from the SPF wedges,

as in Figures 12 and 23. The left column shows that VAR wedges also increase in response to the positive

belief shock. The right column depicts that the VAR forecasts respond in a similar way as the SPF forecasts

to the belief shock, with a somewhat more pronounced negative response of the inflation VAR forecast.
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Figure 24: Local projection coefficients to the innovation in the principal component of the belief wedges
(solid orange lines), constructed as the difference between the Michigan and SPF forecasts. Responses are
in percentage points, inflation rate is annualized. ∆ unemployment forecast displays the projection of the
forecast of the change in the unemployment rate. Dashed lines represent ±1 standard deviation bands
constructed using heteroskedasticity-robust standard errors. Model-implied impulse responses are displayed
using blue lines with circles. Horizontal axis is in quarters.

F Robustness checks

F.1 Construction of the belief shock

In Section 4.2, we used the first principal component of the unemployment and inflation wedges as the

observable counterpart of the belief shock. As an alternative, we estimate the belief shock using the following

hidden factor model

θt − θ = ρθ
(
θt−1 − θ

)
+ vt

yt = Hθt + εt,

where yt =
(
∆

(4)

t (π) ,∆
(4)

t (u)
)′

are the survey wedges, H is a 2 × 1 vector of factor loadings, and εt =

(ε1,t, ε2,t)
′
are the measurement errors in the survey data with εi,t ∼ N

(
0, σ2

i

)
. We estimate the model using

Bayesian methods (Chib and Greenberg (1996)), imposing a relatively flat prior with ρθ ∼ N (0.5, 0.25),

σ2
i ∼ IG (2, 1), and Hi | σi ∼ N

(
0, σ2

i

)
. In Figure 25, we compare the mean path under the posterior

estimate with the principal component. The correlation between the two time series is 0.87.
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Figure 25: Comparison of the first principal component of the belief wedges (solid line) with the mean
path under the posterior estimate of the hidden factor model (dashed line). Both series are standardized.

F.2 Results for the model with fluctuations in pessimism induced by productivity

shocks

In Section 5.3, we study the model in which fluctuations in the belief shock θt are induced by TFP innovations.

Figures 26 and 27 plot the impulse response functions and simulated paths, respectively, for this specification.

In order to make the economy comparable to the benchmark model, we choose a calibration that leads to

the same properties of the unemployment and inflation wedges. (See column titled ‘θ(at)’ in Table 2.) This

leads us to choose µθ = 1.7, ca = −156.25, ξp = 0.66, and ξw = 0.6. All other parameters are as in the

benchmark model reported in Table 1.

F.3 Results for the model with flexible wages

The last column of Table 2 presents unconditional moments for the version of the model with flexible wages

(λ = 0). In this version of the model, we keep the parameters of the belief shock θt unchanged. Figure 28

represents the corresponding impulse responses to the belief shock innovation using the red dashed lines,

relative to the benchmark model plotted with blue solid lines. With flexible wages, the bargained wage

decreases aggressively after an increase in pessimism, so that the decline in firm valuation is substantially

less severe, firms continue to post vacancies, and the increase in unemployment is more moderate. This is

further reinforced by endogenous determination of the subjective belief. Lower macroeconomic uncertainty

results in a smaller covariance between the continuation value and future cash flows, so, for a given increase

in θt, the increase in the pessimistic bias is more modest, which further increases the incentives to hire.

The flexible wage model also produces a negligible reaction of inflation. The increase in pessimism is

more modest relative to the benchmark model, hence the pessimistic price-setting firms do not subjectively

expect such a high increase in production costs. Expectations of declining demand and increasing production

costs offset each other, generating a steady aggregate price level.

As documented in Table 2, the flexible price model generates smaller and less volatile belief wedges than

those in the data and the benchmark model. Since the mean and volatility of the θt are not structural

parameters, we relibrate them to obtain comparable volatility of the unemployment belief wedge (µθ = 8.5,

σθ = 4.9). Impulse responses for the recalibrated flexible price model are depicted with green dash-dotted

lines in Figure 28. The on-impact response of the unemployment rate and the unemployment belief are now

similar to those in the benchmark model. However, the dynamics of inflation are substantially different now.
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Figure 26: Impulse response functions to a negative TFP innovation wa under the data-generating mea-
sure P in the model with fluctuations in θt induced by TFP innovations determined by equation (21) (solid
line), and in the corresponding rational model (dashed line). Output response is in percentages, and unem-
ployment rate, inflation rate, TFP, and belief wedges are in percentage points. Inflation rate is the 4-quarter
change in the price index. Horizontal axis is in quarters.

Inflation falls on impact, due to a substantial increase in the concerns about the demand effects of the shock.

These concerns dominate the subjective belief about the adverse cost effects of the TFP shocks, and, as a

result, the inflation belief wedge turns negative on average (with a mean of −0.23%), and falls (becomes

more negative) on impact of the belief shock.

This counterfactual behavior of the inflation belief wedge reflects once again a key economic restriction

imposed by the survey data. In order for the model to generate a positive and countercyclical inflation

belief wedge, subjective concerns about supply-type shocks need to dominate agents’ pessimistic beliefs.

We therefore cannot arbitrarily increase the volatility of the belief shock σθ to match the volatility of

macroeconomic quantities without running into the constraint imposed by the behavior of the belief wedges

observed in the data.

G Model with uninsurable idiosyncratic risk

In this appendix, we derive the belief distortion implied by the endowment economy model with uninsurable

idiosyncratic risk outlined in Section 5.4 and motivated by Constantinides and Duffie (1996). Consumption

of household i is given by Ci
t = δitCt, with aggregate and idiosyncratic components specified in growth rates
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Figure 27: Data and model-implied time series for unemployment and belief wedges in the model with
fluctuations in θt induced by TFP innovations determined by equation (21).

as

∆ct+1
.
= logCt+1 − logCt = c̄

δit+1

δit
= exp

(
−ηit+1σt+1 −

1

2
σ2
t+1

)
σ2
t+1 = (1− ψσ) σ̄

2 + ψσσ
2
t + σtψσwwt+1.

with ηit+1 ∼ N (0, 1). Shocks ηit+1 are iid across households and over time, with E
[
ηit+1

]
= 1, which ensures

that household consumption aggregates to Ct. Household preferences are logarithmic, u (C) = (1− β) logC.

The household is endowed with subjective belief implied by preferences (2), with a constant penalty
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Figure 28: Impulse response functions to the belief shock innovation wθ for the benchmark model (solid
blue lines), model with flexible wages (dashed red lines), and model with flexible wages and recalibrated
volatility of the belief shock θt. Wage and firm value responses are in percentages, and unemployment rate,
inflation rate, and belief wedges are in percentage points. Inflation rate is the 4-quarter change in the price
index. Horizontal axis is in quarters.

parameter θt = θ. The continuation value recursion of the household satisfies

V i
t = (1− β) logCi

t −
β

θ
logEt

[
exp

(
−θV i

t+1

)]
.

Applying results from Appendix B.7, we define vit = V i
t − logCi

t , implying the recursion

vit = −β
θ
logEt

[
exp

(
−θ
(
vit+1 +∆cit+1

))]
, (64)

with individual consumption growth following

∆cit+1 = log
δit+1

δit
+∆ct+1 = −ηit+1σt+1 −

1

2
σ2
t+1 + c̄.

Denote Êt+1 [·] the expectation operator that conditions on the information set consisting of time-t informa-

tion and time-t+ 1 aggregate variables. We conjecture the solution of the form vit = v̄σσ
2
t + v̄0. The fact is

that the scaled continuation value does not depend on the identity of the household is the consequence of the

permanent-shock nature of idiosyncratic uncertainty. Substituting into the recursion (64) yields restrictions

on the coefficients v̄σ and v̄0. In particular, the restriction on v̄σ is given in the form of a Riccati equation

v̄σ = β

(
v̄σ − 1

2
(1 + θ)

)
ψσ − βθ

2

(
v̄σ − 1

2
(1 + θ)

)2

ψσwψ
′
σw

.
= f (v̄σ) .
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The term on the right-hand side denoted as f (v̄σ) concave in v̄σ, with f (0) < 0 and f ′ (0) > 0, which means

that if real solutions exist, they will be negative, and the larger (smaller in magnitude) solution will be stable

and can be obtained by backward iterations v̄
(n+1)
σ = f

(
v̄
(n)
σ

)
from v̄

(0)
σ = 0. Real roots will exist if and

only if

(1− βψσ)
2 − βθ (1 + θ)ψσwψ

′
σw ≥ 0.

The one-period belief distortion of household i is given by

mi
t+1 =

exp
(
−θV i

t+1

)
Et

[
exp

(
−θV i

t+1

)] = exp
(
−θ
(
vit+1 +∆cit+1

))
Et

[
exp

(
−θ
(
vit+1 +∆cit+1

))] (65)

=
exp

(
−θ
((
v̄σ − 1

2

)
σ2
t+1 − ηit+1σt+1

))
Et

[
exp

(
−θ
((
v̄σ − 1

2

)
σ2
t+1 − ηit+1σt+1

))] (66)

To establish subjective belief wedges for aggregate variables, we can condition down mi
t+1 to

Êt+1

[
mi

t+1

] .
= m̂t+1 =

exp
(
−θ
(
v̄σ − 1

2

)
σ2
t+1

)
Êt+1

[
exp

(
θηit+1σt+1

)]
Et

[
exp

(
−θ
(
v̄σ − 1

2

)
σ2
t+1

)
Êt+1

[
exp

(
θηit+1σt+1

)]]
=

exp
(
−θ
(
v̄σ − 1

2 (1 + θ)
)
σtψσwwt+1

)
Et

[
exp

(
−θ
(
v̄σ − 1

2 (1 + θ)
)
σtψσwwt+1

)] .
Since m̂t+1 does not depend on the identity of the household, households share the same subjective belief

with respect to aggregate variables. As in (18), consider an aggregate variable zt = z̄′x1t with x1t that

follows (10). Then the belief wedge is given by

∆
(1)
t (z) = Ẽt [zt+1]− Et [zt+1] = z̄′ψwẼt [wt+1]

= −θσtz̄′ψwψ
′
σw

(
v̄σ − 1

2
(1 + θ)

)
This is the counterpart of the belief wedge (18) from the homoskedastic model.

To show that a no-trade equilibrium exists under the specification of consumption processes conjectured

above, consider a cash flow process Dt contingent on aggregate risk with equilibrium price Pt. Optimal

portfolio choice of household i implies the Euler equation

Pt = Ẽi
t

[
sit+1 (Pt+1 +Dt+1)

]
= Et

[
mi

t+1s
i
t+1 (Pt+1 +Dt+1)

]
where Ẽi

t [·] is the expectation operator under the subjective belief of household i and sit+1 = β
(
Ci

t+1/C
i
t

)−1

is the corresponding stochastic discount factor. Since the cash flow and price process are only contingent on

aggregate state variables, we can condition down and write

Pt = Et

[
Êt+1

[
mi

t+1s
i
t+1

]
(Pt+1 +Dt+1)

]
.

78



Following the same derivation as in the construction of m̂t+1, we obtain

Êt+1

[
mi

t+1s
i
t+1

] .
= ŝt+1 = β

Êt+1

[
exp

(
−θvit+1 − (1 + θ)∆cit+1

)]
Et

[
Êt+1

[
exp

(
−θvit+1 − θ∆cit+1

)]]
= β exp

(
−c̄+ (1 + θ)

[
(1− ψσ) σ̄

2 + ψσσ
2
t +

(
−θv̄σ +

1

2
(1 + θ)

)
σ2
tψσwψ

′
σw

])
·

·
exp

((
−θv̄σ + 1

2 (1 + θ) (2 + θ)
)
σtψσwwt+1

)
Et

[
exp

((
−θv̄σ + 1

2 (1 + θ) (2 + θ)
)
σtψσwwt+1

)]
The belief adjusted marginal rate of substitution conditioned down on aggregate variables is therefore iden-

tical across households at the prevailing consumption processes, which yields a no-trade equilibrium as in

Constantinides and Duffie (1996). The time-varying nature of idiosyncratic risk induces both time-variation

in risk-free discounting, manifested by the first line of the last expression, as well as in belief-adjusted prices

of risk, captured by the last term.

H Alternative models of belief updating

In this section, we provide a theoretical justification for regression (22) using two models of information

processing. The first is a sticky information model in the spirit of Mankiw and Reis (2002). Assume that

the forecasted variable zt follows an AR(1) process

zt = ρzt−1 + wt

with iid innovations wt and ρ ∈ [0, 1]. Under full information, the j-period-ahead forecast is Et [zt+j ] = ρjzt.

Under sticky information, each agent updates her information about the current state with probability

1− λ ∈ (0, 1]. At every time t, a fraction (1− λ)λk of agents last observed the state of the process at time

t − k (the case λ = 0 thus corresponds to the full information model). The cross-sectional average of the

individual forecasts at time t, which plays the role of the aggregate forecast in (22), is therefore given by

Ẽt [zt+j ] = (1− λ)

∞∑
k=0

λkEt−k [zt+j ] = (1− λ)

∞∑
k=0

λkρj+kzt−k,

where Et−k [zt+j ] is the time-t forecast of an agent who has last updated her information at time t−k. Since

zt−k =

∞∑
m=0

ρmwt−k−m,

we get

Ẽt [zt+j ] = (1− λ)

∞∑
k=0

λkρj+k
∞∑

m=0

ρmwt−k−m =

∞∑
k=0

(
1− λk+1

)
ρj+kwt−k,

which can be represented recursively as

Ẽt [zt+j ] = (1− λ) ρjzt + λρẼt−1 [zt−1+j ] .
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This yields the expression for forecast errors of the average forecast

zt+j − Ẽt [zt+j ] = λρjzt − λρẼt−1 [zt−1+j ] +

j−1∑
m=0

ρmwt+j−m.

This corresponds to regression (22) with b0 = 0, bz = λρj ∈ [0, 1), and bf = −λρ ∈ (−1, 0]. The regression

coefficients reduce to bz = bf = 0 in the absence of information frictions (λ = 0).

The second model is a noisy information model motivated by Lucas (1972), Sims (2003), and Woodford

(2003a). Specifically, zt follows again an AR(1) process but is not observable. Instead, each agent i receives a

combination of a public signal yt = zt+χt, χt ∼ N
(
0, σ2

χ

)
that is common for everybody and an idiosyncratic

private signal yit = zt + ηit, ηit ∼ N
(
0, σ2

η

)
. The state space system can then be written as

zt = ρzt−1 + wt wt ∼ N (0,Σw)

sit = hzt + vit vit ∼ N (0,Σv)

where sit = (yt, yit)
′
, h = (1, 1)

′
, vit = (χt, ηit)

′
, and Σv is diagonal with elements σ2

χ and σ2
η. The standard

steady-state Kalman filter solution to the filtering problem implies that agent i’s time-t forecast of zt+j

follows the law of motion

Ẽi
t [zt+j ] = ρẼi

t−1 [zt−1+j ] +K
(
ρj−1sit − hẼi

t−1 [zt−1+j ]
)
,

where K is the Kalman gain parameter, given by

K = ρΣh′ (hΣh′ +Σv)
−1

Σ = ρ2Σ− ρ2Σh′ (hΣh′ +Σv)
−1
hΣ+ Σw.

Denoting Ẽt [zt+j ] the cross-sectional average of the individual forecasts, we obtain

Ẽt [zt+j ] = ρẼt−1 [zt−1+j ] +K
(
ρj−1st − hẼt−1 [zt−1+j ]

)
,

where st = (zt + χt, zt)
′
. The law of motion for the average forecast can therefore be written as

Ẽt [zt+j ] = ρj−1Khzt + (ρ−Kh) Ẽt−1 [zt−1+j ] + ρj−1K2χt,

where K2 is the second element of K. Writing this forecast-updating equation in terms of forecast errors,

we get

zt+j − Ẽt [zt+j ] =
(
ρj − ρj−1Kh

)
zt − (ρ−Kh) Ẽt−1 [zt−1+j ]− ρj−1K2χt +

j−1∑
m=0

ρmwt+j−m.

As in the sticky information model, this corresponds to regression (22) with b0 = 0, bz =
(
ρj − ρj−1Kh

)
∈

[0, 1), and bf = − (ρ−Kh) ∈ (−1, 0]. The regression coefficients reduce to bz = bf = 0 in the absence of

signal noise (Σv = 0).
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I Equilibrium equations of the structural model

In this section, we summarize the full set of equilibrium conditions for the model described in Section 4.

I.1 Representative household

Value function recursion:

Vt = (1− β) log (Ct)− βθt logEt

[
exp

(
− 1

θt
Vt+1

)]
Budget constraint:

PtCt +Bt+1 ≤ (1− Lt)PtD + LtPtξt +Rt−1Bt − Tt

Stochastic discount factor:

st+1 = β
Ct

Ct+1

Euler equation for bond purchases:

1 = RtẼt [st+1]

I.2 Labor market

Law of motion for employment:

Lt = (ρ+ ht)Lt−1

Hiring rate:

ht =
ft (1− ρLt−1)

Lt−1

Vacancy-filling rate:

qt =
ht
vt

Labor market tightness:

ζt =
vtLt−1

1− ρLt−1

Matching technology:

ft = µζνt

Present value of real wages (conditional on the job existing):

ξpt = ξt + ρẼt

[
st+1ξ

p
t+1

]
Present value of marginal revenue (conditional on the job existing):

ϑpt = ϑt + ρẼt

[
st+1ϑ

p
t+1

]
The value of a job to the worker:

Jw
t = ξpt +At

Outside benefits of being on a job:

At = (1− ρ) Ẽt

[
st+1

(
ft+1J

w
t+1 + (1− ft+1)Ut+1

)]
+ ρẼt [st+1At+1]
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Present value of unemployment:

Ut = D + Ẽt

[
st+1

(
ft+1J

w
t+1 + (1− ft+1)Ut+1

)]
Present value of the worker to the firm:

Jt = ϑpt − ξpt

Free-entry condition:

Jt =
κv
qt

Nash bargaining surplus sharing rule for target wage:

η (Jt + ξt − ξ∗t ) = (1− η) (Jw
t − Ut + ξ∗t − ξt)

Actual wage:

ξt = χwξt−1 + (1− χw) ξ
∗
t

I.3 Production

Optimal price setting:

Kt = λϑt
Yt

exp(at)
+ χpẼt

[
st+1π

ε
t+1Kt+1

]
Ft = Yt + χpẼt

[
st+1π

ε−1
t+1Ft+1

]
1− χpπ

ε−1
t = (1− χp)

(
Kt

Ft

)1−ε

I.4 Shock processes and resource constraint

θt process:

θt = (1− ρθ)µθ + ρθθt−1 + σθw
θ
t

Technology process:

at+1 = ρaat + σaw
a
t+1

Monetary policy rule:

log
(
Rt/R

)
= ρr log

(
Rt−1/R

)
+ (1− ρr) [rπ log (πt/π) + ry log (Yt/Y

∗)] + σrw
r
t

Aggregate resource constraint:

Ct +
κv
qt
htLt−1 = Yt
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